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Abstract One might poetically muse that computers have the essence both of logic and ma-

chines. Through the case of the history of Separation Logic we explore how this assertion

is more than idle poetry. Separation Logic works because it merges the software engineer’s

conceptual model of a program’s manipulation of computer memory with the logical model

that interprets what sentences in the logic are true, and because it deploys a proof theory

that meets the engineer’s design goals of timely and explanatory prediction of errors. Sep-

aration Logic is an interesting case because of its widespread success in verification tools,

including those used by Facebook and others. For these two senses of model — the engi-

neering/conceptual and the logical — to merge in a genuine sense, each must maintain their

norms of use from their home disciplines. When this occurs, the development of both the

logic and engineering benefit greatly. Seeking this intersection of two different senses of

model provides a strategy for how computer scientists and logicians may be successful. Fur-

thermore, the history of Separation Logic for analysing programs provides a novel case for

philosophers of science of how software engineers and computer scientists develop models

and the components of such models. We provide three contributions: an exploration of the

Blinded



2 Blinded

extent of models merging that is necessary for success in computer science; an introduction

to the technical details of Separation Logic, which can be used for reasoning about other

exhaustible resources; and an introduction to (a subset of) the problems, process, and results

of computer scientists for those outside the field.

1 Introduction

This paper focuses on logic as a technology by reflecting on the achievements in verification

of computer programs using logics as tools. Specifically, we follow Separation Logic, a

development within theoretical computer science firmly established by O’Hearn and Pym

[1999], Ishtiaq and O’Hearn [2001] and Reynolds [2002]. The result is a case study with

multiple uses. For logicians, it is an example of success by integrating engineering needs

into both model theory and proof theory. Integrating with model or proof theory alone is not

enough. For philosophers of science, it is an account of the working and reasoning process

of field which is not commonly studied.

Separation logic adds a connective to standard logic called ‘and, separately’ that solves

a problem of reasoning about the resources a computer program will need when it executes.

We will lay out what makes reasoning about computer resources hard and explain Separation

Logic’s special arrangement of properties that enable us to use it effectively in program ver-

ification problems.1 The 2016 Gödel prize, awarded to Brookes and O’Hearn for resolving

1 A sub-discipline of logic and verification of computer programs has flourished within wider com-

puter science since at latest 1970 with the activity surrounding Floyd–Hoare logic [Apt, 1981]. The first

academic conference dedicated to studying programming languages, including the verification of lan-

guages using logic as a tool, took place in 1973 (Principles of of Programming Languages, or ‘POPL’,

http://www.sigplan.org/Conferences/POPL/) and a dedicated journal appeared in 1979 (ACM Transac-

tions on Programming Languages and Systems, or ‘TOPLAS’, http://toplas.acm.org). Independent publi-
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these resource management problems with Concurrent Separation Logic, puts the problem

in context:

For the last thirty years experts have regarded pointer manipulation as an unsolved

challenge for program verification ... .

Given the modern social reliance on software, program verification holds growing im-

portance. Assigning the appropriate resources to a computer program is important for effi-

ciency, accuracy, reliability, and security. Program verification as a discipline is focused by

the practical challenges of making computer software function reliably, such as by assuring

the program claims, uses, and releases the correct resources at the correct times. Resource

allocation decisions are hard both in principle and in practice. In principle, given computer

code (i.e., software), one cannot determine a priori when or if the program will halt [Tur-

ing, 1936]. In practice, for small programs this impossibility-in-principle is overcome by

making an estimate based on similar programs. However, modern software projects at com-

panies like Microsoft, Facebook, and Google have many millions of lines of code, written by

thousands of people. With such a fragile, distributed, and complex system in which chang-

ing fives lines of code out of a million can drastically change behaviour, estimates based on

experience are inadequate, to say the least. Therefore, although software is a human arte-

fact, one does not in general know what any given piece of software will do when executed.

To overcome these challenges, companies such as Facebook use Separation Logic to verify

their mobile app software [Calcagno et al., 2015b] using a tool called ‘Infer’. Separation

Logic is not limited to one use; extensions of it are used, for example, to verify operating-

system scheduling [Xu et al., 2016], a crash-tolerant file system [Chen et al., 2015], and an

cation venues help mark where an academic community forges it own identity, characteristic problems, and

norms. Program verification may be some mix of computer science and logic, but it is also independent.
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open-source cryptographic operation [Appel, 2015]. Our case study will be the development

of Separation Logic through to these real-world applications.

The resource about which Separation Logic can best reason is computer memory, specif-

ically Random Access Memory (RAM; hereafter, simply ‘memory’).2 Appropriately re-

sourcing memory for a computer program is an important task within computer science.

Memory errors are not easily handled during program execution, and adversaries can use

errors to remotely take control of computers using free, public attacks. Thus, although rea-

soning about computer memory errors may appear quite specific, it is a salient problem in

practical computer science so far best addressed by Separation Logic.

Separation Logic was developed at a crossroads of two problems, a logical–theoretical

issue of reasoning about resources generally, and a technological–computer-science problem

of preventing errors in software memory usage. In this paper, we relate the special constel-

lation of properties of Separation Logic due to this situation. Under the right conditions,

interpreted the right way, the logical model can be at once a logic model and an engineering

model. To be a genuine joint logic-engineering model is to take on the features and norms

of use of models both in a logic and in an engineering discipline. In practice, not just the

model but also the proof theory adapts to satisfice the needs of the engineering problem

at hand (‘satisfice’ as per Simon [1996]). We do not propose anything surprising about the

features of models in logic nor models in engineering. The surprise has come forward in

2 RAM is the computer’s scratch board of what it is working on presently, where the present is measured

on the order of seconds or minutes. RAM is fast, but it is volatile, meaning roughly that if the computer is

powered off RAM is lost. Verifying how a program uses RAM is important because it is volatile, and so

information stored there is likely to be lost if certain errors occur. Computers have other types of memory;

hard drives are persistent memory, and are stable when the computer is powered off.
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powerful results for reasoning about computer programs once we gave Separation Logic the

constellation of properties that genuinely make for features of both types of model.

We take Separation Logic as an example case out of several projects in computer science

that exhibit this simultaneity of logic and engineering models. In the 1970s, Floyd–Hoare

logic merged the engineer’s notion of program execution into first-order logic. However,

Hoare logic by itself does not adequately adapt to the task of efficiently reasoning about

pointers and mutable data; proofs are not practically tractable [Bornat, 2000]. A primary

feature of an engineering model is to be satisfactorily useful, not merely to include consid-

erations from the engineered world. This further step is more rare. It requires adapting the

logic model, model structure, and proof theory to suit the engineering model or task and to

test that suitability empirically. For example, temporal logic, as used in tools built by Ama-

zon to manage its infrastructure, also seems to have achieved this special merging of logic

and engineering models [Newcombe et al., 2015]. We will survey how Separation Logic has

adapted its features to the task of verifying a program’s use of memory. It is adapted through

its syntax and proof theory as well as its model structure — the engineering model does not

merely supply semantics to a logical syntax.

There is a historical connection between scientific laws and logic models. The Logical

Positivists in the mid-20th century held that a scientific theory was a set of sentences in

first order logic. The physical world and its laws of nature are interpreted as a model of

true scientific theories [Frigg and Hartmann, 2012, §1.3]. Logical Positivism and this usage

of model have fallen out of favour. Practitioners use scientific or engineering models to

represent phenomena or data [Frigg and Hartmann, 2012, §1]. When we say that Separation

Logic merges logic and engineering models, we do not mean a by-definition (de dicto)

merging reminiscent of Logical Positivism. We mean a logic built and empirically tested to

usefully reason about a phenomenon.
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Our focus is on practical questions of the efficient use of models for reliable reasoning,

not on ontological questions of what processes are computation. Separation Logic reasons

about machines colloquially called ‘computers’. However, the important part of Infer is that

it predicts what a complex object we care about will do, not questions of whether physical

objects compute [Piccinini, 2007] or whether a computation is a miscomputation or dys-

functional [Floridi et al., 2015]. This distinction gives a sense of the extent to which tools

like Infer are pragmatic, engineering projects. Yet, testing for mundane properties like sta-

bility still requires a novel development of a logical technology. As Swoyer might say, we

represent computer programs ‘in a medium that facilitates inference’ [Swoyer, 1991] about

them — Separation Logic.

The history of Separation Logic is presented as a case study for understanding experi-

mentation and model development in computing. Discussions of such questions are available

centering on general methodological views [Schiaffonati and Verdicchio, 2014] or a mech-

anistic view [Hatleback and Spring, 2014]. The case of Separation Logic also might inform

discussions of how to overcome challenges in ‘science of security’, especially in the area of

the relationship between science, engineering and formalism [Spring et al., 2017]. However,

we focus on clearly presenting the case study and highlighting salient developments, and

leave interpretation out of scope.

Another lens of interpretation for the case of Separation Logic is that of (scientific) rep-

resentation. Suárez [2010] distinguishes between analytical and practical inquiries into the

nature of representation. We consider Separation Logic tools to be a case study in prag-

matic representation. The case has value within the analytic–practical distinction because

within these verification tools one logical model (Separation Logic) is used as a pragmatic

representation of another logical system (computer code). Tools such as Infer have both rep-

resentational force and inferential capacities, as defined by Suárez [2010, p. 97]. Our case
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study describes the details of Separation Logic that give it these two properties, thus making

it both a model in the scientific sense and in the logical sense. We claim this merging, of both

logical models and engineering- or scientific-type models, is a vital feature of what makes

Separation Logic successful, and is worth emulating. A logic model that is also a scientific

model also poses an interesting case for analytical inquiry. However, here we focus on the

practical description of how programmers use Separation Logic to solve problems using this

form of model building.

The two categories in which we elaborate Separation Logic’s properties are its seman-

tics, which has a clear interpretation in the mathematical model of computer memory, and

its deployable proof theory, which is both automatable and modular so we can scale it to

real-world problems. Both of these features are related to the properties of the connective

‘and, separately’, represented in symbols as ∗. We will survey the properties of this connec-

tive and its interpretation; however, the formalism is not strictly necessary to understand the

impact of Separation Logic as a technology. The primary insight is to learn to recognize sit-

uations in which a logic model, by coincidence or by design, usefully overlaps with a model

of a practical problem. When this coincidence is recognized and pursued the development

of both the logic and the practical solution benefit.

Separation Logic mirrors the computers in the physical world in a deep and important

way, in a way that first-order logic does not. Both atoms of Separation Logic and computer

parts are composable in a natural way. In some sense, the other beneficial properties of

Separation Logic derive from pursuing and refining the benefits of a logical primitive (∗)

that directly and cleanly captures the compositionality of resources in the physical world.

Section 2 describes the context of the application, including details about what chal-

lenges make program verification of allocation of computer memory resources a hard and

important problem to solve. Section 3 accessibly introduces the properties of Separation
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Logic that meet the relevant challenges. Section 4 surveys the logical properties (semantics,

syntax, &c.) of Separation Logic, focusing on its novel connective ‘and, separately’ (∗).

For those not disposed to logical formalism, Section 4 can be safely glossed over without

losing the broader narrative. Section 5 describes how the Frame Rule and automated ab-

duction make Separation Logic a solution for reasoning about computer memory resources

that is practical for large software development firms to deploy. Section 6 concludes by ex-

tracting advice for logicians from this case study: that merging aspects of a simultaneous

logic–engineering model is a good start, but to succeed the logic model’s structure must be

exploited to give some measurable benefit.

2 Solving a Hard Problem

Memory management is challenging, and errors potentially lead to unstable behaviour, re-

source exhaustion, or security threats. Management of the computer’s memory falls directly

to the programmer in languages like C. This section will introduce the importance of C-like

languages and the task of memory management. This description amounts to the program-

mer’s model of what the computer does, a model very much like any other engineering

model. The main features of the model are pointers and memory locations, to which we give

a minimal introduction. Next, we describe how verification using logic provides a satisfac-

tory solution to the programmer’s challenge of memory management in C-like languages.

The section concludes with some remarks on the additional practical challenges of solving

these problems at scale within software-development companies.

The C programming language was first developed in 1972, to implement the UNIX

operating system. Every major computer operating system is now written using C. C and

languages derived from it — such as Java, C++, C#, and Python — may account for as
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much as half the computer code written every year.3 The impact of C is perhaps even more

than this ratio may seem. C code is in the critical path for almost any task done using a

computer, since the operating system on a computer controls what the rest of the code on

the system is permitted to do.

As introduced above, the programmer cannot in general know what her program will

do once written. The popularity of C has to do with its expressivity, speed, and effective-

ness. Unfortunately, its benefits do not include easy identification or tolerance of errors. The

computer can check that it understands the syntax the programmer wrote, which catches

some errors. Beyond this, the programmer is ignorant to any errors that will occur during

execution of the program, known as run-time errors. There are various technical types of

run-time errors, but for our purposes we partition them into ‘annoying’ and ‘catastrophic’.

Annoying errors lead to incorrect results, for example dividing by zero. The program can

catch annoying errors and recover. Catastrophic errors lead to the program fatally failing,

such as by crashing or exhausting available resources. Recovering intermediate progress is

not generally possible after a fatal failure. If the program is able to exhaust the whole sys-

tem’s resources, such an error may bring down the rest of the computer system as well, not

just the program. Memory management errors are one common type of catastrophic run-

time error. Memory management is not the only task for which Separation Logic provides a

suitable logical substrate. Task scheduling within an operating system is another source of

catastrophic run-time errors [Xu et al., 2016]. We touch on the use of Separation Logic to

address this second example in Section 5.2; however, the memory management context is

our primary example. To see what makes memory management errors catastrophic, we first

consider the basics of computer memory.

3 There is no precise way to count code written; however, analysis of publicly available web sites indicate

C and descendant languages account for about half. See http://www.tiobe.com/tiobe_index.
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The programmer’s model of memory management abstracts away from the hardware.

Computer memory is a slab of silicon electronics. Conventionally, the smallest elements

are binary digits, or bits, interpreted as 1 or 0 based on whether the local voltage is high

or low. The hardware is designed such that any location can be read or written equally

quickly (thus ‘random access’ memory). Eight bits are usually grouped into a byte for the

basic unit of memory with which humans interact. The programmer, and the human-readable

programming languages we work with, thus model the memory as a list of individual bytes,

like houses on a very long street. These bytes in memory are given a address from one to

264−1, in modern 64-bit operating systems, based on their position in this one-dimensional

vector. This is a programmer’s model of computer memory; memory location 12 need not

actually be physically next to location 13.

Strictly, a pointer is the address of some object in memory. A pointer-variable (usu-

ally, unhelpfully, just ‘pointer’) is a kind of variable that contains an address; in particular,

the address where some other variable’s value is stored [Kernighan and Ritchie, 1988, p.

93]. Pointers are well-known in computer science to be both ‘extremely powerful’ and ‘ex-

tremely dangerous’ [Ishtiaq and O’Hearn, 2001, p.1]. Pointers are powerful because they

allow calculation over items in memory without expensive duplication or moving of the ac-

tual chunks of data in memory that would otherwise be necessary. Figure 1 demonstrates

pointer basics. Each variable is represented by a square. Its name is above the square, the

contents are inside. If the content is a pointer, it is represented as a arrow to its target. A

pointer may be declared, to reserve its name, without a target, which is represented by a

wavy arrow without a target. A pointer with no target has the special value NULL, and is

called a null pointer. One common memory management error which we can find with Sep-

aration Logic is if a program will attempt to use a null pointer in a situation that requires a

pointer with a valid value.
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Value

Name p1

6

x p2

Figure 1 Anatomy of a pointer. Pointer p1 points to the variable x, whose value is 64. The name for pointer

p2 is reserved, but it does not point anywhere; such a pointer has a special value called NULL.

A more subtle pointer error is to lose track of items in memory. An item in memory is

only accessible if there is a pointer to it. Garbage is the official term for memory which is

allocated (i.e., reserved for use) but not accessible because all pointers to it have been re-

moved. If memory garbage is not explicitly cleaned up by the programmer, memory eventu-

ally gets clogged by allocated but inaccessible chunks of garbage data. This slow exhaustion

of reserved memory by failure to clean up is called a memory leak. Figure 2 demonstrates

one way a memory leak may occur. The technical term for cleaning up memory is to free it;

that is, release reservation on its use. Unfortunately, it is not so simple as to just ensure the

program frees all memory eventually. Errors when freeing memory also lead to dangerous

behaviour. If the program maintains and uses a pointer to a memory location after freeing

the memory, the location could have been used by another program to store different data.

We glibly termed these sorts of errors catastrophic. A program with a memory manage-

ment error will behave erratically or fail suddenly. Whether this behaviour is catastrophic in

a human sense depends on the importance of the program. If a word processor has a mem-

ory leak which means it cannot run for more than four hours, this is probably fine. If the

software is for an air traffic control radar facility, it is more severe.4

Memory management errors are also security problems. The security community de-

scribes a reference list of canonical types of flaws that lead to security vulnerabilities, called

4 The FAA press release on such an ATC failure does not specifically identify the software flaw type;

however, the description suggests that it was a memory leak [Federal Aviation Administration, 2015].
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p1

6

p2

22

p1

6

p2

22

Set 
p2 = p1

Figure 2 One example error involving pointers. The data element 22 is no longer accessible, because there

is no pointer to it. That memory space has ‘leaked’ and cannot be freed (released back to the computer) or

accessed. Memory leaks lead to resource exhaustion, as it is a one-way process and eventually the whole

memory is full of leaked garbage which crowds out all useful programs.

the Common Weakness Enumeration. A quick survey of the entries for null pointer excep-

tions, resource leaks, and memory leaks (which are CWE-476, CWE-402, and CWE-401,

respectively) provides a long list of software that has been vulnerable to a hostile takeover

by an adversary due to these memory management errors [MITRE, 2015]. Again the amount

of harm depends on the importance of the victimized computer. However, criminals can use

and resell the electricity and network connection of any computer, to either hide more sin-

ister attacks or rent as infrastructure for less technologically capable criminals [Sood and

Enbody, 2013]. Thus, it is important to prevent vulnerabilities such as memory management

errors in all computers.

We have elaborated two reasons memory management errors are problematic. They

cause instability and make a program crash, which is bad for functionality and usability.

They also frequently lead to security vulnerabilities which are exploitable by adversaries

and criminals. There are two classes of methods to find flaws in computer software: static

and dynamic. In static analysis, we analyse symbolic and structural features but do not run
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the code, thus ‘static’ as the code does not move, so to speak. In dynamic analysis, we run

the code and measure what happens. We use Separation Logic to find these errors statically,

without running the program.

Success in program verification can be measured in at least four ways: reduced software

flaws, accuracy of findings, speed of analysis, or reduced human time to fix software flaws.

In practice, measuring how many flaws a technique finds is easy but hard to interpret. The

total number of flaws remains unknown in principle using static analysis, because of Tur-

ing’s halting result, as discussed in Section 1. In practice, it is simply hard and too costly

to exercise all the possible execution paths a program might take using dynamic analysis.

Therefore, we cannot know for certain how many flaws remain undetected, which makes cal-

culating accuracy or relative reduction in flaws impracticable. The problem is, essentially,

that we cannot tell if finding 99 flaws is 99% effective or 2% effective. A more interpretable

measure for the software industry is the rate at which found flaws are able to be fixed. This

measure relates to analysis speed, because humans fix software better if given fast feedback.

These desirable engineering outcomes suggest static analysis.

To make progress with static analysis, one must take a defined subset of the general

problem of all software flaws. Since memory management causes such headaches in prac-

tice, Separation Logic was developed towards targeting them. To target memory in partic-

ular, elements of the logic faithfully incorporate the engineer’s model of how the computer

manages memory; that is, pointers, as previously described. In practice, what we will arrive

at is a program to check other programs statically. This checker makes use of Separation

Logic and an engineer’s model of pointers. Within this checking software, Infer, the logic

model and the engineering model will coincide. This confluence overcomes several of the

challenges described in this section to more effectively prevent memory management errors,

leading to more stable and secure code.
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Naturally, for any given deployment of logic there are considerations for success beyond

pure technical logical matters. Brooks’ essay [Brooks Jr, 1995] is an example starting point

for general software engineering considerations. For a program analysis tool such as Infer,

integration with an organization’s programming culture and process is significant work; see

O’Hearn [2015]. For proofs of properties closer to functional correctness or operating sys-

tem or crypto code, effective integration within a powerful proof assistant is critical [Appel

et al., 2014]. While these contextual questions are important, this paper will focus on the fea-

tures of the logic and its model that contribute to its success, not on the additional contextual

factors which are nonetheless important.

In this section, we have introduced pointer management in computer memory. Pointer

mismanagement can lead to serious stability and security flaws. Such flaws are hard to find

dynamically during run-time. However, finding such flaws statically, based on the program’s

source code, has historically been too hard to do well enough to be useful. In the following

sections we describe how Separation Logic succeeds at this hard task. Section 3 introduces

all the properties of the logic that contribute to success. Separation Logic’s properties that

make it useful can be tackled in two broad categories: semantics (Section 4) and proof

theory (Section 5). We will see that the logic undergoes a holistic adaptation to meet the

practicalities of the engineering task.

3 Why Separation Logic Works

Separation Logic works for solving this problem of reasoning about memory allocation

because of a group of features:

– A useful engineering model of computer memory;
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– A logical model and language that are grounded, respectively, in an interpretation of or

semantics for exhaustible resources;

– The productive overlap of these two (types of) models;

– The use of the connective ∗ for ‘and, separately’, from the bunched logic BI, to facilitate

the formulation, in the setting Separation Logic’s Floyd–Hoare-style formulation, of a

‘Frame Rule’ to support compositional local reasoning; and

– Scalable pre- and post-conditions.

The first three elements are modelling choices that provide a powerful capacity for predic-

tion of computer memory usage which is not otherwise available. The latter two elements

provide a scalable algorithm for calculating and proving these predictions for a given com-

puter program.

The bunched logic BI can be interpreted as a logic of exhaustible resources [Galmiche

et al., 2005]. For example, if one has 10 coins, it is certainly true that one has the capacity to

buy a red widget that costs 4 coins. It is also true that one has the capacity to buy a yellow

widget that costs 5 coins and the capacity to buy a blue widget that costs 7 coins. It is not,

however, true that one has the capacity to buy both a yellow widget and a blue widget —

that would require a total of 12 coins — but one does have the capacity to buy both a red

widget and and a yellow widget — requiring a total of 9 coins — or two yellow widgets —

requiring exactly 10 coins. The resource-interpretation of BI’s semantics provides a precise

interpretation of formal logical statements of all of these cases. More specifically, BI makes

a distinction usual logical ‘sharing’ conjunction, for example,

‘10 coins is enough for a yellow widget and is enough for a blue widget’

which is true only if the resource of 10 coins can be shared by the two parts of the statement,

and the separating conjunction, for example,
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‘10 coins is enough for both a red widget and a yellow widget’

where the resource of 10 coins must be divided, or separated, into those required for each

part of the statement.

Computer memory, like money, is an example of an exhaustible resource. Though a

computer is, basically, electricity and magnetism in silicon, computer programmers5 do not

write software as if they were individually manipulating millions of tiny magnets. Like most

engineers, a programmer works with a model6 of what she is building. To the programmer,

the model of computer’s memory is provided by the stack and heap. In a violently simplified

analogy, the stack is what you’re doing, and the heap is what you’re working on. These

metaphorical names are evocative of their actual function. The stack is an ordered array

of data elements, and the computer can only put elements on the top, and take them off

the top. This structure ensures an orderliness and efficiency good for sequential recursive

instructions but not good for big chunks of data. In the heap elements can be accessed in any

order but only so long as the program’s stack has a pointer, or index, to the information’s

location in memory. Note that the stack maps variables into values, whereas the heap maps

addresses into values [Reynolds, 2002]. Though the programmer’s model abstracts away

from it, location here has a physical interpretation. Computer memory is an apparatus with

a numerical address for each microscopic individuated bit in its vast silicon plane. Like the

structural engineer who has mathematical equations that inform her choices of bridge design,

the programmer uses the model of the stack and heap to inform software development. In

5 Instead of ‘programmer’, one may find ‘(software) developer’, ‘coder’, or ‘software engineer’. These

terms have differing connotations across various communities, which are not relevant here. We just mean

anyone who writes software.
6 The details of what is or is not a model are subtle. We gloss over the subtleties one may find in Giere

[2004] or Illari and Williamson [2012], for example, because these subtleties among models in science and

engineering are not necessary to differentiate them from models in logic.



Why Separation Logic Works 17

both cases, the engineer’s model’s prediction is not perfect, and the bridge or the program

could collapse despite best efforts.

One success of Separation Logic is to merge the logic-model and the engineering-model.

The stack and the heap have formal representations in Separation Logic, with the heap as a

resource. A programmer’s models of memory can be expressed as sentences within Sepa-

ration Logic without unacceptable loss of applicability to the real world. Sentences in Sep-

aration Logic have deductible consequences, and can be proved. In the computing context,

this amounts to proving properties of future behaviour of possible program executions. Such

proofs enhance the engineering-model of the program directly. If the logic deduces a section

of the program code will make a memory-usage error, the code can be tested empirically to

verify the error and gather information about the mechanism by which the error is com-

mitted. These logical and empirical results update the programmer’s model of the software,

and she fixes the code accordingly. Such remediation is not possible without logical tools

in which the model of the program in an scientific-engineering sense meaningfully overlaps

with the logic’s model.

An engineer’s model commonly merges mathematical modelling with some subject-

matter expertise to make predictions. For example, a structural engineer can use mathemati-

cal models to predict when stress on a bridge element will exceed its shear strength because

we have accurate physical measurement of each material’s properties, gravity, etc. But com-

puters are devices made up of logic more-so than metal. However, just as when we build a

bridge, if we build a computer and write software for it, we do not know everything that the

computer will do just because we designed it. There are interactions with the world that are

unpredictable. Logic is one of the subject-matter expertise areas we use as programmers,

as a structural engineer uses materials science. Also similar to other engineering or science

disciplines, using the correct logic is important. The correct logic for a programming task is
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determined empirically; in our experience with Separation Logic, the process seems similar

to the usual scientific model-building.

There are three distinct logical elements which have made separation logic successful:

the connective ∗, the Frame Rule, and the specification of automatable abduction rules.

The connective ‘and, separately’ (∗) is related to the familiar connective for conjunction

(∧). In the familiar case, we write φ ∧ψ for the situation w |= φ ∧ψ (read w |= ... as ‘the

world w “supports” or “satisfies” ... ’) iff w |= φ and w |= ψ . We can use this sort of structure

to make a different conjunction, ‘and, separately’ to capture the resource interpretation for

reasoning about exhaustible resources such as computer memory. We need to know a little

more about the world w that supports φ ∗ψ to say when w |= φ ∗ψ . We need to be able to

break the world up into disjoint parts, which we represent as w1 ·w2 =w to say w1 composed

with w2 is w. If we have this decomposition, then w |= φ ∗ψ iff there are w1 ·w2 = w such

that w1 |= φ and w2 |= ψ [Galmiche et al., 2005].7

The difference between w |= φ ∧ψ and w |= φ ∗ψ is just that aspects of the world can

be reused to satisfy conjunction, but not with the separating conjunction. This difference is

most obvious in that if w |= φ , then w |= φ ∧φ is always true, but w |= φ ∗φ need not be true,

because it may be the case that there is one part of the world that satisfies φ (w1 |= φ ), but

the rest of the world does not (w2 2 φ ). If φ is ‘I have enough money to buy a drink’, then

w |= φ ∧φ says nothing new, but w |= φ ∗φ says I have enough money to buy two drinks.

The second technical element that enables the success of Separation Logic is the Frame

Rule. Separation Logic builds on Floyd–Hoare logic [Apt, 1981] (henceforth, ‘Hoare logic’).

Hoare logic developed through the 1970s specifically to reason about the execution of com-

7 The treatment of ∗ described here is for Boolean BI, where the set of worlds is not ordered. Intuitionisti-

cally (see Section 4.2), we require that w1 ·w2 v w, where v is a preorder that is defined on the set of worlds

and which satisfies monotonicity.



Why Separation Logic Works 19

puter programs. The intuition is straightforward: proving the relevant properties of a pro-

gram C amounts to proving that whenever a certain precondition holds before executing C,

a certain postcondition holds afterwards. This statement,known as a Hoare triple, is written

formally as

{φ}C{ψ},

where φ is the precondition and ψ is the postcondition. Hoare logic provides various proof

rules for manipulating triples. For example, composing two program fragments if the post-

condition of the first is the precondition of the second. Such deductions are written as

{φ}C1 {χ} {χ}C2 {ψ}
{φ}C1 ; C2 {ψ}

with the given statements on top and the deduced statement on the bottom.

The Frame Rule lets us combine a Hoare triple with ∗ — for ‘and, separately’ — to

reason about just the local context of a program fragment. This support for local reasoning

is critical, supporting compositional reasoning about large programs by facilitating their

decomposition into many smaller programs that can be analysed and verified independently.

This analysis relies on the compliance of resource semantics with Frege’s principle that the

meaning of composite expression be determined by the meanings of its constituent parts.

We write the Frame Rule as

{φ}C{ψ}
{φ ∗χ}C{ψ ∗χ}

provided χ does not include any free variables modified by the program C (that is, formally,

Modifies(C) ∩ Free(χ) = /0). The Frame Rule is powerful because it lets us ignore context we

have not changed. Reasoning locally, as opposed to globally, is vital when analysing large

programs. Normally, a program verification technique would have to re-evaluate a whole

program if one line changes. When the program has even ten thousand lines of code this is
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prohibitively inefficient. Industrial scale program analysis must analyse millions of lines of

code, and so without the ability to reason locally any approach will fail.

The sorts of preconditions and postconditions that we are interested in for separation

logic are directly related to the programmer’s goals for modelling. Abstracting away from

the details of a computer, the precondition may be something like ‘there exists an available

resource not currently in use’ and the postcondition may specify the details of ‘nothing bad

happened’ or ‘the program worked’. The frame rule is powerful because we can break the

program up into many disjoint parts, and once we have proved {φ}C{ψ} for one of the

parts, we can take χ to be the union of all the pre- and post-conditions for all the other

disjoint parts of the program and know that {φ ∗ χ}C{ψ ∗ χ} will hold without having to

re-prove the statement in the new context. Thus, if a million lines of code can be broken up

in to ten thousand disjoint fragments, then when we change code in one of the fragments we

only need to prove {φ}C{ψ} for that fragment and not the 9,999 others.

Local reasoning is helpful for reasoning about programs at scale, but a human still has

to be rather clever and expert to choose exactly the right pre- and post-conditions to prove

facts about C. There are simply not enough clever, expert people to do this at scale. Software

development at firms like Amazon or Google involves many hundreds of developers who

each need their code checked and analysed within a few hours of making complex changes.

A human logician might take days to figure out the right conditions for the Hoare triples for

each code change. Even if that many experts could be trained, no company is likely to pay

for that sort of increased labour cost. Separation logic works because we are able to abduce

potential pre- and post-conditions to test.

Industrial-scale use of logic for proving program properties requires a deployable proof

theory. The combination of local reasoning and abduction support this deployable proof the-

ory for separation logic. Abduction, as introduced by Peirce [Bergman and Paavola, 2016],
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is akin to hypothesis generation. Initial implementations of Separation Logic to analyse pro-

grams required the human analyst to provide the pre- and post-conditions. However, we

have been able to automate abduction because the scope of problems we attempt to solve

is well-defined and because computer code is reasonably well-structured [O’Hearn, 2015].

Automation means writing a computer program which is able to analyse other computer

programs. One such analysis program, Infer, was recently published freely as open-source

code for anyone to use [Calcagno et al., 2015b].

Computer code is not arranged into Hoare triples, so verification tools must create that

logical structure as they read and analyse the program. A pre- or post-condition may be

established in a segment of the code far distant from where they are needed or checked.

We cannot build a table of all possible combinations of legal Hoare triples to solve this

problem, the number is astronomically large for even modest programs. Abduction makes

this problem manageable by dynamically determining what conditions a segment of code

might expect. Each abductive hypothesis is not perfect. But each hypothesis can be tested

quickly and the results reused. The analysis program can quickly and soundly check each

hypothesized pre- and post-condition; because reasoning is local the result can be stored and

reused easily.

Separation logic is useful because it calculates predictions of hard-to-handle computer

program execution errors; this is well known. Why separation logic is so effective at this use-

ful task was not deeply questioned; to some extent one does not question how the goose lays

the golden eggs. Yet, understanding successful tactics will help reproduce success in differ-

ent areas of inquiry, of which there are many in logic and computer science. The thesis we

are advancing is that the useful predictions are generated by the convergence of two senses of

the word model — the logic model designed specifically for the task and the programmatic-
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engineering model of what the computer and its software actually do — together with a

proof theory that meets the engineer’s goals of timely and explanatory prediction of errors.8

This section has only briefly introduced the features of Separation Logic that are adapted

for it to become an adequate engineering model. An appreciation of the extent to which the

details of the logic model and the engineering model come together requires a more technical

exposition. To this end, we introduce the semantics of separation logic is Section 4. Those

less inclined to logics can skim these details without loss of continuity. Furthermore, to be

successful on the necessary large scales, our engineered logic requires a proof theory that

is deployable. Section 5 discusses two features that contribute to making the proof theory

‘deployable’ — local reasoning, as supported by the Frame Rule, and automated abduction.

These details demonstrate directly our argument that the logic model and the engineering

model are inescapably and intricately intertwined. Our positive thesis concludes that this is

no accident, but rather the source of separation logic’s success in analysing programs.

4 The Semantics of Separation Logic

The history of Separation Logic in particular stretches back from the foundations of pro-

gramming in the 1970s through to practical changes in the way tech giants produce computer

programs today. The first piece of the history is Hoare’s development of assertion programs,

with the insight that valid program execution can be interpreted as a logical proof from the

8 That results must be timely is straightforward; clearly a programmer cannot wait 100 years for the anal-

ysis to complete. That the result also provides satisfactory explanation of the error is equally important.

Explanation requires a practical and a human sense. Practically, the programmer must receive enough detail

to locate and fix the error. Psychologically, programmers are less likely to trust an arcane or unintelligible

report than a transparent documentation of the entities and activities responsible for the error. This trans-

parency merges a sense of adequate mechanistic explanation [Illari and Williamson, 2012] with the logical

community’s sense of when a proof is both convincing and elegant.
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preconditions to the postconditions [Apt, 1981]. However, the familiar classical logical con-

nectives — ¬, ∨, ∧, and → — and quantifiers — ∃ and ∀ — did not capture the resource

management problems that computer science then found intractable. Linear Logic [Girard,

1987], originally developed as a tool in proof theory, introduced an explicit single-use re-

source interpretation and a modality (!) to mark resources as being usable as many times as

needed. Although linear logic has enjoyed much success, the resource-management problem

remained out of its reach.

With the benefit of hindsight, we can see that what was necessary was a logic of re-

sources with a structure that was composable and decomposable in a way that mirrors the

composability of resources in the physical world. Resources in linear logic are usable once,

or infinitely many times. This pattern does not match real-world resources like sandwiches

or money. How many hungry people a sandwich satisfies depends on how many parts it can

be decomposed into that independently satisfy a hungry person. This number is often more

than one but less than ‘as many as needed’. We want a logical structure that mirrors this

behaviour. We will arrive at such a structure in three historical stages of exposition: first,

bunched logic, then the semantics of bunched logic, and finally the semantics for resources

in separation logic.

4.1 Bunched Logic

Towards the end of the twentieth century, O’Hearn and Pym [1999] introduced BI, the ‘logic

of bunched implications’. In its initial form, BI can be understood as freely combining the

intuitionistic propositional connectives (BI’s additive connectives) with the multiplicative

fragment of intuitionistic linear logic (BI’s multiplicative connectives).
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The idea of bunching — an older idea from relevant logic; see, for example, Read

[1988], Dunn and Restall [2002] — is used to formulate natural deduction and sequent

calculus proof systems for BI. The key point is that proof-theoretic contexts are constructed

using two operations, one corresponding to the additive conjunction, ∧, and one correspond-

ing to the multiplicative conjunction, ∗.

To see how this works, consider the natural deduction rules for introducing the additive

and multiplicative conjunctions, ∧ and ∗, respectively. If Γ ` φ is read as ‘φ is provable

from assumptions Γ , then these are the following:

Γ ` φ ∆ ` ψ

Γ ;∆ ` φ ∧ψ
∧ I and

Γ ` φ ∆ ` ψ

Γ ,∆ ` φ ∗ψ
∗ I.

Notice that the ∧I rule combines the contexts Γ and ∆ using semi-colon, corresponding

to ∧, whereas the ∗I rule combines them using the comma. The key difference is that the

semi-colon admits the contraction and weakening rules,

Θ(Γ ; Γ ) ` φ

Θ(Γ ) ` φ
C and

Θ(Γ ) ` φ

Θ(Γ ; ∆) ` φ
W,

respectively, whereas the comma does not. The form of these rules draws attention to a key

point about bunches: they are trees, with leaves labelled by propositions and internal vertices

labelled with ‘ ; ’ and ‘ , ’.

A key consequence of the availability of contraction for∧, for example, is that the simple

additive form of the ∧I rule, in which the context Γ is shared between the two components

of the conjunction, is recovered when ∆ = Γ .

4.2 The Semantics of Bunched Logic

In the spirit of this paper, the semantics of BI can be seen as being based on the notion of re-

source. Specifically, adopting the approach of constructing a engineering model of resource,
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and bearing in mind our examples of interest as discussed above, we can observe that two

properties of resource are of central importance.

– Given two elements of a given type of resource, it should be possible, subject to an

observation spelled out below, to combine them to form a new element of that type

of resource. In the case of the example of coins mentioned in Section 3, we consider

combination to be addition of numbers of coins.

– Given two elements of a given type of resource, it should be possible to compare them.

Again, in the case of the example of coins mentioned in Section 3, we compare the

number of coins available (10) with the number required to buy both a yellow widget

and blue widget (12).

Mathematically, these ’axioms’ for resource can be captured conveniently by requiring that

a given type of resource carry the structure of a preordered partial commutative monoid.9

That is, a (given type of) resource R is given as

R = (R, ·,e,v),

where R is the set of resource elements of the given type, · : R×R ⇀ R is a partial function, e

is a unit (or identity) element for · such that, for all r ∈ R, r ·e = r = e · r, andv is a preorder

on R. In the case of the example of coins, the monoid of resources can be taken to be the

ordered monoid of natural numbers,

(N,+,0,≤).

The partiality — in general, addition of natural numbers happens to be total — of ·

reflects that in many natural examples of resource, such as computer memory, not all com-

binations of resource elements will be defined. Where necessary for clarity, we write r ↓ to

denote that a resource r is defined.
9 A preorder v on a set S is required to be reflexive and transitive. It is not a total order.
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Finally, for technical mathematical reasons, we require that the combination · and com-

parison v of resources should interact conveniently. Specifically, we require the following

functoriality condition: for all r1, r2, s1, s2,

r1 v r2 and s1 v s2 implies r1 · s1 v r2 · s2.

For example, in the ordered monoid of natural numbers, (N,+,0,≤), if m1 ≤m2 and n1 ≤ n2

implies m1 +n1 ≤ m2 +n2.

This set-up is known as resource semantics.

So far, we have described a model of resource quite simply in the style of an engineering

model. However, the mathematical structure we have obtained is exactly what is required to

defined a formal logical model of BI.

The starting point for this is intuitionistic logic [Kripke, 1965] and its Kripke semantics

in which an implication φ → ψ is interpreted as a function, or procedure, that converts

evidence for the truth of φ into evidence for the truth of ψ . Technically, this is achieved using

a preorder on the set of possible worlds, or states of knowledge, [van Dalen, 2004]: if an

observer can establish the truth of ψ from the truth of φ at its current state of knowledge, then

it must also be able to do so at any greater state of knowledge; this is called monotonicity.

A similar interpretation can be applied to the separating conjunction, ∗, described above

in Section 3: If r |= φ ∗φ says I have enough money to buy two drinks, then, if rv s, s |= φ ∗φ

also says I have enough money to buy two drinks.

Monotonicity is defined formally below.

With these interpretations in mind, and assuming (i) a ‘resource monoid’ R= (R, ·,e,v),

(ii) that r |= φ is read as ‘the resource r is sufficient for φ to be true’, and (iii) for each atomic

proposition p, a set V (p) of resource elements that are sufficient for V (p) to be true, we can

give a formal semantics to BI as follows, where r |= φ is read, as before, as ‘the world r
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supports, or satisfies, the proposition ψ’:

r |= p iff r ∈ V (p)

r |=⊥ never

r |=> always

r |= φ ∨ψ iff r |= φ or r |= ψ

r |= φ ∧ψ iff r |= φ and r |= ψ

r |= φ → ψ iff for all r v s, s |= φ implies s |= ψ

r |= I iff r v e

r |= φ ∗ψ iff there are worlds s and t such that (s · t) ↓v r and

s |= φ and t |= ψ

r |= φ −∗ψ iff for all s such that s |= φ and (r · s) ↓, r · s |= ψ .

All propositions φ are required to satisfy monotonicity: if r |= φ and r v r′, then r′ |= φ .

With this semantics and with a system of rules of inference along the lines of the ones

sketched above, we can obtain soundness and completeness theorems for BI: the proposi-

tions that are provable using the inference rules correspond exactly to the ones that are true

according to the semantics [Galmiche et al., 2005].

In the context of this semantics, the significance of the contraction and weakening rules

can now be seem: they explain how the semi-colon combines properties of resources that

may be shared whereas the comma combines properties of resources that must be separated.

Although we have described the original, intuitionistic formulation of BI, Separation

Logic in fact uses the classical or ‘Boolean’ variant [Reynolds, 2002, Ishtiaq and O’Hearn,

2001]. Boolean BI is based on classical logic, so that the implication φ → ψ is defined to

be (¬φ)∨ψ , where the negation satisfies the classical ‘law of the excluded middle’. Tech-

nically, we work now with a resource semantics based simply partial commutative monoids,
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without including a preorder; that is,

R = (R, ·,e),

where R is the set of resource elements of the given type, · : R×R ⇀ R is a partial function,

e is a unit (or identity) element for · such that, for all r ∈ R, r · e = r = e · r.

With models of this form, the semantics of Boolean BI is given as above, but with the

following variations:

r |= φ → ψ iff r |= φ implies r |= ψ

r |= I iff r = e

r |= φ ∗ψ iff there are worlds s and t such that (s · t) ↓= r and

s |= φ and t |= ψ .

Notice that the separating conjunction now divides the resources exactly.

4.3 The Resource Semantics of Separation Logic

The resource semantics described above, much richer than that which is available in linear

logic [Girard, 1987], allows the construction of specific logical models for a characteriza-

tion of computer memory. Characterizing memory addressed challenging problems in pro-

gram verification [Ishtiaq and O’Hearn, 2001]. Over the following 15 years, this logic —

called Separation Logic [Reynolds, 2002, O’Hearn, 2007] — developed into a verification

tool successfully deployed at large technology firms like Facebook [O’Hearn, 2015] and

Spotify [Vuillard, 2016]. In this section, we explain how the semantics of (Boolean) BI as

described above forms the basis of separation logic.

Ishtiaq and O’Hearn [2001] introduced ‘BI Pointer Logic’, based on a specific example

of Boolean BI’s resource semantics. Three points about BI Pointer Logic are key.
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– First, its resource semantics is constructed using the stack, used for static, compile-time

memory allocation, and the heap, used for dynamic, run-time memory allocation:

– Second, the semantics of the separating conjunction, ∗, splits the heap, but not the stack:

the stack contains the allocations required to define the program, which are unchanged

at run-time; the heap contains the allocations made during computation.

– Third, it employs a special class of atomic propositions constructed using the ‘points

to’ relation, 7→: E 7→ E1,E2 means that expression E points to a cons cell E1 and E2.

(It also employs a class of atomic propositions which assert the equality of program

expressions, but this is a standard formulation.)

These factors combine to give an expressive and convenient tool for making statements

about the contexts of heap (cons) cells. For example, the separating conjunction

(x 7→ 3,y)∗ (y 7→ 4,x)

says that x and y denote distinct locations. Further, x is a structured variable with two data

types; the first, an integer, is 3, and the second is a pointer to y. The variable y denotes a

location with a similar two-part structure in which the first part, also called the car, contains

4 and the second part, sometimes called the cdr (‘could-er’), contains a pointer back to x

[Ishtiaq and O’Hearn, 2001]. Note that the pointers identify the whole two-part variable, not

just the car. Figure 3 displays this linked list relationship in pictures.

Separation Logic can usefully and safely be seen (see O’Hearn and Yang [2002] for the

details) as a presentation of BI Pointer Logic [Ishtiaq and O’Hearn, 2001]. The semantics

of BI Pointer Logic, a theory of (first-order) Boolean BI (BBI), is an instance of BBI’s

resource semantics in which the monoid of resources is constructed from the program’s

heap. In detail, this model has two components, the store and the heap. The store is a partial

function mapping from variables to values, a∈Val, such as integers, and the heap is a partial
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Figure 3 As in Figure 1, variable names are listed above their square, and contents of the variable are inside

the square. The diagram represents the logical statement (x 7→ 3,y)∗ (y 7→ 4,x).

function from natural numbers to values. In logic, the store is often called the valuation, and

the heap is a possible world. In programming languages, the store is sometimes called the

environment. Within this set-up, the atomic formulae of BI Pointer Logic include equality

between expressions, E = E ′, and, crucially, the points-to relation, E 7→ F . To set all this up,

we need some additional notation. dom(h) denotes the domain of definition of a heap h and

dom(s) is the domain of a store s; h#h′ denotes that dom(h)∩ dom(h′) = /0; h · h′ denotes

the union of functions with disjoint domains, which is undefined if the domains overlap;

[ f | v 7→ a] is the partial function that is equal to f except that v maps to a; expressions E are

built up from variables and constants, and so determine denotations JEKs ∈ Val. With this

basic data, the satisfaction relation for BI Pointer Logic is defined as in Figure 4.

The judgement, s,h � φ , says that the assertion φ holds for a given store and heap,

assuming that the free variables of φ are contained in the domain of s.

The remaining classical connectives are defined in the usual way: ¬φ = φ →⊥; > =

¬⊥; φ ∨ψ = (¬φ)→ ψ; φ ∧ψ = ¬(¬φ ∨¬ψ); and ∀x .φ = ¬∃x .¬φ .
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s,h |= E = E ′ iff JEKs = JE ′Ks

s,h |= E 7→ (E1,E2) iff JEKs = dom(h) and h(JEKs) = 〈JE1Ks,JE2Ks〉

s,h |= emp iff h = [] (the empty heap)

s,h |= φ ∗ψ iff there are h0, h1 s.t. h0 #h1, h0 ·h1 = h,

s,h0 |= φ and s,h1 |= ψ

s,h |= φ −∗ψ iff for all h′, if h′ #h and s,h′ |= φ , then s,h ·h′ |= ψ

s,h |=⊥ never

s,h |= φ → ψ iff s,h |= φ implies s,h |= ψ

s,h |= ∃x .φ iff for some v ∈ Val, [s | x 7→ v],h |= φ

Figure 4 The satisfaction relation for BI Pointer Logic [Ishtiaq and O’Hearn, 2001].

The definition of truth for BI Pointer Logic — that is, its satisfaction relation — provides

a first clear illustration of argument, made in Section 3, concerning the merging of logic-

models and engineering-models. The stack and the heap and the ways in which they are

manipulated by programs are considered directly by working programmers: indeed, memory

management at this level of abstraction is a key aspect of the C programming language (see

Kernighan and Ritchie [1988] for descriptions of the history, definition, and usage of C).

As we have seen, BI Pointer Logic, with its truth-functional semantics of the form

s,h |= φ

provides and elegant semantics for reasoning about the correctness of programs that manipu-

late computer memory. However, as we have seen, for reasoning directly about the behaviour

of programs, Hoare logic, based on triples {φ}C{ψ}, is both natural and convenient.

The main reason why Hoare triple are so convenient is that they include directly code,

C, whereas BI Pointer Logic is formulated wholly in terms of properties of the contents of
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memory. We connect these two points of view by providing a semantics of Hoare triples in

terms of BI Pointer Logic [Calcagno et al., 2007]. There are essentially two ways of going

about this, depending upon on the strength of requirements on the behaviour of the code.

The behaviour of code is expressed in terms of the evaluation of a program C — using stack

s and heap h — with respect to sequences of steps defined by its operational semantics, ,

and essentially denoted by C,s,h ∗ s′,h′, read as ‘the program C transforms the memory

configuration s,h into the memory configuration s′,h′. There is a special configuration, fault,

indicating a memory fault or abnormality.

The first semantics for Hoare triples [O’Hearn and Yang, 2002], called partial correct-

ness, relies on the notion of safety,

C,s,h is safe if C,s,h 6 ∗ fault

and is the ‘fault-avoiding’ interpretation, as explained in [O’Hearn and Yang, 2002]:

Partial correctness semantics: {φ}C{ψ} is true in a model of Pointer Logic if, for all

s,h, s,h |= p implies

– C,s,h is safe, and

– if C,s,h ∗ s′,h′, then s′,h′ |= q.

The second, called total correctness [O’Hearn and Yang, 2002], does not require the safety

condition because it requires the ‘stronger’ property of ‘normal’ termination; that is, the

program returns a value that lies within its intended range of outputs:

Total correctness semantics: {φ}C{ψ} is true in a model of Pointer Logic if, for all s,h,

s,h |= p implies

– C,s,h must terminate normally, and

– if C,s,h ∗ s′,h′, then s′,h′ |= q.
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With these definitions, and some non-trivial technical development, soundness (that the

rule transforms true properties into true properties) and completeness (that the rule derives

one specification statement from another just when this inference holds semantically) theo-

rems for the Frame Rule,

{φ}C{ψ}
{φ ∗χ}C{ψ ∗χ}

Modifies(C) ∩ Free(χ) = /0,

can be established [O’Hearn and Yang, 2002]. These theorems give precise mathematical

expression to the coincidence of the logical and engineering models of computer memory

allocation.

In this section, we have provided some detail on the novel aspects of Separation Logic’s

semantics, and how they support reasoning about computer memory as a resource. At heart,

the atoms of the logic are composable in a way that mirrors the way that the physical sub-

strate is composable. The physical transistors come apart, and one can make meaningful

claims about affixing or pulling apart bits of silicon that have reliable impacts on the changes

to the electrical and computational properties of the physical system. The structure of the

logical model using partial commutative monoids and ∗ that we have introduced allows for

logical claims to naturally mirror this physical fact.

The following section details the cluster of properties surrounding the proof theory of

Separation Logic that make it a successful engineering tool. Part of these also relate to the

composability of ∗ through the Frame Rule, as it is leveraged for efficient computation of

results. Equally important to the deployability of the proof theory is the automation of bi-

abduction for generating hypothetical pre- and post-conditions to drive proof solutions. The

abductive rules we use are essentially encodings of engineer’s heuristics when reasoning

about computer memory usage, further demonstrating the deep ways in which the logical

and engineering aspects of the task merge in Separation Logic.
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5 Deployable Proof Theory for Separation Logic

In Section 4.3, above, we explained that we can obtain soundness and completeness proper-

ties for the Frame Rule; that is, the Frame Rule exactly characterizes logical truth for local

reasoning about memory allocation.

An important consequence of a system of logic having a completeness theorem is that its

a proof system can be used as a basis for formal reasoning within it. Consequently, the study

of the automation of proof systems — that is, the provision of computationally feasible

presentations of proof systems — is a widely studied topic in modern logic. Perhaps the

most famous example is the provision of resolution systems for the Horn clause fragment of

first-order predicate logic [Robinson, 1965, Van Emden and Kowalski, 1976], the basis of

the programming language Prolog [Hodgson, 1999].

Such a proof system might be described as deployable. That is, the search for, and con-

struction of, proofs in the system is computationally tractable. For a problem to be tractable,

the compute resources (these days, mainly time) required to make the calculations are ac-

ceptable for their intended use. This section discusses the intellectual choices that make

Separation Logic deployable. Actual deployment requires integration with software engi-

neering practices. Integration is not trivial; the deployment challenges associated with Infer

are described by O’Hearn [2015].

In the setting of Separation Logic, we have a deployable proof system for a semantics

that captures simultaneously the engineering model of computer memory allocation and its

logical interpretation. There are two key properties that a proof theory ought to have to be

deployable: scalability and automation. Separation Logic achieves these engineering-type

implementation goals through features built in to the logic. Scalability comes mainly from

access to the Frame Rule, and the parallel computation which it enables. Automation of
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proofs is a large topic on its own, with tools such as Coq. However, Separation Logic has

also been used to make systems that can automate reasoning about what is relevant to at-

tempt to prove — that is, abduction. Automating abduction in this context means formalising

heuristics engineers use to diagnose errors. The logical system must be tailored to accom-

plish this task.

5.1 Separation Logic and the Frame Rule

The formal definition of the Frame Rule for Separation Logic was introduced in Section 4.3.

The ‘frame’ in the Frame Rule is essentially a context; formally a set of logical statements;

and, in the practice of software engineering, it is the variables and memory resources that a

program modifies. The Frame Rule lets the analyst break a program into disjoint fragments,

analyse them separately, and cleanly and quickly conjoin the results. This is because, as long

as the frame and the program do not modify each other’s variables, the Frame Rule tells us

that we can freely conjoin the frame to the pre- and post-conditions for the program.

Let us return to our drinks-as-resources analogy. If the ‘program’ we are interested in is

I drink my drink, a sensible pre-condition is that I have a full drink. The post-condition is,

let’s say, that I have an empty glass. The frame then is all the other drinks in the restaurant,

as well as the food, and the sunshine outside, as long as there is no joker in the place going

about pouring people’s drinks into one another’s glasses. In computer programming, we can

check rigorously for such jokers because we can check what variables (in this example, the

glasses) different programs can access.

The benefits for scalability, and therefore deployability, are immediate. Imagine if one

had to re-analyse one’s ‘program’ for drinking a glass of water every time another patron

entered or exited the restaurant, or any time any other patron refilled or finished their own
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drink. In program verification, this is a serious threat to viable tools. Programs change often,

and are expensive to analyse wholesale. It is not plausible to reanalyse a whole program for

each minor change. The Frame Rule gives Separation Logic a deployable proof theory for

two reasons. First is the facility it provides for the saving of results from past analyses of

unchanged program fragments and applying them quickly to analyse of small changed frag-

ments. The second reason is perhaps more subtle, but more powerful. Modern computing is

done largely in clouds owned by giant tech companies. The benefit of cloud computing is

that hundreds of thousands of processors can work on a computation in parallel and merge

their results. Without the Frame Rule, Separation Logic would not be able to take advan-

tage of the massive computational resources of cloud computing; parallelization requires

fragmentation of a problem into smaller parts and sound merging of results.

5.2 Deployability via Contextual Refinement

The Frame Rule is not the only method of developing a deployable proof theory for Separa-

tion Logic. Xu et al. [2016] describe an extension of Concurrent Separation Logic [O’Hearn,

2007] that uses contextual refinement between implementation and specification of a pro-

gram to prove the correctness of the program. Contextual refinement is a formal specifica-

tion of the following relationship: the implementation, i.e., the actual written computer code,

does not have any observable behaviours that the abstract design specification of the system

does not have.

Xu et al. [2016] deploy Separation Logic to verify the scheduling behaviour of oper-

ating system kernels. The kernel is the most trusted, central part of the operating system

that coordinates all other applications’ access to the physical hardware. This application of

Separation Logic, like Infer, treats computer memory as a resource. However, the relevant
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property of memory in this application is unique ownership by a task, rather than unique

identification of a memory location by a pointer. This distinction aims to overcome the main

difficulty in scheduler design, which is ensuring that two programs that both hold the same

pointer do not interfere with each other. The technical details are out of scope; however, this

is a common and challenging computer science problem. In order to make efficient use of

hardware resources, complex scheduling has been common in operating systems since the

mid 1990s. Deployable verification of the scheduling for a real-world (preemptive) operat-

ing system kernel uses Separation Logic [Xu et al., 2016].

The design of a logic to verify operating system scheduling contains many of the same

strategic features as are evidenced in the development of Infer. The logic is tailored to the

problem at hand to the extent that ‘the interrupt mechanism in our operational semantics is

modeled specifically based on the Intel 8259 A interrupt controller, and the program logic

rules for interrupts are designed accordingly’ [Xu et al., 2016, p. 77]. In order to arrive

at a satisfactory semantics, the authors modelled the behaviour of a specific processor on

specific Intel hardware. This quite clearly demonstrates the merging of the logical model

and the engineering model. The inference rules Xu et al. [2016] uses are quite different

from those used by Calcagno et al. [2011]. In the section that follows, we focus on the use

of inference rules over memory allocation via Calcagno et al. [2011]; there are analogous

rules for operating system scheduling which we elide [Xu et al., 2016, p. 72].

5.3 Bi-abduction

We briefly discussed, in Section 3, the importance for the effectiveness of Separation Logic

of the concept of abduction. In this section, we give a introduction to how it is integrated into
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the logic. Abduction was introduced by Charles Peirce around 1900, when writing about the

scientific process, and explained by Peirce as follows:

‘Abduction is the process of forming an explanatory hypothesis. It is the only logical

operation which introduces any new idea’ [Bergman and Paavola, 2016, CP 5.171].

Consider a non-technical example. A baby, perhaps yours, is crying for no obvious rea-

son. Approaching the problem like an engineer, we should like to know the source of the

baby’s distress, so that we can devise a method to allay it. But as we did not see the child

begin to cry, we must guess at, or abduce, the source. Perhaps we abduce that a malicious

Cartesian demon is making the baby believe it is being viciously pinched. Or perhaps we

guess hunger is the source. Neither are entirely new ideas, both suggested by our past expe-

rience with and structure of the world. Yet we prefer the abduction of hunger, if for no other

reason than we have a ready method to allay hunger on hand, and none such for demons.

That is, we can test whether the baby is hungry by feeding it. We can guess at the post-

condition we should reach from this intervention if the precondition is true: if the baby is

hungry, and we feed it, then the baby will stop crying. If we feed the baby and it does not

stop, we surmise our guess failed and we must abduce something else. Thus, even though

there are incalculably many conceivable causes of the baby’s crying, the structure of the

situation suggests certain abductions. Knowing, or abducing, what should or might be true

of conditions after a process or intervention puts constructive constraints on our abductions

of prior conditions.10

10 Of course, what we describe here is not solely abduction. Our description also relies on some sort of

structured knowledge and the ability to manipulate models of how parts of the world might interact. Struc-

tural reasoning [Swoyer, 1991] and mechanism discovery [Bechtel and Richardson, 1993] perhaps play a

role. However, we focus only on abduction as that is the feature that Separation Logic clearly identifies as

automated.
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There is not a general process by which one generates useful new ideas. However, if

one has both a precise language and a detailed conception of the mechanisms of interest

in the system, abduction becomes more tractable. Since we have these in our logic and in

our engineering model of computer memory, respectively, and further we have a fast and

composable method for soundly checking the correctness of the guesses from abduction, we

can automate abduction in the case of looking for pre-conditions and post-conditions that

lead to memory errors in computer code.

The formalization of abduction in classical logic is, deceptively simply, as follows:

Given: assumption φ and goal ψ;

Find: additional assumptions χ such that φ ∧χ ` ψ .

In this expression it is customary to disallow trivial solutions, such as φ → ψ . When

reasoning about computer memory and pointers, we use the separating conjunction in the

obvious analogue:

Given: assumption φ and goal ψ;

Find: additional assumptions χ such that φ ∗χ ` ψ .

Because our problem domain is program analysis and specifically the program’s use

of memory, we constrain χ to be a formula representing a heap. This constraint disallows

trivial solutions such as φ −∗ψ [Calcagno et al., 2011, p. 6].

To contribute genuinely to a deployable proof theory, we need to know both the pre-

conditions necessary for the piece of code to run safely and also all the logical conditions

that will be true after the piece of code finishes. Post-conditions for a single piece of code do

not help to verify that particular piece of code. However, computer programs are complex ar-

rangements of separable but interrelated pieces of code. The post-conditions of one segment

are good candidate guesses for pre-conditions of other segments. Calcagno et al. [2011]
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coin the term bi-abduction for finding both pre- and post-conditions. In program analysis,

the pre-conditions are the anti-frame and the post-conditions are the frame, so bi-abduction

is formalized as follows:

Given: assumption φ and goal ψ;

Find: additional assumptions ?anti-frame and ?frame such that φ ∗ ?anti-frame ` ψ ∗ ?frame.

The statement’s specific logical form, our model of the mechanism of computer memory

use by programs, and the machine-readable nature of our domain of interest—computer

programs, all combine to allow us to automatically generate potential solutions to the frame

and anti-frame. The result of this synthesis of features makes bi-abduction ‘an inference

technique to realize the principle of local reasoning’ [Calcagno et al., 2011, p. 8].

Let us step through bi-abduction in some examples. First we discuss ascertaining pre-

conditions in some detail; post-conditions we touch more lightly. We do not assume any

familiarity with C or with programming, so we explain the target program segment in En-

glish detail.

The example used by Calcagno et al. [2011, p. 8] to explain abduction is:

void free_list(struct node *x) {

while (x!=0) {

t=x;

x=x->tl;

free(t);

}

Our example program steps through or traverses all the elements of a list and removes

them. Literally, it frees the memory used to store each element.



Why Separation Logic Works 41

Let’s use the example of a shopping list, for concreteness. Traversing a list is just to read

all the elements in order. For a paper list, this ordering is handled by the physical layout

on the paper. Eggs are first if they are on the first line. In computer memory, a directly

analogous physical layout is difficult and inefficient for technical reasons. Instead each list

element contains two parts. First, its contents, say ‘eggs’, and second, a pointer to the next

element. Pointers, as discussed in Section 2, can cause myriad problems during a program’s

execution. Such linked lists are a common place to find pointers, and so a common place to

find memory management errors.

When verification tools encounter a program like free_list, they start off assuming an

empty heap (emp) and that the variable x has some value X . However, at the line ‘x=x->tl’

the reasoning stalls. There needs to be some X ′ to which X points. Using abduction, the

tool guesses that such an X ′ exists. Another step is required. In the general case, we will hit

an infinite regress of assuming ever-more X ′′, X ′′′, and so on. Separation Logic requires an

abstraction step, which Calcagno et al. [2011, p. 9] link to a scientific induction step. The

abstraction step is to posit a list of arbitrary length from X to X ′ and to assert or abduce that

a program that works of lists of length 4 probably works on lists of length 6. The trick is

to encode these heuristics, such as the guess that an X ′ exists, into formal proof rules that

can be applied automatically. Abduction and abstraction potentially weaken preconditions.

Weakening may be unsound, and must be tested. But such tests can also be automated in

Separation Logic. Calcagno et al. [2011, p. 10] describe perhaps 50 pages of their article as

‘devoted to filling out this basic idea [of using abduction to guess what good preconditions

might be]’. We discuss one further example to illustrate some of the complications that can

arise in the task.

Lists can get more complicated. For example, the last element can link back to the first.

Imagine taping a shopping list into a loop, so that ‘eggs’, our first element, came on the line
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after our last element, ‘chocolate’. The C syntax of such a program is [Calcagno et al., 2011,

p. 53]:

void traverse-circ(struct node *c) {

struct node *h;

h=c; c=c->tl;

while (c!=h) { c=c->t1;}

}

We human shoppers would not start over and traverse the list again, picking up a second

copy of everything on the list. And then a third, looping through the list until our cart over-

flowed. However, free_list would naïvely enter such an infinite loop. So traverse-circ

not only reads an element and goes to the next one, but remembers where it started so that

it can stop after going through once. Since the program is designed to read circular lists,

we should expect our logic to produce a circular list as a pre-condition. This is the case.

Specifically, we abduce the precondition [Calcagno et al., 2011, p. 52]

c 7→ c_∗ list(c_,c)

That is, for the program to run safely, the input (c) must be a pointer to a valid element of

memory (c_), and separately there must be a linked list going from that valid element back

to the initial element.

Let us explore in more detail the formal form of this abduction, which is Algorithm 4

in [Calcagno et al., 2011, p. 37]. The algorithm is run (by another computer program) with

our small program of interest as input, along with a guess at the starting state. The first

steps of the algorithm build a logical model of the program’s interaction with memory. The

logical model takes the form of Hoare triples. How exactly a computer program is soundly

converted into Hoare triples is a matter of shape analysis, or ‘determining “shape invariants"
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for programs that perform destructive updating on dynamically allocated storage’ [Sagiv

et al., 2002]. There are technical details about converting the program to a logical model

that are out of scope here, but note that our logical model and language are purpose-built

tools for this task. Going back to Hoare’s explicit axiomatization of programs [Hoare, 1969]

through to the definition of 7→ for the function of a stack element pointing to a location in

the heap, both broad strokes and finer details of the logic are responsive to the problem at

hand.

After constructing the logical model, Algorithm 4 iterates through all of the Hoare triples

and calls, AbduceAndAdapt [Calcagno et al., 2011, p. 43]. This function has two main pur-

poses: to do bi-abduction, and to take any successful results from bi-abduction and ‘perform

essential but intricate trickery with variables’ to maintain precise results. The abduction as-

pect of the algorithm is specified in Algorithm 1. This algorithm, in turn, depends upon a set

of proof rules used in reverse as abduction heuristics [Calcagno et al., 2011, p. 15-17]. The

rules are all of a special form,

H ′1 ∗ [M′].H ′2 Cond
H1 ∗ [M].H2

Here Cond is a condition on the application of the rule based on parts of H1 and H2. The

proof rules can thus be read backwards to create a recursive algorithm that will eventually

abduce pre- and post-conditions. To read them in this manner, the algorithm checks that the

condition holds. If so, instead of answering the (harder) question H1∗?? ` H2, the algorithm

goes on to search for the answer to the (simpler) abduction question H ′1∗?? ` H ′2 [Calcagno

et al., 2011, p. 17].

The example at hand, traverse-circ, will hit the heuristic ‘ls-right’ until the list loops,

generating the precondition that there is a list from c_. The other precondition is generated
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by the heuristic ‘ 7→-match’. These are linked in the ‘intricate trickery’ done in the algorith-

mic step to keep results precise.

The details of which proof rules are chosen as abduction heuristics is important and

non-trivial. The choice is based on decades of prior experience and empirical results on the

effectiveness of different modelling choices. Our main point at present is to remark on the

extent to which the logic has been shaped to be a tool to solve the engineering problem at

hand such that the proof rules are chosen empirically.

The postconditions of this example seem less exciting. The program only reads the list,

it does not output any contents nor change it. Therefore, the abduced post-conditions will

be the same as the preconditions. While this initially seems unenlightening, remember that

bi-abduction is on program segments, not whole stand-alone programs. So if a larger, more

realistic program runs this traverse-circ process successfully, and it had the necessary pre-

conditions, we can be sure that there is a circular linked list in memory. This information

may be very helpful for determining whether another program segment runs safely. For ex-

ample, a process that deletes elements of a list one at a time often has the flaw that it will

not check for circular lists. When such a delete process cycles, it will try to delete the now

non-existent first list-element, causing a memory error that can result in a crash. In such a

situation, this post-condition of a circular linked list would be informative. For more details

on how to abduce postconditions, see Algorithm 6 in Calcagno et al. [2011].

Abduction is automatable in this situation because the problem space investigated by

the engineering/scientific model is quite precisely defined. Instead one might say that ab-

duction is automatable here because the logical model sufficiently accurately represents the

behaviour of real computer programs. These two assessments are both true, and amount to

the same thing: effective merging of the features of the logical model and the conceptual

model. Automated abduction is a striking example of the benefits of such a confluence.
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The best measure of whether a proof theory is deployable for finding errors in software

is whether programmers in fact fix the errors it finds. For programmers to fix errors, the tool

must provide a combination of timely results, precise results, and clear explanations. These

are part of usefulness requirements within the industrial software engineering setting that

are essentially social or organizational [Calcagno et al., 2015a]. Therefore, what counts as

a satisfactory fix-rate may change from one organization to another. Infer is open-source

and used by many organizations. Separation Logic is measured as deployable in some sense

because it is deployed in these contexts. In this paper we focus on the technical aspects of the

logic that have made it deployable. For an account of the social and practical environment

necessary to shepherd Infer to deployment, see Calcagno et al. [2015a].

In Section 2 we detailed why finding memory usage flaws is an important task in com-

puter programming. Programmers make these errors, and in products that are widely used.

Further, these kinds of errors impact stability and security in costly ways that are hard

to catch and handle during execution. Separation Logic has been tailored to this problem

specifically, through adaptations to both its semantics (detailed in Section 4) and proof the-

ory. In this section, we have detailed how the proof theory has been made deployable, to meet

the needs of industrial application. It is deployable because (1) its reasoning is scalable and

fast, using the compositionality of the Frame Rule; and (2) its generation of hypothetical

pre- and post-conditions is automated using encoded discovery heuristics and bi-abduction.

6 Conclusion

We have introduced Separation Logic as a tool for reasoning about computer programs,

specifically their use of memory as a resource. This history provides insight to philosophers

of science, logicians, and computer scientists based on the methodology that makes Sepa-
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ration Logic successful. Namely, that the logic model overlaps with the conceptual model

of a practical problem and the proof theory is usefully deployable. Philosophers of science

may view this convergence as a tactic for model building. There are benefits to both the log-

ical and practical problems by working towards tightly integrated logical-cum-engineering

solutions.

The type of errors that Separation Logic is currently used to find are constrained to a

specific, though important, type of catastrophic run-time error. We have identified two types

of run-time errors — memory allocation [Calcagno et al., 2011] and task scheduling [Xu

et al., 2016] — that have been addressed with Separation Logic. These types of errors arise

in a variety of applications, from hardware synthesis [Winterstein et al., 2016] to computer

security [Appel, 2015] to popular phone apps. Separation Logic is not the solution to all

computer science problems, but it is not so specific as to be uninteresting.

Other specific problems will very likely require logics tailored to them. As one ex-

ample, Lamport [2002] details temporal logic which is used by Amazon for its network

architecture [Newcombe et al., 2015]. Another aspect of assuring memory, called shared

memory consistency, used yet a different logic model to address its programming prob-

lem [Adve and Gharachorloo, 1996]. These other examples of success by bringing a pro-

gramming/engineering model into close contact with an adequately designed logic model

strengthen our conclusion. The history of Separation Logic, through to its implementation

in deployed verification tools, demonstrates that such overlap is an effective strategy for rea-

soning about the behaviour of computer systems. See O’Hearn [2015] and Calcagno et al.

[2015a] for accounts of the software-engineering effort involved in deploying one such tool.

It is important to understand the extent to which the case of Separation Logic is rele-

vant to both computer-science models and science more generally. Model-based reasoning

in computer science seems to come in at least two flavors. Some parts of computer science,
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like human-computer interaction and usable security, have methodologies that are closely

adapted from established fields like psychology [Krol et al., 2016]. However, in other parts

of the field, computer-science methods are distinctly developed within the discipline. Even

so, Hatleback and Spring [2014] argue that experiments and model-building in computing

are not so different from other sciences, after accounting for the unique challenges of the

fields. Separation Logic provides a good example of this second type; the above examples

of temporal logic and shared memory consistency indicate it is not alone. Hatleback and

Spring [2014] argue that reasoning about objects that can purposefully change at the same

pace as the observer can interact with them, namely software, is a particular challenge in

computer science. Separation Logic is an example of how computer scientists overcome

this problem. Reasoning at the appropriate level of abstraction produces stable representa-

tions of the phenomenon so that conclusions are reliable. The challenge of making reliable

generalizations is not unique to computing; Spring and Illari [2017] argues that computer

security, at least, handles the challenge in substantively the same mode of reasoning as bi-

ology does. In all of these disciplines, reasoning about exhaustible resources often matters;

in this regard, beyond any similarities with mode of reasoning, the mechanics of Separation

Logic may be applicable. Therefore, the case of Separation Logic is similar to many other

aspects of computing, and computing is likely similar enough science more generally, that

this instance of reliable model-building by combining logic models and conceptual models

may carry widely-applicable lessons.

Our approach would not get off the ground without a deployable proof theory, no matter

how nice the overlap between the model of computer memory and the logical interpretation

of exhaustible resources. In fact, exploiting the model structure for some practical benefit,

such as timely parallel computation, is perhaps more rare — and more important — than

devising a model that is simultaneously a logic and an engineering model. Verification tools
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using Separation Logic reach a deployable proof theory due to a constrained domain that

permits the automation of abduction combined with a composable logic that permits reuse

of results. In this regard, the logical machinery we have detailed that enables these features

should be of technical interest to logicians outside computer science. We have focused this

technical development in Section 4. The main points are (1) the introduction of the logic of

bunched implications, which admits the usual conjunction with contraction and weakening

rules and a different conjunction that does not; (2) the semantics of a resource as a preordered

partial commutative monoid; (3) a full definition of the connectives ∗ and −∗.

Philosophical logic has a long tradition of analysis of arguments and meaning. One mes-

sage we have for logicians is that it can have more clarity and impact when the model theory

is grounded in concrete engineering or scientific problems; that is, where the elements of the

model have a clear reading or interpretation apart from their role in defining the semantics

of sentences. For example, relevant logicians have admitted to struggles in interpreting the

meaning of the elements in their formal semantics based on ternary relations [Beall et al.,

2012]. Their semantics enjoys completeness theorems with respect to their proof theories,

but the subject matter of the models themselves is not evident. In contrast, as we have shown

here there is a nearby semantics, not identical, where the model elements are understood in

terms of the structure of computer memory — and more generally of resources [Pym et al.,

2004]. These arise independently of the logic, which gives them all the more semantic force.

Moreover, by looking at the model, novel proof-theoretic ideas emerge, such as the Frame

Rule. In general, when the semantics of logics meets independently-existing science and

engineering, a feedback cycle can be set up which impacts both to mutual benefit.

Logic, like any other technology, must be designed to specifications for the task at hand.

In concert with design, the logic employed should be empirically tested as to whether it

meets specifications. This sort of feedback loop is not so different from the tool-building and
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scientific modelling interaction in other fields. However, unlike, say, biology whose tools are

often of glass and metal, the tools in computer science are often conceptual or logical tools.

Considering computer science as the field that explores the human-created abstractions of

mathematics and logic, this tooling change makes sense. Moreover, the understanding that

just because we humans have built or defined some system it does not automatically fol-

low that we know all the properties and behaviours of said system perhaps elucidates why

computer science can often usefully be considered an experimental science. In this way,

Separation Logic is a useful test case for applying concepts from philosophy of science to

computer science.

Separation Logic is also a useful case for communicating salient aspects of computer

science to the broader philosophy of science community. The technical details of a logic

for exhaustible resources is one contribution that logicians in many fields may find appli-

cable. Further, for the debate on model-based reasoning, Separation Logic is an automat-

able system for model-based reasoning, albeit in a tightly constrained environment. Perhaps

such extensive context constraints are necessary to formalize reasoning to the level of de-

tail necessary for automation. However, the case study provides a starting point from which

philosophers may be able to generalize broader lessons for model-based reasoning.

Our case study of the success of Separation Logic for reasoning about memory as a

resource indicates that further work in the direction of appropriately integrating the right

logic as a tool in empirical modelling should bear further fruit. The various deployments of

Separation Logic in tools demonstrate the extent to which the conceptual/engineering model

and requirements may intertwine with the logic’s model and proof theory for great success.
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