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Abstract. We develop a proof-theoretic semantics (P-tS) for second-order

logic (S-oL), providing an inferentialist alternative to both full and Henkin
model-theoretic interpretations. Our approach is grounded in base-extension

semantics (B-eS), a framework in which meaning is determined by inferen-
tial roles relative to atomic systems — collections of rules that encode an

agent’s pre-logical inferential commitments. We show how both classical and

intuitionistic versions of S-oL emerge from this set-up by varying the class of
atomic systems. These systems yield modular soundness and completeness

results for corresponding Hilbert-style calculi, which we prove equivalent to

Henkin’s account of S-oL. In doing so, we reframe second-order quantification
as systematic substitution rather than set-theoretic commitment, thereby of-

fering a philosophically lightweight yet expressive semantics for higher-order

logic. This work contributes to the broader programme of grounding logical
meaning in use rather than reference and offers a new lens on the foundations

of logic and mathematics.

1. Introduction

Second-order logic (S-oL) occupies a nuanced position in the foundations of logic
and mathematics. Syntactically, it extends first-order logic (F-oL) by permitting
quantification not only over individuals but also over properties, relations, and sets.
Semantically and philosophically, however, it is often regarded as sitting between F-
oL and full set theory: more expressive than the former, yet more constrained than
the latter. As Väänänen [31] observes, this duality — being stronger than F-oL yet
seemingly weaker than set theory — has long animated debates in logic and the
philosophy of mathematics. He further notes that realizing the full strength of S-oL,
especially in giving content to expressions like ‘for all properties’, requires invoking a
set-theoretic background. This dependency raises foundational concerns: it seems
to compromise S-oL’s logical autonomy by binding it to a certain mathematical
metaphysics that one might have sought logic to justify.

Two primary approaches to the semantics of S-oL reflect this tension: standard
semantics (also known as full semantics) and Henkin semantics. These approaches
differ substantially in scope and foundational implications. Standard semantics
supports the use of S-oL as a tool for categorically axiomatizing mathematical
structures, while Henkin semantics enables its treatment as a syntactically well-
behaved extension of F-oL.

Under standard semantics, second-order quantifiers range over the entire power
set (or relation set) of the domain. Properties and relations are thus treated as
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genuinely higher-order entities, modelled as sets or functions in a set-theoretic uni-
verse. This makes S-oL categorically powerful — capable of uniquely characterizing
structures like the natural numbers and the real number continuum— but at a cost:
the logic is incomplete, non-compact, and lacks any sound, recursively enumerable
axiomatization. It thereby inherits the complexities of set-theoretic reasoning.

Henkin semantics, by contrast, restricts second-order quantifiers to range over
a designated collection of subsets or relations, not necessarily the full power set.
In this framework, S-oL is effectively a many-sorted or higher-order extension of
F-oL. It admits a sound and complete deductive system and satisfies the compact-
ness and Löwenheim–Skolem theorems. However, it loses much of the expressive
and categorical strength that distinguishes S-oL in the standard setting. Notably,
categoricity results for second-order Peano arithmetic or analysis no longer hold.

This paper proposes a new perspective on S-oL. Both standard and Henkin
semantics are versions of model-theoretic semantics (M-tS) for S-oL. They are based
in the philosophical position of denotationalism, where meaning and validity are
grounded in reference and representation. This is what irrevocably connects them
to set theory. In this paper, we provide an alternate account altogether based in
terms of proof-theoretic semantics (P-tS).

The philosophical background to P-tS is inferentialism. Broadly speaking, the
meaning of an expression is given entirely by the role that expression plays in
inference (rather than, for example, its truth conditions). It has a long intellectual
history and can be seen as a particular interpretation of Wittgenstein’s ‘meaning-
as-use’ principle [33] in which ‘use’ is given by inference. Its formulation begun
with Gentzen’s belief that introduction rules are definitional [5] and Dummett’s [4]
anti-realist account of logic. It was later developed into a theory of meaning by
Brandom [2].

The inferentialist approach to meaning is quite natural. What does the proposi-
tion ‘Tammy is a vixen’ mean? Intuitively, it means ‘Tammy is female’ and ‘Tammy
is a fox’. In particular, from the fact that Tammy is a vixen, we can infer both that
she is a fox and that she is female. In the standard format of proof rules, we have:

Tammy is a vixen

Tammy is a fox
and

Tammy is a vixen

Tammy is female

Similarly, if we have that Tammy is a fox and that Tammy is female, then we may
infer that she is a vixen:

Tammy is female Tammy is a fox

Tammy is a vixen

The inferentialist claim is that in providing these rules, we have provided the mean-
ing of the expression. Observe the paradigmatic shift from denotationalism to in-
ferentialism: rather than interpreting ‘Tammy’ and ‘vixen’ in a model, we express
their meaning though inferential behaviours.

That explains the inferentialism as a theory of meaning in natural language.
Within logic this conception of meaning required grounding validity in ‘proof’ rather
than ‘truth’. This requires some unpacking as ‘proof’ here cannot mean proof in
a given deduction system since it must be pre-logical in order to define the logical
signs. Therefore we require a pre-logical notion of proof. Such an account has been
given by Prawitz [20].
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To begin, let us consider how we might express the example concerning Tammy in
a symbolic language? This requires fixing an idea of rules over atomic propositions
(i.e., propositions without any logical signs). Using natural deduction in the form
of Gentzen [5], we take rules of the form,

C

P1 . . . Pn

C

[P1]
P1 . . .

[Pn]
C

C

Here C, P1, ..., Pn are all atomic propositions and P1, ...,Pn are sets theoreof. The
latter rule allows each of the pis to be proved from a set of discharged hypotheses
[Pℶ]. Given such rule format, it is clear that the example above concerning Tammy
can be encoded with the rules

V (t)

Fe(t)

V (t)

Fo(t)

Fe(t) Fo(t)

V (t)

in which Fe is the predicate ‘is female’, Fo is the predicate ‘is a fox’, V is the
predicate ‘is a vixen’ and t stands for ‘Tammy’.

Piecha and Schroeder-Heister [18, 29] and Sandqvist [26] have considered the
philosophical commitments made in the choice of format for atomic rule. A collec-
tion of such atomic rules is called an ‘atomic system’ or a ‘base’. We think of such
bases B as the set of inferential commitments that an agent poses and that these
commitments represents their semantic universe.

Gentzen [5] observed that rules may be thought to explicate the meaning of
logical constants in this way. For example, the rules

φ ∧ ψ
φ

φ ∧ ψ
ψ

φ ψ

φ ∧ ψ
intuitively define conjunction in the same way that the rules above define ‘Tammy is
a vixen’. Indeed, Gentzen [5] specifically thought that the introduction rules of his
natural deduction systems define the logical signs and that the eliminations rules
followed by some principle. Prawitz [20] used his normalization results to deliver
on this idea. We provide a terse account here and defer to Schroeder-Heister [27]
for a more complete picture.

Rather than dealing with the semantics of logical constants themselves, Prawitz [20]
first ask what makes a ‘proof’ valid? This is because a corollary of his normaliza-
tion theory is that proofs in Gentzen’s NJ, without loss of generality, end with
the introduction rules. Let L be a system of proof rules and let J be a procedure
on proof-structures that yields proof-structures (e.g., Prawitz’s reductions [21] for
normalizing proofs). Define validity relative to a base B and the procedures J as
follows:

– There is an a priori collection C(L) of ⟨B,J⟩-valid proofs of L.
– A completed proof-structure Φ is ⟨B,J⟩-valid if J can be applied to Φ to
yield an element of C(L).

– An incomplete proof-structure Φ is ⟨B,J⟩-valid if any completion of it is
⟨C ,J⟩-valid for any C ⊇ B.

Prawitz [20] conjectured that in his set-up (i.e., L as NJ and J as his reduction) a
proof-structure Φ would be ⟨B,J⟩-valid for arbitrary B iff the conclusion of Φ is
valid in intuitionistic logic. This turns out to be false.
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Before continuing, we would like to briefly remark on the treatment of ‘incom-
plete’ proof-structures. For Prawitz [20], these were open natural deduction deriva-
tions — that is, derivations with undischarged hypotheses. Schroeder-Heister [28]
has explained that Prawitz’s semantics is closely related to the BHK-interpretation
of intuitionism. Intuitively, a ‘construction’ of an implication φ → ψ is one that
given a construction of φ yields a construction of ψ. However, such a condition on
a construction of φ → ψ would be satisfied vacuously if there be no construction
of φ (relative to B and J). It follows (cf. Kripke’s semantics [15]) that we should
consider arbitrary extensions C ⊆ B that enrich our ‘understanding’ so that we
have constructions for φ.

We thus have a semantics of proofs. From this we get a semantics of the logical
constants in terms of proofs. A formula φ is B-valid iff, for any base B, there is a
⟨B,J⟩-valid proof-structure Φ concluding φ. Let’s write ⊩B φ (read ‘B supports
φ’) to denote this situation. Depending on the specifics of the set-ups (e.g., the
choice of J), we may unfold this into a set of clauses. For example, Prawitz’s [20]
set-up of disjunction may given by the clause:

⊩B φ ∨ ψ iff ⊩B φ or ⊩B ψ

That is, there is a ⟨B,J⟩-valid proof Θ concluding φ ∨ ψ iff there is a ⟨B,J⟩-valid
proof Φ concluding either φ and ψ. This follows from the fact that normalized NJ-
proofs concluding a disjunction end by ∨-introduction and so contain a sub-proof
of one of the disjuncts.

Piecha et al. [3, 17, 19] studied the judgment ⊩B that arises from systemati-
cally writing its clauses like this. The implication is handled using base-extension
following the remark above. That is, we have

⊩B φ→ ψ iff φ ⊩B ψ

where, for ∆ ̸= ∅,

∆ ⊩B ψ iff for all C ⊇ B, if ⊩C ψ for ψ ∈ Γ, then ⊩C ψ

At first glance, this semantics appear to recall Kripke’s semantics for intuitionistic
logic [15] using bases B for worlds. This is impression is misleading. Piecha et
al. [3, 17, 19] discovered that the resulting semantics validates the Kreisel-Putnam
(KP) axiom. That is, for any B,

⊩B

(
a→ (b ∨ c)

)
→

(
(a→ b) ∨ (a→ c)

)
However, KP is not intuitionistically valid and, therefore, this is not a semantics for
intuitionistic logic and Prawitz’s conjecture fails. Stafford [30] later showed that
this actually provides a semantics for an intermediate logic he called generalized
inquisitive logic.

In parallel to this approach to P-tS, Sandqvist [25] developed a similar ‘support’
(⊩) relation. The biggest difference is the treatment of disjunction for which he
uses the following clause instead:

⊩B φ ∨ ψ iff ∀C ⊇ B,∀P, if φ ⊩C P and ψ ⊩C P, then ⊩ CP

The semantics is summarized in Figure 1 where ⊢B denotes derivability in the B
and ∆ is a non-empty set of formulae. He established the soundness and complete-
ness of NJ [5] (⊢) with respect to this semantics. For finite Γ,

– Soundness: Γ ⊢ φ implies Γ ⊩ φ
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⊩B P iff ⊢B P (At)

⊩B φ ∧ ψ iff ⊩B φ and ⊩B ψ (∧)
⊩B φ ∨ ψ iff ∀C ⊇ B,∀P, if φ ⊩C P and ψ ⊩C P, then ⊩C P (∨)
⊩B ⊥ iff ⊩B P for any atom P (⊥)

⊩B φ→ ψ iff φ ⊩B ψ (→)

∆ ⊩B φ iff ∀C ⊇B B, if ⊩C ψ for all ψ ∈ ∆, then ⊩C φ (Inf)

Figure 1. Sandqvist’s Base-extension Semantics

– Completeness: Γ ⊩ φ implies Γ ⊢ φ.

Pym et al. [22] have shown that this semantics is fully natural in the sense of
categorical logic. Importantly, for these theorems to hold, the set of atoms (P s)
is assumed to be denumerably infinite and we must admit all atomic rules of the
forms given above including discharge. Sandqvist [23, 24] (see also Makinson [16])
also showed that when restricting to atomic systems that do not include discharge,
the result yields classical logic.

Having sketched the background to, and key aspects of, P-tS, we can ask why
does having a P-tS for S-oL matter? As mentioned, the standard interpretations
of S-oL inherit not just technical features but also the philosophical burdens of set
theory because of its grounding in denotationalism. For example, the expression
‘for all properties’ presupposes a background ontology of sets or relations — an
assumption that ties the logic to precisely the kind of mathematical metaphysics it
might otherwise have been expected to illuminate. Even Henkin semantics, while
more proof-theoretically tractable, remains embedded in a model-theoretic frame-
work, treating rules of inference as subordinate to pre-given semantic structures.
From an inferentialist standpoint, this order of explanation is inverted: what gives
logical expressions their meaning is not their denotation, but their use in inference.

A P-tS for S-oL thus serves a dual purpose. Philosophically, it offers an anti-
realist account of higher-order logic that avoids the ontological commitments of
standard semantics. Rather than appealing to a universe of sets, it aims to ground
the meaning of second-order quantification in the roles such quantifiers play in
deduction. Technically, it reframes S-oL not as a logic whose expressiveness must
be justified by set-theoretic resources, but as a system whose coherence and content
can be understood internally, through the rules governing introduction, elimination,
and transformation.

Moreover, such a perspective opens the possibility of treating S-oL as a kind
of inferentialist analogue to set theory. The expressive power that allows S-oL to
formulate comprehension, categoricity, and induction principles need not be seen as
a reflection of ontological depth; rather, it can be reconstructed as a consequence
of the inferential structure of the logic itself. This resonates with long-standing
intuitions that much of mathematics — particularly arithmetic and analysis — can
be grounded in logical reasoning, without presupposing a realist ontology of sets.

Finally, S-oL plays a crucial role as a metalanguage: it is often the formal system
within which we specify semantics, express reflection principles, or formulate general
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logical theories. But if the semantics of this metalanguage is itself given only model-
theoretically, we risk circularity or infinite regress. P-tS offers a way of internalizing
the metalanguage, grounding its expressions in rules rather than in external models.
In this way, S-oL becomes not just an object of inferentialist analysis, but a vehicle
for advancing the broader project of P-tS as a foundational framework.

In Section 2, we introduce the syntax of second-order logic and present a proof-
theoretic semantics using base-extension semantics. This framework interprets log-
ical expressions through their inferential role relative to a class of atomic systems.
In Section 3, we develop Hilbert-style calculi for classical and intuitionistic S-oL
and prove soundness and completeness theorems with respect to our semantics.
Section 4 demonstrates the equivalence of these systems with Henkin-style natu-
ral deduction calculi, thereby showing that our proof-theoretic semantics recovers
standard S-oL in its Henkin form. We conclude in Section 5 by reflecting on the
philosophical significance of our approach and outlining directions for further re-
search, including the challenge of recovering full second-order semantics within the
inferentialist paradigm.

2. Second-order Logic

The P-tS of S-oL in this paper builds on that of F-oL provided by Gheorghiu
[8]. In the first-order setting, the key steps are the following:

– Defining an appropriate notion of base to ground the semantics. Atomic
rules are defined over closed atomic formulas only. Using open formulas
does not increase the expressive power of the semantics.

– Providing semantics clauses for the quantifiers ∀ and ∃. The signs are read
literally over the syntax — for example, ∀xφ is understood to mean any
instance of φ with x replaced by a closed term t.

– Proving sound and completeness with respect to deduction systems. It
adapts a technique by Sandqvist [25] requiring careful handling of discharge
and using eigenvariables (fresh constants) to handle the quantifiers.

The treatment of S-oL adopts and simplifies this set-up. An important difference
is that we do not only consider predicates P (−, . . . ,−) with positive arity, but
also propositional atoms P . This enables us to give a cleaner and more contained
treatment of the semantics and the proof of completeness.

One feature that merits a remark is that the ontology is given by the syntax
which is fixed before the logic is defined. By contrast, in the M-tS of quantifier
logics the quantifiers are handled by a ‘model update’ in which we name things in
a given universe. Let M be a first-order structure over a domain D and let s be an
assignment of variables. Then:

M, s |= ∀xφ(x) iff for all d ∈ D, M, s[x 7→ d] |= φ(x)

That we have soundness and completeness results with a fixed ontology may be
surprising to those holding on to a denotational or realist account of meaning. It
is, however, as expected in the inferentialist, anti-realist character of P-tS.

2.1. Syntax of Second-order Logic. To begin, we fix disjoint denumerable sets
of symbols for every n ≥ 0:

– ICON — individual-constants a, b, c, . . .
– IVAR — individual-variables x, y, z, . . .
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– PCONSn — predicate-constant of arity n, P,Q,R, . . .
– PVARn — predicate-variables of arity n, X,Y, Z, . . .

We define the following sets as the collections of all predicate-constants and predicate-
variables, respectively:

PCONS :=
⋃
n

PCONSn PVAR :=
⋃
n

PVARn

We may write P (n) (resp. X(n)) to denote that P is a predicate-constant (resp.
predicate-variable) of arity n. Given a predicate-constant P or predicate-variable
X, we may write α(P ) and α(X) to denote their arities.

The elements ICON ∪ IVAR are terms. The atomic formulae are defined by the
following:

– If t1, . . . , tn are terms and P ∈ ICONn, then R(t1, . . . , tn) is an atom
– If t1, . . . , tn are terms and X ∈ PVARn, then X(t1, . . . , tn) is an atom

The set of all atoms is denoted ATOM. We define formulae by the following gram-
mar as x ranges over IVAR and X ranges over IVAR:

φ ::= A ∈ ATOM | φ→ φ | ∀xφ |

A

Xφ

The set of all formulae is denoted FORM. We may use the following abbreviations:

– ⊥ :=

A

X0(X0)
– φ ∧ ψ :=

A

X0((φ→ (ψ → X0)) → X0)
– φ ∨ ψ :=

A

X0((φ→ X0 ∧ ψ → X0) → X0)
– ∃xφ :=

A

X0((∀xφ→ X0) → X0)
– ∃Xφ :=

A
X0((

A
Xφ→ X0) → X0)

To handle quantifiers we will require the usual notion of free variable. This
concept is doubtless familiar (cf. van Dalen [32]) so we simply fix some notation:

– we may write FIV(φ) to denote the set of free individual-variables in φ
– we may write FPV(φ) to denote the set of free predicate-variables in φ

The notations may be extended to sets through point-wise union; that is,

FIV(Γ) :=
⋃
φ∈Γ

FIV(φ) and FPV(Γ) :=
⋃
φ∈Γ

FPV(φ)

The point of individual- and predicate-variables is that they may be replaced by
terms (of the appropriate type and arity). To this end, we require substitutions.
We write [x 7→ t], where x is an individual-variables and t is a term, to denote the
substition of x by t:

φ[x 7→ t] :=


P (t1[x 7→ t], . . . tn[x 7→ t]) if φ = P (t1, . . . , tn)

∀y(ψ[x 7→ t]) if φ = ∀yψ and y ̸= x

∀yψ if φ = ∀yψ and y = x

A

Xn(ψ[x 7→ t]) if φ =

A

Xnψ

Similarly, we may write [Xn 7→ Pn], where Xn is predicate-variable of arity n and
P is a predicate-constant of arity n, to denote substitution of Xn by Pn:

φ[Xn 7→ Pn] :=


P (t1, . . . tn) if φ = Xn(t1, . . . , tn)

∀y(ψ[Xn 7→ Pn]) if φ = ∀yψ

A

Y n(ψ[Xn 7→ Pn]) if φ =

A

Y nψ and Y n ̸= Xn

A

Y nψ if φ =

A

Y nψ and Y n = Xn
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As these substitutions always respect arity, henceforth we may elide it so that in
writing [X 7→ P ] it is assumed that X and P have the same arity.

2.2. Base-extension Semantics. The semantics is grounded by derivability in
an atomic system. An atomic system may be thought to represent an agent’s
inferential commitments about some basic sentences. By ‘inference’ here, we mean
that if an agent is committed to the premises and the inference, then they are
likewise committed to the conclusion. For example, Aristotle might accept the
basic sentence

Socrates is human

as well as the inference
Socrates is human
Socrates is mortal

As a consequence of these commitments, Aristotle accepts the assertion ‘Socrates
is mortal’, as it follows from them.

Working within predicate logic we are faced with a choice: should open atomic
formulas count as atomic sentences or only closed ones? If so, one could naturally
express general commitments such as ‘whoever is human is also mortal’ using the
inference:

x is human
x is mortal

However, we aim to model positions that capture inferential relationships between
complete thoughts. For this reason, we restrict our attention to atomic sentences.
Accordingly, we represent generalizations such as the above by including, for each
name t, the inference:

t is human
t is mortal

Both approaches are mathematically viable, but we believe the use of closed atoms
more faithfully reflects our intended interpretation. The equivalence in expressive
power between the two approaches follows from Gheorghiu [8].

Definition 2.1 (Atomic Rule). An atomic rule is an expression of the form

{P1 ⇒ P1, . . . ,Pn ⇒ Pn} ⇒ P

where each Pi ⊆ ATOM and each Pi ∈ ATOM. The rule is:

– zero-level if n = 0,
– first-level if n > 0 and P1 = · · · = Pn = ∅,
– second-level otherwise.

Definition 2.2 (Atomic System). An atomic system S is a set of atomic rules.

Definition 2.3 (Derivability in an Atomic System). Let S be an atomic system.
The derivability relation P ⊢S P is defined inductively as follows:

– (Ref) If P ∈ P, then P ⊢S P .
– (App) If {P1 ⇒ P1, . . . ,Pn ⇒ Pn} ⇒ P ∈ S , and for each i, P∪Pi ⊢S Pi,

then P ⊢S P .

Let’s return to the example of Aristotle. His position can now be formalized as
an atomic system A containing the rules

H(s) and H(s) ⇒M(s)
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From this system, we can derive that ⊢A M(s), reflecting Aristotle’s inferential
commitment to the claim that Socrates is mortal.

The structure of this formalism suggests an analogy to natural deduction, in the
style of Gentzen [5]:

[P1]
P1 · · ·

[Pn]
Pn

P

This resemblance is confirmed by Definition 2.3 which treats ⇒ for atomic sys-
tems just as the horizontal bar is treated in natural deduction. However, since
rule application in this setting does not involve substitution, the framework is not
exactly the same. A closer structural resemblance to hereditary Harrop formulas
(cf. Gheorghiu and Pym [12]) or intuitionistic resolution (cf. Gheorghiu [6]).

We may refine the theory of atomic systems by fixing collections of them relative
to which we work. Such collections result in different logics. We defer to Piecha
and Schroeder-Heister [29, 18] for further discussion on the philosophical difference
between them. Accordingly, we introduce the idea of a basis, which specifies a set
of atomic systems.

Definition 2.4 (Basis). A basis B is a set of atomic systems.

Given a basis B, its elements are called bases B. Once a basis is fixed, we always
work relative to its bases. We therefore introduce the notion of base-extension, a
restricted version of superset (or ‘extension’) of an atomic system that respects the
given basis.

Definition 2.5 (Base-extension). Given a basis B, base-extension is the least re-
lation satisfying the following:

Y ⊇B X iff X ,Y ∈ B and Y ⊇ X

Having fixed a basis, the meaning of the logical signs is given by clauses that
collective define a semantic judgment called support (⊩). We can justify the clauses
in turn by the intended reading of the logical sign they define. Since a base B rep-
resents an agent’s beliefs expressed inferentially, an atom A is said to be supported
in B just in case A can be derived from those beliefs. This is captured formally as:

⊩B A iff ⊢B A

An intuitive reading of implication φ → ψ is this: An agent believes the impli-
cation iff, supposing they were also to believe φ, would consequently believe ψ. We
can express this condition schematically as:

⊩B φ→ ψ iff φ ⊩B ψ

But what exactly do we mean by this? In general, we must specify what it should
it mean for an agent with beliefs B to conclude ψ were they to commit to a (non-
empty) set of formulae ∆. The use of the subjunctive mood in articulating this
condition suggests an appeal to hypothetical scenarios — specifically, extensions
of the belief base that ensure support for every formula in ∆. This motivates the
notion of base extension. Formally, we define:

∆ ⊩B φ iff for all C ⊇B B, if ⊩C ψ for each ψ ∈ ∆, then ⊩C φ

It remains to consider quantification. Consider the statement ‘for any person, if
that person is human, then they are mortal’. What we typically mean is that for
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⊩B P iff ⊢B P (At)

⊩B φ→ ψ iff φ ⊩B ψ (→)

⊩B ∀xφ iff ⊩B φ[x 7→ a] for any a ∈ ICON (∀)
⊩B

A

Xφ iff ⊩B φ[X 7→ P ] for any appropriate P ∈ PCONS (

A

)

∆ ⊩B φ iff ∀C ⊇B B, if ⊩C ψ for any ψ ∈ ∆, then ⊩C φ (Inf)

Γ ⊩ φ iff Γ ⊩B φ for any B ∈ B

Figure 2. Base-extension Semantics for Second-order Logic

any name we can introduce — say, Socrates — the corresponding instance (e.g., ‘if
Socrates is human, then Socrates is mortal’) is one we accept. Here lies a key point
of divergence between model-theoretic and proof-theoretic semantics: in model-
theoretic accounts, quantifiers range over a realist ontology of actual individuals; in
proof-theoretic semantics, the ontology is anti-realist, constructed from the names
present in the language.

Accordingly, support for a universal formula is defined by substituting the quan-
tified variable with any available individual constant:

⊩B ∀xφ iff ⊩B φ[x 7→ a] for all a ∈ ICON

We treat second-order quantification analogously:

⊩B
A

Xφ iff ⊩B φ[X 7→ P ] for all P ∈ PCONS

Strictly speaking, we should write P ∈ PCONSα(X), where α(X) denotes the arity
of X, but this should be clear from the context and the definition of substitution.

Definition 2.6 (Support). Let B be a basis and B ∈ B. Support is the smallest
relation ⊩ defined by the clauses of Figure 2 in which all formulae are closed, ∆ is a
non-empty set of closed formulae, and Γ is a finite (possibly empty) set of formulae.

Of course, using the abbreviations discussed above, we also have the following:

⊩B ⊥ iff ⊢B P for any P ∈ PCONS0 (⊥)

⊩B φ ∧ ψ iff for any C ⊇B B and P ∈ PCONS0,

if φ,ψ ⊩C P , then ⊩C P (∧)
⊩B φ ∧ ψ iff for any C ⊇B B and P ∈ PCONS0,

if φ ⊩C P and ⊩C P , then ⊩C P (∨)
⊩B ∃xφ iff for any C ⊇B B and t ∈ ICON,

if φ[x 7→ t] ⊩C P , then ⊩C P (∃)
⊩B

E

Xφ iff for any C ⊇B B and Q ∈ PCONS,

if φ[X 7→ Q] ⊩C P , then ⊩C P (

E

)

These clauses directly recover the B-eS of propositional and first-order intuitionistic
and classical logic — see Sandqvist [23, 24, 25] and Gheorghiu [8].

We may also extend support to capture open formulae by treating them as
quantified. If x ∈ FIV(φ), then

⊩ φ iff ⊩B φ[x 7→ a] for any a ∈ ICON.
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φ→ (ψ → φ) (K)
(φ→ (ψ → χ)) →

(
(φ→ ψ) → (φ→ χ)

)
(S)

∀xφ→ φ[t 7→ x] (∀E)

A

Xφ→ φ[P 7→ X] (

A

E)

(φ→ ψ) →
(
(φ→ ¬ψ) → ¬φ

)
(¬I)

(φ→ ⊥) → (φ→ ψ) (efq)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

¬¬φ→ φ (dne)

Figure 3. Axiomatization of Second-order Logic, HI and HC

If X ∈ FPV(φ), then

⊩ φ iff ⊩B φ[X 7→ P ] for any appropriate P ∈ PCONS.

This completes the definition of the semantic clauses. Intuitively, logical con-
sequences should not depend on any particular inferential commitments an agent
may hold; they should follow solely from the logical form of the formulae involved.
We therefore quantify over all bases and define Γ ⊩ φ to mean Γ ⊩B φ for arbi-
trary B. Intuitively, this is equivalent to requiring that no specific commitments
are assumed—that is, Γ ⊩∅ φ.

Lemma 2.7. If ∅ ∈ B,

Γ ⊩ φ iff Γ ⊩∅ φ

Proof. This follows as in Sandqvist [25] (discussion below Lemma 3.2). □

3. Proof Theory

Having now provided a semantic account of second-order logic (S-oL), we turn to
its axiomatization. We will show that the choice of base system affects the resulting
axiomatization. In particular, we focus on two canonical options:

– C := {A | A is zero- or first-level}
– I := {A | A is zero-, first-, or second-level}

The basis C yields a classical S-oL and the basis I yields an intuitionistic S-oL (in the
sense that it does not accept the law of double-negation elimination). Although this
can be shown mathematically, a clear intuitive explanation for why this distinction
arises remains elusive.

3.1. Hilbert Calculus. We will use Hilbert calculi as the medium of proof. As
they are doubtless familiar, we give a terse account introducing only the mathe-
matically relavent content for this paper.

We will be working with the following sets of axioms:

– HC comprises all the axioms in Figure 3, including dne
– HI comprises all the axioms in Figure 3, excluding dne.

Definition 3.1 (Consequence from an Axiomatization). Let H be a Hilbert calculus.
The H-consequence relation ⊢H is defined inductively as follows:
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– Axiom. If φ ∈ H then Γ ⊢H φ
– Hypothesis. If φ ∈ Γ, then Γ ⊢H φ
– Modus Ponens. If Γ ⊢H φ and Γ ⊢H φ→ ψ, then Γ ⊢H ψ
– First-order Generalization. If Γ ⊢H ψ → φ and x ̸∈ FIV(ψ,Γ), then

Γ ⊢H ψ → ∀xφ
– Second-order Generalization. If Γ ⊢H ψ → φ and X ̸∈ FPV(ψ,Γ),

then Γ ⊢H ψ →

A

Xφ.

Before proceeding, we state some elementary results about these proof systems.
In the following, A ∈ {HI,HC}:

Proposition 3.2. If Γ ⊢A φ→ ψ iff φ,Γ ⊢A ψ

Proposition 3.3. If Γ ⊢A φ and e is an individual-constant (resp. E is a predicate-
constant) that possibly occurs in φ but does not occur in Γ, then Γ ⊢A φ[e 7→ x]
(resp. Γ ⊢A φ[E 7→ X]).

Our soundness and completeness results are as follows:

Theorem. Let B = C (resp. B = I):

Γ ⊩ φ iff Γ ⊢HC φ (resp. Γ ⊢HI φ)

The remainder of this section is concerned with proving this theorem.

3.2. Soundness. We show that, according to the choice of basis, support satisfies
the inductive definition of provability in HC and HI. Firstly, Lemma 3.4 claims
that the common axioms in HC and HI hold for both choices of basis C and I.
Secondly, Lemma 3.5 claims that dne holds for C. Finally, Lemma 3.6 shows that
the inductive definition of consequence (Definition 3.1) holds for both C and I with
the axioms HC and HI, respectively.

Lemma 3.4. If B ∈ {C, I}, then ⊩ φ for each φ ∈ HI. That is, for any φ,ψ, χ ∈
FORM:

– (K) ⊩ φ→ (ψ → φ)
– (S) ⊩ (φ→ (ψ → Z)) →

(
(φ→ ψ) → (φ→ χ)

)
– (∀E) ⊩ ∀xφ→ φ[x 7→ a] for any a ∈ ICON
– (

A

E) ⊩

A

Xφ→ φ[X 7→ P ] for any P ∈ PCONS
– (¬I) ⊩ (φ→ ψ) →

(
(φ→ ¬ψ) → ¬φ

)
– (efq) ⊩ (φ→ ⊥) → (φ→ ψ)

Proof. Except for the cases concerning

A

, the proofs are identical to those in Ghe-
orghiu [8]. Therefore it remains to show ⊩

A

Xφ→ φ[X 7→ P ] for any P ∈ PCONS.
Let B ∈ B be arbitrary such that ⊩B

A

Xφ. By (

A

), ⊩B φ[X 7→ P ] for any
P ∈ PCONS. Since B was arbitrary, by (Inf), ⊩∅

A

Xφ → φ[X 7→ P ]. The desired
result follow from Lemma 2.7. □

Lemma 3.5. Let B = C. If Γ ⊩ ¬¬φ, then Γ ⊩ φ.

Proof. Let X ∈ B be such that ⊩X ¬¬φ. We proceed by induction on φ to show
that ⊩X φ:

– φ = P ∈ ATOM. We follow the argument by Sandqvist [24]. Let C be
defined as follows:

C := X ∪ {P ⇒ Q | Q ∈ ATOM}
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It is easy to see that ⊩C ¬P . Moreover, since C ⊇C X , we have ⊩C ⊥ by
(Inf). It follows by (⊥) that ⊢C P .

It remains to show that ⊢X P . Consider how ⊢C P obtains. Suppose
that it requires a rule in C − X , then there is a first such instance in
the computation. For that instance however, it must be that ⊢C P holds
without the use of rules in C − X . Hence, ⊢C P obtains only using rules
in X . Whence, ⊢X P , as required.

– φ = φ1 → φ2. Let Z ⊇C Y ⊇C X be arbitrary such that:
(i) ⊩X ¬¬(φ1 → φ2)
(ii) ⊩Y φ1

(iii) φ2 ⊩Z ⊥
From (ii) and (iii), observe φ1 → φ2 ⊩Z ⊥. Hence, from (i), infer ⊩Z ⊥.
Thus, by (Inf) and (→) on (i), ⊩Y ¬¬φ2. By the induction hypothesis
(IH), ⊩Y φ2. Whence, by (Inf) and (→), ⊩X φ1 → φ2, as required.

– φ = ∀xψ. Let Z ⊇C Y ⊇C X be arbitrary such that:
(i) ⊩X ¬¬∀xφ
(ii) φ[x 7→ a] ⊩Y ⊥ for every a ∈ ICON
(iii) ⊩Z ∀xφ
By (∀) on (iii), ⊩Z φ[x 7→ a] for every a ∈ ICON. Thus, by (ii), ⊩Z ⊥.
Hence, by (Inf), ∀xφ ⊩Y ⊥. Whence, by (i), ⊩Y ⊥. It follows by (Inf)
and (ii) that ⊩X ¬¬φ[x 7→ a] for all a ∈ ICON. Where, by the IH, we infer
⊩X φ[x 7→ a] for all a ∈ ICON. Finally, from (∀), we obtain ⊩X ∀xφ, as
required.

– φ =
A

Xψ. This follows mutatis mutandis on the preceding case.

This completes the induction. □

It is easy to see that this lemma fails for I . It suffices to find a base A such
that ⊩A ¬¬A but not ⊩A A for an atom A. Let A comprise the rules

[A]
B
B

B
C

for some B ∈ ATOM any C ∈ ATOM. The atom B essentially represents ⊥ in A
— for any B ⊇ A , we have ⊩B B iff ⊩B ⊥. Observe that this counterexample
relies essentially on having second-level rules.

It remains to show that support admits all the rules in Definition 3.1.

Lemma 3.6. The following hold for B ∈ {C, I}:
– (Hypothesis). If φ ∈ Γ, then Γ ⊩ φ.
– (Modus Ponens). If Γ ⊩ φ and Γ ⊩ φ→ ψ, then Γ ⊩ ψ.
– (First-order Generalization). If Γ ⊩ ψ → φ and x ̸∈ FIV(ψ,Γ), then

Γ ⊩ ψ → ∀xφ.
– (Second-order Generalization). If Γ ⊩ ψ → φ and X ̸∈ FPV(ψ,Γ),

then Γ ⊩ ψ →

A

Xφ.

Proof. Except for the cases concerning

A

, the proofs are identical to those in Ghe-
orghiu [8]. Therefore, it remains to show: If Γ ⊩ ψ → φ and X ̸∈ FPV(ψ,Γ), then
Γ ⊩ ψ →

A

Xφ.
Suppose Γ ⊩ ψ → φ. Let B ∈ B be arbitrary such that ⊩B χ for χ ∈ ψ,Γ.

By (Inf) and (→), we have ⊩B φ. We have two cases, either X ∈ FPV(φ) or
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X ̸∈ FPV(φ). In the first case, we have ⊩

A

Xφ by (wff). In the second case, we
⊩

A

Xφ by (∀) as φ[X 7→ P ] = φ for any P ∈ PCONS. □

The following is an immediate corollaries of the lemmas above:

Theorem 3.7 (Soundness). If Γ ⊢HC φ (resp. Γ ⊢HI φ), then Γ ⊩ φ when B = C
(resp. B = I).

3.3. Completeness. We show that HC and HI are complete for support (⊩) under
basis C and I, respectively. To this end, we follow the technique developed by
Sandqvist [25] for intuitionistic propositional logic. We briefly outline it here and
give the formal details below.

This construction is quite simple in both in principle and execution. It has
been deployed to handle substructural logics with ease and apparently echoes some
fundamental results on proof-search by Mints given some decades earlier — see
Gheorghiu et al. [9, 10, 11, 6]. As Sandqvist [25] remarks:

‘The mathematical resources required for the purpose are quite ele-
mentary; there will be no need to invoke canonical models, König’s
lemma, or even bar induction. The proof proceeds, instead, by sim-
ulating an intuitionistic deduction using atomic formulae within a
base specifically tailored to the inference at hand.’

The key idea underlying this simulation technique is the systematic translation of
formulas into atomic formulae.

Fix B = C (resp. B = I) and let φ by a formula such that ⊩ φ. Suppose φ
has a subformula A ∧ B in which A,B ∈ PCONS0 ⊆ ATOM. Then we include the
following rules in the ‘specifically tailored’ base N for φ:

A B
C

C
A

C
B

where C ∈ PCONS is a fresh atomic formula representing the conjunction A ∧ B.
This means that C behaves in N as A ∧ B behaves in HC (resp. HI). More
generally, each subformula χ of φ is assigned a corresponding basic counterpart χ♭

— for example, (A ∧B)♭ := C.
The major work of the completeness proof is establishing the equivalence of χ

and χ♭ within N :
χ ⊩N χ♭ and χ♭ ⊩N χ.

Since we assume ⊩ φ, it follows that ⊩ φ♭, and given that every rule in N cor-
responds to an intuitionistic natural deduction rule, we conclude ⊢ φ, as required.
We now proceed to the detailed account of this strategy.

To begin, suppose we have a set of formulae Γ and a formula γ. Let Π be set
of predicates that occur either in Γ or γ. Let EIND and EPRED be the set of
individual- and predicate-constants, respectively, that do not occur in Γ or γ — we
call these elements eigen-constants and eigen-predicates. Distinguishing these sets
will enable us to handle the quantifiers.

Let Ξ be the set of atoms over Π using any terms or predicates, including the
eigen-constants and eigen-predicates. Let Ξ∗ be the second-order language over
those atoms; that is, all formulae generated by the grammar:

φ ::= A ∈ Ξ | φ→ φ | ∀xφ |

A

Xφ
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(
φ→ (ψ → φ)

)♭
(K)(

(φ→ (ψ → χ)) →
(
(φ→ ψ) → (φ→ χ)

))♭
(S)(

∀xφ→ φ[x 7→ t]
)♭

(∀E)( A

Xφ→ φ[X 7→ P ]
)♭

(

A

E)(
(φ→ ψ) →

(
(φ→ ¬ψ) → ¬φ

))♭
(¬I)(

(φ→ ⊥) → (φ→ ψ)
)♭

(efq)

φ♭, (φ→ ψ)♭ ⇒ ψ♭ (mp)

(φ→ ψ)♭ ⇒ (φ→ ∀xψ[e 7→ x])♭ (∀I)
(φ→ ψ)♭ ⇒ (φ→

A

Xψ[E 7→ X])♭ (

A

I)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(

¬¬φ→ φ
)♭

(dne)

Figure 4. Simulation Base for Second-order Logic

Intuitively, Ξ∗ captures all the kinds of complex formulae that we may encounter
as Γ and γ unfold in the semantics.

Fix an injection (−)♭ : Ξ∗ → PCONS0 that is the identity on Ξ∗ ∩ PCONS0 —
that is, P ♭ = P for P ∈ Ξ∗ ∩ PCONS0. This flattening operator will enable us to
bridge support and provability.

As (−)♭ is an injection, we have a left-inverse (−)♮ : PCONS0 → Ξ∗ such that
P ♮ = P for P ̸∈ Ξ∗ ∩ PCONS0. We extend both (−)♭ and (−)♮ to sets point-wise,

Γ♭ = {γ♭ | γ ∈ Γ} and P♮ := {P ♮ | P ∈ P}
We consider two bases:

– The classical base K is given by all instances of the atomic rules in Figure 4
including (dne)♭

– The intuitionistic base J is given by all instances of the atomic rules in

Figure 4 excluding (dne)♭

By all instances, we mean that φ,ψ, χ, ξ range over Ξ∗, x rangers over IVAR, and
a ranges over ICON, X rangers over PVAR, P ranges over PCONS, e ranges over
EIND, and E ranges over EPRED. In the case of ∀I and

A

I, we restrict such that
x ̸∈ FIV(φ) and e does not occur in φ, and X ̸∈ FPV(φ) and E does not occur in
φ.

We now show some essential technical results about N ∈ {K ,J } that collec-
tively deliver the desired completeness theorem(s). The first shows that provability
in N obeys the semantic clauses of Figure 2. The second shows that φ♭ and φ
are semantically equivalent relative to N . The third shows that provability in K
(resp. J ) corresponds to provability in HC (resp. HI).

Lemma 3.8. Let B = C (resp. B = I) and N = K (resp. N = J ). The
following hold for any N ′ ⊇B N :

– ⊢N ′ (φ→ ψ)♭ iff φ♭ ⊢N ′ ψ♭

– ⊢N ′ (∀xφ)♭ iff ⊢N ′ (φ[x 7→ c])♭ for any c ∈ ICON.
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– ⊢N ′ (

A

Xφ)♭ iff ⊢N ′ (φ[X 7→ P ])♭ for any appropriate P ∈ PCONS.
– P ⊢N ′ P iff, for any N ′′ ⊇B N ′, if ⊢N ′′ Q for Q ∈ P, then ⊢N ′′ P .

Proof. We show each one in turn:

– First, suppose ⊢N ′ (φ→ ψ)♭. From this, it is easy to see that φ♭ ⊢N ′ (φ→
ψ)♭. Simultaneously, by ref, From this, it is easy to see that φ♭ ⊢N ′ φ♭.
Hence, by app using mp, we have φ♭ ⊢N ′ ψ♭.

Second, suppose φ♭ ⊢N ′ ψ♭. Showing ⊢N ′ (φ → ψ)♭ follows from stan-
dard approaches to the Deduction Theorem for classical logic — see, for
example, Herbrand [14].

– First, suppose ⊢N ′ (∀xφ)♭. By app using ∀E and mp♭, we have ⊢N ′ (φ[x 7→
a])♭ for any a ∈ ICON.

Second, suppose ⊢N ′ (φ[x 7→ a])♭ for any a ∈ ICON. Let ⊤ ∈ Ξ∗ such
that ⊢N ′ ⊤♭ (e.g., ⊤ = P → P for any P ∈ Ξ) and let e ∈ EIND ⊆ ICON.
From the assumption, it is easy to see that ⊤♭ ⊢N ′ (φ[x 7→ e])♭. Hence,

by (i), ⊢N ′
(
⊤ → φ[x 7→ e]

)♭
. Whence, ⊢N ′

(
⊤ → ∀xφ[x 7→ e][e 7→ x]

)♭
.

Since φ[x 7→ e][e 7→ x] = φ, this says ⊢N ′
(
⊤ → ∀xφ

)♭
. Whence, by (i)

and the definition of ⊤, conclude ⊢N ′ ∀xφ
)♭
.

– This argument follows mutatis mutandis on the previous case.
– This is identical to Sandqvist [25] (Lemma 2.2).

This completes the proof. □

Lemma 3.9. If B = C (resp. B = I) and N = K (resp. N = J ), then

⊩N ′ φ♭ iff ⊩N ′ φ

Proof. This proceeds by structural induction on φ using Lemma 3.8. We illustrate
the case where φ =

A

Xψ, the others being similar:

⊩A ′ (

A

Xψ)♭ iff ⊢A ′ (

A

Xψ)♭ (At)

iff ⊢A ′ (ψ[X 7→ P ])♭ for any appropriate P ∈ PCONS
(Lemma 3.8)

iff ⊩A ′ (ψ[X 7→ P ]) for any appropriate P ∈ PCONS
(Induction Hypothesis)

iff ⊩A ′

A

Xψ (

A

)

The other cases have essentially been given by Gheorghiu [8]. □

Lemma 3.10. The following hold:

– If P ⊢J P , then P♮ ⊢HI P
♮.

– If P ⊢K P , then P♮ ⊢HC P
♮.

Proof. We proceed by induction on provability in a base:

– (ref). It must be that P ∈ P. Hence, P♮ ⊢NK P
♮ by hypothesis.

– (app). We proceed by case analysis on the last atomic rule used:

– For the axioms (K)♭, (S)♭, (∀E)♭, (

A

E)♭, ¬I♭, efq♭ ∈ J ⊆ K , the result
is immediate by axiom using (K), (S), (∀E), (

A

E), ¬I, efq ∈ HI ⊆ HC,
respectively.

– For the axiom (dne)♭ ∈ K , the result is immediate by dne ∈ HC.
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– If the last rule used was (mp)♭ ∈ A = J (resp. A = K ), then P = ψ♭

for some ψ ∈ Ξ∗, and there is φ♭ ∈ Ξ∗ such that P ⊢A (φ → ψ)♭ and
P ⊢A φ♭. By the induction hypothesis (IH), P♮ ⊢A φ→ ψ and P♮ ⊢A φ
for A = HI (resp. A = HI). Observe that P ♮ = φ. The desired result
follows by modus ponens.

– If the last rule used was (∀I)♭ ∈ A = J (resp. A = K ), then

P = (φ → ∀xψ[e 7→ x])♭ for some φ,ψ ∈ Ξ∗, e ∈ EIND such that e
does not occur in φ, and x ∈ IVAR such that x ̸∈ FIV(φ). Moreover,
P ⊢A (φ → ψ)♭. By the IH, P♮ ⊢A φ → ψ for A = HI (resp. A = HC).
By Proposition 3.3, it follows that P♮ ⊢A (φ→ ψ)[e 7→ x]. The desired
result follows by first-order generalization.

– If the last rule used was (

A

I)♭ ∈ A = J (resp. A = K ), the result
follows mutatis mutandis on the previous case.

This completes the case analysis.

This completes the induction. □

Theorem 3.11 (Completeness). Let B = C (resp. B = I) and N = HC (resp.
N = HI). Let Γ be a finite set of sentences and φ a sentence. If Γ ⊩ φ, then Γ ⊢N φ.

Proof. Assume Γ ̸= ∅, the case Γ = ∅ being similar. Let N be its simulation base.
We reason as follows:

Γ ⊩ φ implies for any N ′ ⊇B N , if ⊩N ′ ψ for ψ ∈ Γ, then ⊩N ′ φ (Inf)

implies for any N ′ ⊇B N ′, if ⊢N ′ P for P ∈ Γ♭, then ⊢N ′ φ♭

(Lemma 3.9)

implies Γ♭ ⊢N φ♭ (Lemma 3.8)

implies
(
Γ♭
)♮ ⊢N

(
φ♭

)♮
(Lemma 3.10)

implies Γ ⊢N φ

The last step follows from the definition of (−)♮ as a left-inverse of (−)♭. □

4. Equivalence with Henkin’s Second-order Logic

Henkin’s S-oL [13] can be characterized by the natural deduction system NC
(Figure 5 including dne). Let NI denote the intuitionistic counterpart consisting of
all the rules in Figure 5 excluding dne. Of course, for ∀I and

A

I it is important that
x and X do not occur in any of the hypotheses of the sub-derivation for φ.

In this section, we will show that derivability in NI and NC corresponds to deriv-
ability in HI and HC, respectively. In Section 3, we showed that HI and HC were
previously shown to axiomatize the B-eS for S-oL given by C and K, respectively.
Therefore, this section shows that that the P-tS in this paper recovers Henkin’s
S-oL.

Proposition 4.1. The natural deduction systems are at least as expressive as the
Hilbert calculi:

– If Γ ⊢HI φ, then Γ ⊢NI φ.
– If Γ ⊢HC φ, then Γ ⊢NC φ.

Proof. Let H be either HI or HC. We proceed by induction on derivability in H to
show the result:
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[A]
....
B

A→ B
→ I

φ

∀xφ ∀I
φA

Xφ

A

I

A→ B A
B

→E
∀xφ

φ[x 7→ a]
∀E

φ[X 7→ P ]

A

Xφ

A

E ⊥
φ efq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
¬¬φ
φ

Figure 5. Natural Deduction System(s) NI and NC

– axiom. As NI ⊆ NC, it suffices to show ⊢NI α for α ∈ HI and ⊢NC ¬¬φ→ φ.
The latter is immediate by dne,→ I ∈ NC, so we concentrate on the former,
which we show by case analysis:

– (K). We have the following NI-derivation:

[φ] [ψ]

ψ → φ
→ I

φ→ (ψ → φ)
→ I

– (S). We have the following NI-derivation:

[φ→ (ψ → χ)] [φ]

ψ → χ
→ E

[φ→ ψ] [φ]

ψ
→ E

χ
φ→ χ → I

(φ→ ψ) → (φ→ χ)
→ I(

φ→ (ψ → χ)
)
→

(
(φ→ ψ) → (φ→ χ)

) → I

– (∀E). Immediate by ∀E,→ I ∈ NI.
– (

A

E). Immediate by

A

E,→ I ∈ NI.
– (¬I). We have the following NI-derivation:

[φ→ ¬ψ] [φ]

¬ψ → E
[φ→ ψ] [φ]

ψ
→ E

⊥ → E

¬φ → I

(φ→ ¬ψ) → ¬φ → I

(φ→ ψ) →
(
(φ→ ¬ψ) → ¬φ

) → I

– (efq). We have the following NI-derivation:

[φ→ ⊥] [φ]

⊥ → E

ψ
efq

φ→ ψ
→ I

(φ→ ⊥) → (φ→ ψ)
→ I

– hypothesis. We require to show that if φ ∈ Γ, then Γ ⊢NI φ. This is
witnessed by the tree of one node labelled φ.
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– first-order generalization. Assume Γ ⊢H ψ → φ such that x ̸∈
FIV(φ,Γ). We require to show Γ ⊢NI ψ → ∀xφ. Let L be an NI-derivation
witnessing the assumption, then we show the desired result by the following:

L
ψ → φ ψ

φ → E

∀xφ → I

ψ → ∀xφ → I

– second-order generalization. This follows mutatis mutandis on the
previous case.

□

Proposition 4.2. The Hilbert calculi are at least as expressive as the natural de-
duction systems:

– If Γ ⊢NI φ, then Γ ⊢HI φ.
– If Γ ⊢NC φ, then Γ ⊢HC φ.

Proof. By Theorem 3.11, it suffices to show that the natural deduction are sound
for the B-eS of S-oL:

– If Γ ⊢NI φ, then Γ ⊩ φ over the basis I.
– If Γ ⊢NC φ, then Γ ⊩ φ over the basis C.

To this end, it suffices to show that ⊩ respects the rules of NI and NC under basis
I and C, respectively. This has already be down by Sandqvist [24, 25] (see also
Gheorghiu [8]) for → I, → E, ∀I, ∀E over both I and C, and for dne over C. The
remaining cases of showing that ⊩ admits

A

I and

A

E follows mutatis mutandis on
the treatment of ∀I and ∀E. □

This completes the equivalence to Henkin’s account of second-order logic.

5. Discussion

todo: conPA paper
We have developed a proof-theoretic semantics for second-order logic in which

both first- and second-order quantification are defined by substitution. The seman-
tics is grounded in atomic systems — pre-logical sets of inference rules — that can
be understood as encoding beliefs about the inferential relationships between con-
cepts in the language. For example, if one accepts that ‘Tammy is a vixen’ (V (t)),
one may infer that ‘Tammy is female’ (Fe(t)) and ‘Tammy is a fox’ (Fo(t)), among
possibly other consequences:

V (t)

Fe(t)

V (t)

Fo(t)

We have shown that, depending on the chosen notion of atomic system, this frame-
work recovers different logics. In particular, we examined two such notions corre-
sponding to classical and intuitionistic versions of Henkin’s second-order logic. This
raises a question: Is there a suitable choice of atomic system that would recover
full second-order logic? We leave this as an open direction for future work.

At present, we may ask how to interpret the fact that our framework recovers
Henkin semantics. Väänänen [31] has argued that despite some formal differences in
their model-theoretic treatments, once second-order logic is formalized (as it must
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be for foundational purposes), the distinction between Henkin and full semantics
effectively vanishes. As he puts it: ‘If two people started using second-order logic
for formalizing mathematical proofs, person F with the full second-order logic and
person H with the Henkin second-order logic, we would not be able to see any
difference.’ At the level of formal reasoning, then, there is no principled basis for
preferring one over the other, making the appearance of Henkin semantics in our
system entirely acceptable from the perspective of foundational logic.

Nonetheless, the distinction between Henkin and full semantics remains rele-
vant for the broader programme of proof-theoretic semantics. In its two forms,
second-order logic is connected in markedly different ways to model-theoretic and
set-theoretic foundations of mathematics. These relationships remain largely un-
explored within the proof-theoretic tradition. The account of second-order logic
presented here offers a promising setting in which such connections can be exam-
ined more closely, drawing on both the existing meta-theory and the simplicity and
flexibility of our semantic framework.

While B-eS provides an intuitively constructive semantic account of logical con-
sequence, a clear understanding of its computational content, together with a sys-
tematic account of its relationship with P-tV for a given logic, remains to be es-
tablished. The close relationship between intuitionistic second-order logic and the
polymorphic lambda-calculus (see, for example, [1]) suggests that B-eS for S-oL
may provide a useful starting point for investigating these questions.

Second-order arithmetic provides a compelling setting for formal metamathe-
matics (see, e.g., [31]). We conjecture that an inferentialist analysis of second-order
arithmetic, induction principles, and the definability of concepts may provide a
computational basis for a formal metamathematics grounded in the structure of
atomic systems. This includes, for example, defining real numbers and analysis.
Gheorghiu [7] has shown that first-order proof-theoretic semantics gives a simple
argument for the consistency of Peano Arithemtic.
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