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Abstract5

Proof-theoretic semantics (P-tS) is the paradigm of semantics in which meaning6

in logic is based on proof (as opposed to truth). A particular instance of P-tS7

for intuitionistic propositional logic (IPL) is its base-extension semantics (B-eS).8

This semantics is given by a relation called support, explaining the meaning of9

the logical constants, which is parameterized by systems of rules called bases10

that provide the semantics of atomic propositions. In this paper, we interpret11

bases as collections of definite formulae and use the operational view of them12

as provided by uniform proof-search — the proof-theoretic foundation of logic13

programming (LP) — to establish the completeness of IPL for the B-eS. This14

perspective allows negation, a subtle issue in P-tS, to be understood in terms of15

the negation-as-failure protocol in LP. Specifically, while the denial of a proposi-16

tion is traditionally understood as the assertion of its negation, in B-eS we may17

understand the denial of a proposition as the failure to find a proof of it. In this18

way, assertion and denial are both prime concepts in P-tS.19

Keywords: Logic programming, proof-theoretic semantics, bilateralism, negation-20

as-failure.21

1. Introduction22

The definition of a system of logic may be given proof-theoretically as a23

collection of rules of inference that, when composed, determine proofs;24

.
.
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that is, formal constructions of arguments that establish that a conclusion25

is a consequence of some assumptions:26

Established Premiss1 . . . Established Premissk
Conclusion

w�27

The systematic use of symbolic and mathematical techniques to determine28

the forms of valid deductive argument defines deductive logic: conclusions29

are inferred from assumptions.30

This is all very well as a way of defining what proofs are, but it relatively31

rarely reflects either how logic is used in practical reasoning problems or32

the method by which proofs are found. Rather, proofs are more often33

constructed by starting with a desired, or putative, conclusion and applying34

the rules of inference ‘backwards’. In this usage, the rules are sometimes35

called reduction operators, read from conclusion to premisses, and denoted36

Sufficient Premiss1 . . . Sufficient Premissk
Putative Conclusion

~w37

Constructions in a system of reduction operators are called reductions. This38

paradigm is known as reductive logic. The space of reductions of a putative39

conclusion is larger than its space of proofs, including also failed searches40

— Pym and Ritter [22] have studied the reductive logic for intuitionistic41

and classical logic in which such objects are meaningful entities.42

As one fixes more and more control structure relative to a set of reduc-43

tion operators, which determining what reductions are made at what time,44

one increasingly delegates work to a machine. The extreme case is logic45

programming (LP) in which such controls are fully specified. This view is,46

perhaps, somewhat obscured by the usual presentation of Horn-clause LP47

with SLD-resolution — see, for example, Kowalski [14] and Lloyd [17] —48

but it is explicit in work by Miller et al. [19, 20]. What makes this work49

is that one restricts to the hereditary Harrop fragment of a logic in which50

contexts contain only definite formulae — essentially, formulae in which51

disjunction only appears negatively. In LP, one typically thinks of the for-52

mulae in the context of a sequent as definional, which underpins its use in53

symbolic artificial intelligence.54

While deductive logic is suitable for considering the validity of propo-55

sitions relative to sets of axioms, reductive logic is suitable for considering56

the meaning of propositions relative to systems of inference. That the se-57

mantics of a statement is determined by its inferential behaviour is known58
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as inferentialism (see Brandom [2]), which has a mathematical realization59

as proof-theoretic semantics (P-tS).60

In P-tS, the meaning of the logical connectives is usually derived from61

the rules of a natural deduction system for the logic — for example, typ-62

ically, one uses Gentzen’s [32] NJ for intuitionistic logic. Meanwhile, the63

meanings of atomic propositions is supplied by an atomic system — a set64

of rules over atomic propositions. For example, taken from Sandqvist [26],65

the meaning of the proposition ‘Tammy is a vixen’ can be understood as66

arising from the following rule:67

Tammy is a fox Tammy is female

Tammy is a vixen68

Sandqvist [29] gave a P-tS for intuitionistic propositional logic (IPL) called69

base-extension semantics (B-eS). It proceeds by a judgement called support,70

parameterized by atomic systems, that defines the logical constants whose71

base case, the meaning of atoms, is given by derivability in an atomic72

system.73

There is an intuitive relationship between P-tS and LP: the way in74

bases are definitional in P-tS is precisely how sets of definite formulae are75

definitional in LP. Schroeder-Heister and Hallnäs [9, 10] have used this76

relationship to address questions of harmony and inversion in P-tS.77

In this paper, we show that the completeness of IPL for the B-eS can be78

understood in terms of the operational view of definite formulae. Miller [19]79

gave this operational view of the hereditary Harrop fragment of IPL a80

proof-theoretic denotational semantics which proceeds by a least fixed point81

construction over the Herbrand base. A set of definite formulae parame-82

terizes the construction. By thinking of this set as a base, we prove the83

completeness of IPL for the aforementioned B-eS by passing through the84

denotational semantics.85

This work exposes an interpretation of negation in P-tS as a manifes-86

tation of the negation-as-failure (NAF) protocol. The P-tS of negation87

is a subtle issue — see, for example, Kürbis [16]. Meanwhile, in LP, the88

relationship between provability and refutation is made through NAF: a89

statement ¬ϕ is established precisely when the system fails to find a proof90

for ϕ. The completeness argument for IPL in this paper shows that nega-91

tion in B-eS can be understood in terms of the failure to find a proof. Hence,92

from the perspective of B-eS, it is not the case, as advanced by Frege [6]93
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and endorsed by Dummett [4], that denying a statement ϕ is equal to as-94

serting the negation of ϕ. Instead, denial in P-tS is conceptually prior to95

negation. In this way, through the lens of reductive logic, P-tS may be96

regarded as practising a form of bilateralism — the philosophical practice97

of giving equal consideration to dual concepts such as assertion and denial,98

truth and falsity, and so on. Of course, bilateralism with respect to nega-99

tion in logic is a subject that received serious attention in the literature —100

see, for example, Smiley [31], Rumfitt [25], Francez [5], Wansing [35], and101

Kürbis [16].102

The paper brings together the following fields: proof-theoretic seman-103

tics, reductive logic, and logic programming. Some such connexions have104

already been witnessed in the literature — see, for example, Hallnäs and105

Schroeder-Heister [9, 10]. The value is that we can mutually use one to106

explicate phenomena in the other, such as understanding the meaning of107

negation in terms of NAF. That is not to argue in favour of NAF as an ex-108

planation of negation, but only that it manifests in the operational account109

of B-eS provided by the LP perspective.110

The paper has three parts. In the first part, Section 2, we give the rele-111

vant background on IPL: Section 2.1 contains the syntax and terminology112

that we adopt for IPL; Section 2.2 defines the hereditary Harrop fragment113

(i.e., definite formulae) and gives their operational reading. In the second114

part, Section 3, we summarize the B-eS for IPL as given by Sandqvist [29]:115

in Section 3.1 we define the support relation giving the semantics, and in116

Section 3.2 we summarize the existing proof of completeness. In the third117

part, Section 4, we study B-eS from the perspective of the operational118

reading of definite formulae: Section 4.1 relates atomic systems and sets of119

definite formulae; Section 4.2 proves completeness argument for IPL for the120

B-eS through the operational reading of definite formulae; and, Section 4.3121

discusses how this perspective manifests negation-as-failure as an explana-122

tion of the proof-theoretic meaning of negation. The paper concludes in123

Section 5 with a summary of our results and a discussion of future work.124

2. Intuitionistic Propositional Logic125

2.1. Syntax and Consequence126

There are various presentation of intuitionistic propositional logic (IPL) in127

the literature. We begin by fixing the relevant concepts and terminology128
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used in this paper.129

Definition 2.1 (Formulae). Fix a (denumerable) set of atomic proposi-130

tions A. The set of formulae F (over A) is constructed by the following131

grammar:132

ϕ ::= p ∈ A | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | ⊥133

Definition 2.2 (Sequent). A sequent is a pair Γ.ϕ in which Γ is a (count-134

able) set of formulae and ϕ is a formula.135

We use ` as the consequence judgement relation defining IPL — that136

is, Γ ` ϕ denotes that the sequent Γ . ϕ is a consequence of IPL. We may137

write ` ϕ to abbreviate ∅ ` ϕ.138

Throughout, we assume familiarity with the standard natural deduction139

system NJ for IPL as introduced by Gentzen [32] — see, for example, van140

Dalen [34] and Troelstra and Schwichtenberg [33]. Nonetheless we provide141

the relevant definitions in quick succession to keep the paper self-contained142

Definition 2.3 (Natural Deduction Argument). A natural deduction ar-143

gument is a rooted tree of formulas in which some (possibly no) leaves144

are marked as discharged. An argument is open if it has undischarged145

assumptions; otherwise, it is closed.146

The leaves of an argument are its assumptions, the root is its conclusion.147

That A has open assumptions Γ, closed assumptions ∆, and conclusion ϕ148

may be denoted as follows:149

A
ϕ

Γ, [∆]
A

Γ, [∆]
A
ϕ150

Definition 2.4 (Natural Deduction System NJ). The natural deduction151

system NJ is composed of the rules in Figure 1.152

Definition 2.5 (NJ-Derivation). The set of NJ-derivations is defined in-153

ductively as follows:154

- Base Case. If ϕ is a formula, then the one element tree ϕ is an155

NJ-derivation.156

- Inductive Step. Let r be a rule in NJ and D1, ...,Dn be a (possi-157

bly empty) list of NJ-derivations. If D is an argument arising from158

applying r to D1, ...,Dn, then D is an NJ-derivation.159
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ϕ ψ

ϕ ∧ ψ
∧I ϕ ∧ ψ

ϕ ∧1E
ϕ ∧ ψ
ψ

∧2E

ϕ

ϕ ∨ ψ ∨
1
I

ψ

ϕ ∨ ψ ∨
2
I

ϕ ∨ ψ
[ϕ]
χ

[ψ]
χ

χ ∨E

[ϕ]
ψ

ϕ→ ψ
→I

ϕ ϕ→ ψ

ψ
→E ⊥

ϕ ⊥E

Figure 1. Calculus NJ

If D is an NJ-derivation with undischarged leaves composing the set Γ160

and root ϕ, then it is an argument for the sequent Γ . ϕ. In this paper, we161

characterize IPL by NJ:162

Γ ` ϕ iff there is an NJ-derivation for Γ . ϕ163

2.2. The Hereditary Harrop Fragment164

The hereditary Harrop fragment of IPL admits an operational reading that165

we use to deliver the completeness of a proof-theoretic semantics for IPL.166

This section closely follows work by Miller [19] (see also Harland [11]).167

The propositional hereditary Harrop formulae are generated by the fol-168

lowing grammar in which A ∈ A is an atomic proposition, D is a definite169

formula, and G is a goal formula:170

D ::= A | G→ A | D ∧D
G ::= A | D → G | G ∧G | G ∨G171

A set of definite formulae P is a program — typically, it is a finite set, but172

we shall have cause to consider infinite sets. The set of all programs is P.173

We call a sequent P .G, in which P is a program and G is a goal, a query.174

The hereditary Harrop fragment of IPL admits an operational reading175

which renders it a logic programming language, here called hHLP. The176

operational semantics of hHLP is given by uniform proof-search for P .G177

in a sequent calculus for IPL — see Miller et al. [20].178
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P ` A iff A ∈ cl(P) (IN)
P ` A iff G→ A ∈ cl(P) and P ` G (CLAUSE)
P ` G1 ∨G2 iff P ` G1 or P ` G2 (OR)
P ` G1 ∧G2 iff P ` G1 and P ` G2 (AND)
P ` D → G iff P ∪ {D} ` G (LOAD)

Figure 2. Operational Semantics for hHLP

For purely technical reasons, we require a decomposition function cl(−) :179

P → P that will unpack conjunctions. Let [P] be the least set satisfying180

the following:181

- P ⊆ cl(P)182

- If D1 ∧D2 ∈ cl(P), then D1 ∈ cl(P) and D2 ∈ cl(P).183

Definition 2.6 (Operational Semantics for hHLP). The operational se-184

mantics for hHLP is given by the clauses in Figure 2.185

Importantly, hHLP language is complete for the hereditary Harrop frag-186

ment of IPL; that is, P .G has a successful execution iff it is a consequence187

of IPL — see Miller [20].188

The standard frame semantics for IPL by Kripke [15] forms a model-189

theoretic semantics for hHLP. However, the hereditary Harrop fragment is190

sufficiently restrictive that we may simplify the semantics in a useful way.191

Definition 2.7 (Interpretation). An interpretation is a mapping I : P →192

P(A) such that P ⊆ Q implies I(P) ⊆ I(Q).193

Definition 2.8 (Satisfaction). The satisfaction judgement is given by the194

clauses of Figure 3.195

We desire a particular interpretation J such that the following holds:196

J,P � G iff P ` G197

To this end, we consider a function T from interpretations to interpre-198

tations that corresponds to unfolding derivability in a base:199

T (I)(P) := {A | A ∈ cl(P)}∪
{A | (G→ A) ∈ cl(P) and I,P � G}200
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I,P � A iff A ∈ I(P)
I,P � G1 ∨G2 iff I,P � G1 or I,P � G2

I,P � G1 ∧G2 iff I,P � G1 and I,P � G2

I,P � D → G iff I,P ∪ {D} � G

Figure 3. Denotational Semantics for hHLP

Interpretations form a lattice under point-wise union (t), point-wise201

intersection (u), and point-wise subset (v); the bottom of the lattice is202

given by I⊥ : P 7→ ∅. It is easy to see that T is monotonic and continuous203

on this lattice, and, by the Knaster-Tarski Theorem [1], its least fixed-point204

is given as follows:205

TωI⊥ := I⊥ t T (I⊥) t T 2(I⊥) t . . .206

Intuitively, each application of T concerns the application of a clause so207

that TωI⊥ corresponds to arbitrarily many applications.208

Lemma 2.9. For any program P and goal G,209

TωI⊥,P � G iff P ` G210

Proof: The result was proved by Miller [19] — see also Harland [11].211

3. Base-extension Semantics212

In this section, we give a brief, but complete, synopsis of the base-extension213

semantics (B-eS) for IPL as introduced by Sandqvist [29]. The semantics214

proceeds through a support relation parametrized by certain atomic sys-215

tems, called bases. There are related base-extension semantics for classical216

logic — see Sandqvist [27, 28] and Makinson [18].217

We differ slightly in presentation from Sandqvist [29]. First, we refer218

to more the possibility of more general definitions (e.g., considering nth219

level atomic systems for n > 2). Second, we make use of derivations as220

mathematical objects. Third, we parameterize support over a notion of221

base called a basis, a class of atomic systems. These differences help bridge222

the gap between the earlier work and the connexions to logic programming223
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in this paper. It also sets the B-eS for IPL within the wider literature of224

P-tS from which we draw the generalizations.225

3.1. Support in a Base226

A common idea in proof-theoretic semantics — the paradigm of meaning227

in which B-eS operates — is that the meaning of atomic propositions is228

given by sets of atomic rules governing their inferential behaviour. Piecha229

and Schroeder-Heister [30, 21] have given a useful inductive hierarchy of230

them.231

Definition 3.1 (Atomic Rule). An nth-level atomic rule is defined as fol-232

lows:233

- A zeroth-level atomic rule is a rule of the following form in which234

c ∈ A:235

c236

- A first-level atomic rule is a rule of the following form in which237

p1, ...,pn, c ∈ A,238
p1 . . . pn

c239

- An (n+ 1)th-level atomic rule is a rule of the following form in which240

p1, ...,pn, c ∈ A and Σ1, ...,Σn are (possibly empty) sets of nth-level241

atomic rules:242

[Σ1]
p1 . . .

[Σn]
pn

c243

We take that premisses may be empty such that an mth-level atomic244

rule is an nth-level atomic rule for any n > m. Having sets of atomic245

rule as hypotheses is more general than have sets of atomic propositions246

as hypotheses; the latter is captured by the former by taking zeroth-order247

atomic rules. Nonetheless, the generalization is, perhaps, unexpected. We248

discuss it further in Section 4.2.249

Definition 3.2 (Atomic System). An atomic system is a set of atomic250

rules.251

Atomic systems may have infinitely many rules but they are at most252

countably infinite. They are used to base validity in P-tS on proof. The253
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definition of a derivation is a generalization of natural deduction à la254

Gentzen [32], which was given by Piecha and Schroeder-Heister [30, 21].255

Definition 3.3 (Derivation in an Atomic System). Let A be an atomic256

system. The set of A -derivations is defined inductive as follows:257

- Base Case. If A contains a zeroth-level rule concluding c, then258

the natural deduction argument consisting of just the node c is a259

A -derivation.260

- Induction Step. Suppose A contains an (n + 1)th-level rule r of261

the following form:262

[Σ1]
p1 . . .

[Σn]
pn

c263

And suppose that for each 1 ≤ i ≤ n there is a A -derivation Di of264

the following form:265

Γi,Σi
Di
pi266

Then the natural deduction argument with root c and immediate267

sub-trees D1,...,Dn is a A -argument from Γ1 ∪ ... ∪ Γn to c.268

An atom c is derivable from Γ in A — denoted Γ `A c — iff there is a269

A -derivation from Γ to c.270

Typically, we do not consider all atomic systems, but restrict attention271

to some particular class.272

Definition 3.4 (Basis). A basis is a set of atomic systems.273

Having fixed a basis B, an atomic system B ∈ B is called a base. A274

base-extension semantics is formulated relative to a basis via a support275

relation.276

Definition 3.5 (Support in a Base). Fix a basis B. Support over B is277

the least relation 
− on sequents and bases in B defined by the clause of278

Figure 4. The validity judgement over B is the following relation 
 one279

sequent:280

Γ 
 ϕ iff Γ 
B ϕ for any B ∈ B281
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Γ 
B ϕ iff for any C ∈ B such that B ⊆ C , (⇒)
if 
C ψ for all ψ ∈ Γ, then 
C ϕ


B p iff `B p (A)

B ϕ→ ψ iff ϕ 
B ψ (→)

B ϕ ∧ ψ iff 
B ϕ and 
B ψ (∧)

B ϕ ∨ ψ iff for any C ∈ B such that B ⊆ C and (∨)

any p ∈ A, if ϕ 
C p and ψ 
C p, then 
C p

B ⊥ iff 
B p for any p ∈ A (⊥)

Figure 4. Support in a Base

Sandqvist [27] gave this semantics with a basis S consisting of atomic282

rules that are properly second-level; that is, rules of the form283

[Σ1]
p1 . . .

[Σn]
pn

c284

in which Σ1,...,Σn are sets of atoms.285

Theorem 3.6 (Soundness & Completeness). Γ ` ϕ iff Γ 
 ϕ over S.286

Proof: Proved by Sandqvist [29] — see Section 3.2.287

The support relation satisfies some important expected properties, such288

as the following:289

Lemma 3.7. If Γ 
B ϕ and C ⊇ B, then Γ 
C ϕ.290

Proof: Proved by Sandqvist [29] by induction on support in a base.291

This summarizes the B-eS for IPL Sandqvist [29] proved the soundness292

of IPL for the B-eS by showing that validity admits all the rules of NJ. His293

proof of completeness is more complex. In essence, Sandqvist [29] proved294

completeness of IPL for the B-eS by constructing a bespoke atomic system295

N to a given validity judgement that allows us to simulate an NJ-derivation296

for the sequent in question. We present the main ideas here as we refer to297

them in Section 4.2.298
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3.2. Completeness of IPL via a Natural Base299

We want to show that Γ 
 γ implies Γ ` γ. We understand the latter in300

terms of provability in NJ. Therefore, we associate to each formula ρ in the301

sequent Γ . γ a unique atom r and construct a base N emulating NJ such302

that r behaves in N as ρ behaves in NJ.303

For example, let Γ . γ contain ρ := p∧ q. The rules governing ρ are the304

conjunction introduction and elimination rules of NJ, so we require N to305

contain the following rules in which r is alien to Γ . γ:306

p q
r

r
p

r
q307

These rules are designed such that r behaves in N precisely as ρ does in308

NJ. That is, they emulate the conjunction rules. The shorthand for r is309

(p∧q)[ — that is r = ρ[ — so that the above rules may be expressed more310

clearly as follows:311

p q

(p ∧ q)[
(p ∧ q)[

p
(p ∧ q)[

q312

For clarity, we give another example. Suppose Γ.γ also contains σ := p→313

q, then N contains rules that emulate the implication introduction and314

elimination rules of NJ for σ using an atom s := σ[ := (p→ q)[ alien to Γ315

and γ. That is, N contains the following rules:316

[p]
q

(p→ q)[
p (p→ q)[

q317

The details of how N is constructed and how it delivers completeness are318

below.319

Fix a sequent Γ . γ. To every sub-formula ϕ of Γ . γ associate a unique320

atomic proposition ϕ[ as follows:321

- if ϕ 6∈ A, then ϕ[ is an atom that does not occur in Γ . γ;322

- if ϕ ∈ A, then ϕ[ = ϕ.323

The right-inverse of −[ is −\ and both functions act on sets point-wise,324

Σ[ := {ϕ[ | ϕ ∈ Σ} P \ := {p\ | p ∈ P}325
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ϕ[ ψ[

(ϕ ∧ ψ)[
∧I[

(ϕ ∧ ψ)[

ϕ[
∧E[

(ϕ ∧ ψ)[

ψ[
∧E[

ϕ[

(ϕ ∨ ψ)[
∨I[

ψ[

(ϕ ∨ ψ)[
∨I[ (ϕ ∨ ψ)[

[ϕ[]
p

[ψ[]
p

p ∨E[

[ϕ[]

ψ[

(ϕ→ ψ)[
→I

[
ϕ[ (ϕ→ ψ)[

ψ[
→E

[ ⊥[
p ⊥E

[

Figure 5. Atomic System N

Let N be the atomic system containing precisely the rules of Figure 5326

for any ϕ, ψ occurring in Γ . γ and any p ∈ A. These rules are precisely327

such that ϕ[ behaves in N as ϕ does in NJ. Note that, for any validity328

judgement, the atomic system N thus generated is indeed a Sandqvist329

base.330

In this set-up, Sandqvist [29] establishes three properties that collec-331

tively deliver completeness.332

Lemma 3.8. Let P ⊆ A and p ∈ A and let B ∈ S,333

P 
B p iff P `B p334

This claim is a basic completeness result in which the context Σ is335

restricted to a set of atomic propositions and the extract p is an atomic336

proposition.337

Lemma 3.9. For every ϕ occurring in Γ . γ and any N ′ ⊇ N ,338


N ′ ϕ[ iff 
N ′ ϕ339

In other words, ϕ[ and ϕ are equivalent in N — that is, ϕ[ 
N ϕ340

and ϕ 
N ϕ[. The property allows us to move between the basic case341

(i.e., the set-up of Lemma 3.8) and the general case (i.e., completeness —342

Theorem 3.6). This is the crucial step in the proof of completeness. In343

Section 4.2, we study it in terms of the operational account of definite344

formulae given in Section 2.2.345
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Lemma 3.10. Let P ⊆ A and p ∈ A,346

P 
N p implies P\ ` p\347

This property is the simulation statement. It allows us to make the348

final move from derivability in N to derivability in NJ.349

These lemmas collectively suffice for completeness:350

Proof: Theorem 3.6 — Completeness. Let N be the bespoke base for351

Γ . ϕ. By 3.9, for any N ′ ⊇ N we have Γ[ 
N ′ ϕ[. Since N ⊇ N , we352

infer Γ[ 
N ϕ[. Therefore, by 3.8, we have Γ[ ` N ϕ[. Finally, by 3.10,353

Γ ` ϕ, as required.354

In the next section, we show that the completeness follows intuitively355

from regarding N as a program capturing the inferential content of NJ. In356

general, a base may be regarded as a program, so that the application of357

a rule in the base corresponds to the use of a clause in the program. We358

demonstrate that the validity of a formula ϕ in the base N emulates the359

execution of a goal ϕ[ relative to the program N . By construction of N ,360

such executions simulate the construction of an NJ proof of ϕ. Hence, IPL361

is complete with respect to the B-eS.362

4. Definite Formulae, Proof-search, and363

Completeness364

There is an intuitive encoding of atomic rules as formulae. More precisely,365

as definite formulae. Under this encoding, the bases which deliver B-eS366

live within the hereditary Harrop fragment of IPL. The latter has a simple367

operational reading via proof-search for uniform proofs (see Section 2.2)368

that enables a proof-theoretic denotational semantics — the least fixed369

point construction. We use this well-understood phenomenon to deliver the370

completeness of IPL with respect to Sandqvist’s B-eS [29] — see Section 3.371

Doing this reveals a subtle interpretation of the meaning of negation372

in terms of the negation-as-failure protocol. A reductive logic view of the373

denial of a formula is the failure to find a proof of it. Thus, according374

to the view of B-eS arising from the account passing through the opera-375

tional reading of definite formulae, in B-eS denial is conceptionally prior to376

negation and both require equal consideration.377
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4.1. Atomic Systems vs. Programs378

Intuitively, atomic systems in B-eS are definitional in precisely the same379

way as programs in hHLP are definitional. To illustrate this, we must sys-380

tematically move between them, which we do by encoding atomic systems381

as programs.382

Let b−c be as follows:383

- The encoding of zeroth-level rule is as follows:384 ⌊
c

⌋
:= c385

- The encoding of a first-level rule is as follows:386 ⌊ p1 . . . pn
c

⌋
:= (p1 ∧ . . . ∧ pn)→ c387

- The encoding of an nth-level rule is as follows:388 ⌊
[Σ1]
p1 . . .

[Σn]
pn

c

⌋
:=
(
(bΣ1c → p1) ∧ . . . ∧ (bΣnc → pn)

)
→ c389

For example, →I
[ in Figure 5 yields the following schematically:390

(ϕ[ → ψ[)→ (ϕ→ ψ)[391

The hierarchy of atomic system provided by Piecha and Schroeder-392

Heister [30, 21] (Definition 3.1) precisely corresponds to the inductive depth393

of the grammar for hereditary Harrop formulae — that is, if A is an n-th394

level atomic system, then395

`A p iff bA c ` p396

Therefore, we may suppress the encoding function, and henceforth use397

atomic systems and programs interchangeably — that is, we may write398

A ` p to denote bA c ` p.399

Of course, in the Sanqvist basis, we are limited to properly second-level400

atomic systems, but the grammar of definite clauses can handle consider-401

ably more. Indeed, the work below suggests that completeness holds for402

nth-level atomic systems for n ≥ 2.403
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Formally, to say that bases are definitional in the sense of programs, we404

mean the following:405


B ϕ iff N ∪B ` ϕ[ (∗)406

Here N contains rules governing ϕ when the formula is complex — that is,407

ϕ is a sub-formula of a sequent Γ . ψ which generates N — and arbitrary408

otherwise.409

It is important that we use ϕ[ rather than ϕ in (∗). It is certainly not410

the case that bases behave exactly as contexts; that is, we do not have the411

following equivalence:412


B ϕ iff B ` ϕ (∗∗)413

That this generalization fails is shown by the following counter-example:414

Example 4.1. Consider the following formula:415

ϕ := (a→ b ∨ c)→
(
(a→ b) ∨ (a→ c)

)
416

The formula ϕ is not a consequence of IPL; hence, by completeness of IPL417

with respect to the B-eS we have 
B (a→ b∨c) and 6
B (a→ b)∨(a→ c),418

for some B. This shows that (∗∗) does not hold as it means the second419

judgment follows from the first — that is, 
B (a→ b∨c) implies 
B (a→420

b) ∨ (a → c), for any B — as witnessed by the following computation in421

hHLP:422


B a→ b ∨ c implies B ` a→ b ∨ c (∗∗)
implies B ∪ {a} ` b ∨ c (LOAD)
implies B ∪ {a} ` b or B ∪ {a} ` c (OR)
implies B ` a→ b or B ` a→ c (LOAD)
implies B ` (a→ b) ∨ (a→ c) (OR)
implies 
B (a→ b) ∨ (a→ c) (∗∗)

423

To see how (∗) works it is instructive to consider an example that ex-424

plicitly uses the proof-search for the definite formulae as a meta-calculus425

for derivability in a base.426

Example 4.2. By Theorem 3.6, we have 
∅ a ∨ b → b ∨ a. That N `427

(a ∨ b→ b ∨ a)[ indeed obtains is witnessed by the computation,428
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N , (a ∨ b)[ ` (a ∨ b)[
⇑ IN

Ra Rb
N , (ata ∨ b)[ ` (a ∨ b)[ ∧ (a→ (b ∨ a)[) ∧ (b→ (b ∨ a)[)

⇑ AND

N , (a ∨ b)[ ` (b ∨ a)[
⇑ CLAUSE (∨E)[

N , (a ∨ b)[ ` (b ∨ a)[
⇑ LOAD

N ` (a ∨ b→ b ∨ a)[
⇑ CLAUSE (→I)

[

429

where Rx for x ∈ {a, b} is430

N , (b ∨ a)[, x ` x
⇑ IN

N , (b ∨ a)[, x ` (b ∨ a)[
⇑ CLAUSE (∨I)[

N , (b ∨ a)[ ` x→ (b ∨ a)[
⇑ LOAD

431

In the next section, we use the relationship between atomic systems and432

programs to prove completeness of IPL with respect to the B-eS.433

4.2. Completeness of IPL via Logic Programming434

We may prove completeness of IPL with respect to the B-eS by passing435

through hHLP as follows:436

TωI⊥,N � ϕ[ oo // N ` ϕ[

��

N ϕ

OO

` ϕ

437

The diagram requires three claims, the middle one of which is Lemma 2.9.438

The other two are Lemma 4.3 and Lemma 4.4, respectively, reading in the439

direction of the arrows.440

The intuition of the completeness argument is two-fold: firstly, that N441

is to ϕ[ as NJ is to ϕ; secondly, the use of a rule in a base corresponds to442

the use of a clause in the corresponding program; thirdly, execution in N443

corresponds to proof(-search) in NJ. In this set-up, the Tω construction444

captures the construction of a proof: the application of a rule corresponds445

to a use of T , the iterative application of rules corresponds to the iterative446

application of T — that is, to Tω.447

It remains to prove the claims and completeness. Fix a sequent Γ . ϕ448
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and let −[ and N be constructed as in Section 3.2 for this sequent. Let449

∆ be an arbitrary set of sub-formulae of the sequent and ψ an arbitrary450

subformula of the sequent.451

Lemma 4.3 (Emulation). If 
N ψ, then TωI⊥,N � ψ[.452

Proof: We prove a stronger proposition: for any N ′ ⊇ N , if 
N ′ ψ, then453

TωI⊥,N ′ � ψ[. We proceed by induction on support in a base according454

to the various cases of Figure 4. As above, for the sake of economy, we455

combine the clauses ⇒ and →.456

- ψ ∈ A. Note ψ[ = ψ, by definition. Therefore, if 
N ′ ψ, then457

`N ′ ψ, but this is precisely emulated by application of T . Hence,458

TωI⊥,N ′ � ψ.459

- ψ = ⊥. If 
N ′ ⊥, then 
N ′ p, for every p ∈ A. By the induction460

hypothesis (IH), TωI⊥,N ′ � p for every p ∈ A. It follows that461

TωI⊥,N ′ � ⊥[.462

- ψ := ψ1 ∧ ψ2. By the ∧-clause for support, 
N ′ ψ1 and 
N ′ ψ2.463

Hence, by the IH, TωI⊥,N ′ � ψ[1 and TωI⊥,N ′ � ψ[2. By ∧-clause464

for satisfaction, TωI⊥,N ′ � ψ[1 ∧ ψ[2. The result follows by ∧I[-465

schema.466

- ψ := ψ1 ∨ ψ2. By Lemma 3.9, ψ1 
N ′ ψ[1 and ψ2 
N ′ ψ[2. By467

the ∨I-scheme in N ′, both ψ[1 
 (ψ1 ∨ ψ2)[ and ψ[2 
 (ψ1 ∨ ψ2)[.468

Therefore, by ⇒-clause for support, we have ψ1 
N ′ (ψ1 ∨ ψ2)[ and469

ψ2 
N ′ (ψ1∨ψ2)[. Using the ∨-clause for support on the assumption470


N ′ ψ1 ∨ ψ2 with these results means that 
N ′ (ψ1 ∨ ψ2)[. That is,471

Tω,N ′ � (ψ1 ∨ ψ2)[, as required.472

- ψ := ψ1 → ψ2. By the →-clause for satisfaction, ψ1 
N ′ ψ2. So,473

by the ⇒-clause for satisfaction, 
N ′′ ψ1 implies 
N ′′ ψ2 for any474

N ′′ ⊇ N ′. Let N ′′ := N ′ ∪{ψ[1}. Since 
N ′,ψ[ ψ[, by Lemma 3.9,475

we have 
N ′,ψ[ ψ, hence we infer 
N ′,ψ[ ψ2. By the IH, TωI⊥,N ′∪476

{ψ[1} � ψ[2. Hence, TωI⊥,N ′ � ψ[1 → ψ[2. By the →I
[-scheme,477

TωI⊥N ′ � (ψ1 → ψ2)[, as required.478

This completes the induction.479
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Lemma 4.4 (Simulation). If N ∪∆[ ` ψ[, then ∆ ` ψ.480

Proof: We proceed by induction on the length of execution. Intuitively,481

the execution of N ∪ ∆[ ` ψ[ simulates the reductive construction of a482

proof of ψ from ∆ in NJ — that is, a proof-search. We proceed by induction483

on the length of the execution.484

Base Case: It must be that ψ ∈ ∆, so ∆ ` ψ is immediate.485

Inductive Step: By construction of N , the execution concludes by486

CLAUSE applied to a definite clause ρ simulating a rule r ∈ NJ; that is,487

N ∪ ∆[ ` ψ[i for ψi such that ψ[1 ∧ .... ∧ ψ[n → ψ[. By the induction488

hypothesis (IH), ∆ ` ψi for 1 ≤ i ≤ n. It follows that ∆ ` ψ by applying489

r ∈ NJ.490

For example, if the execution concludes by CLAUSE applied to the clause491

for ∧-introduction (i.e., ψ[ ∧ ψ[ → (ψ ∧ ψ)[), then the trace is as follows:492

...
N ∪∆[ ` ψ[

...
N ∪∆[ ` ψ[

N ∪∆[ ` ψ[ ∧ ψ[

N ∪∆[ ` (ψ ∧ ψ)[493

By the induction hypothesis, we have proofs witnessing ∆ ` ψ and ∆ ` ψ,494

and by ∧-introduction:495

...
ψ

...
ψ

ψ ∧ ψ496

This completes the induction.497

Following the diagram, we have the completeness of IPL with respect498

to the B-eS:499

Proof: Theorem 3.6 — Completeness. We require to show that 
 ϕ500

implies 
N ϕ for arbitrary ϕ. To this end, assume 
 ϕ. Let N be the501

natural base generated by ϕ. By definition, from the assumption, we have502


N ϕ. Hence, by Lemma 4.3, it follows that TωI⊥,N � ϕ[. Whence, by503

Lemma 2.9, we obtain N ` ϕ[. Thus, by Lemma 4.4, ` ϕ, as required.504
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In the following section, we discuss how reductive logic delivers the505

completeness proof above and the essential role played by both proofs and506

refutations.507

4.3. Negation-as-Failure508

A reduction in a proof system is constructed co-recursively by applying the509

rules of inference backwards. Even though each step corresponds to the510

application of a rule, the reduction can fail to be a proof as the computation511

arrives at an irreducible sequent that is not an instance of an axiom in the512

logic. For example, in hHLP, one may compute the following:513

p . q
p . p ∨ q

∅ . p→ (p ∨ q)
⇑ OR

⇑ LOAD

514

This reduction fails to be a proof, despite every step being a valid infer-515

ence, since the initial sequent is not an instance of IN. In reductive logic,516

such failed attempts at constructing proofs are not meaningless: Pym and517

Ritter [22] have provided a semantics of the reductive logic of IPL in which518

such reductions are given meaning by using hypothetical rules — that is,519

the construction would succeed in the presence of the following rule:520

p
q521

The categorical treatment of this semantics has them as indeterminates in522

a polynomial category — this adumbrates current work by Pym et al. [23],523

who have shown that the B-eS is entirely natural from the perspective524

of categorical logic. The use of such additional rules to give semantics525

to constructions that are not proofs directly corresponds to the use of526

atomic systems in the B-eS for IPL; for example, let A be the atomic527

system containing the rule above, then the judgement p 
A q obtains.528

Altogether, this suggests a close relationship between B-eS and reductive529

logic, which manifests with the operational reading of definite clauses and530

their relationship to atomic rules in Section 4.531

Within P-tS, negation is a subtle issue — see Kürbis [16]. We may use532

the perspective of LP developed herein to review the meaning of absurdity533

(⊥).534

There is no introduction rule for ⊥ in NJ. One may not construct a535
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proof of absurdity without it already being, in some sense, assumed; for536

example, ϕ,ϕ→ ⊥ ` ⊥ obtains because the context {ϕ,ϕ→ ⊥} is already,537

in some sense, absurd. We may use LP to understand what that sense is.538

To simplify matters, observe that the judgement Γ ` ⊥ is equivalent to539

` ϕ → ⊥ for some formula ϕ. Therefore, we may restrict attention to540

negations of this kind to understand the meaning of absurdity.541

By Theorem 3.6 (Soundness) and Lemma 4.4 (Simulation), we see that542

the converse of Theorem 4.3 holds. Therefore,543


 ¬ϕ iff TωI⊥,N ` (¬ϕ)[544

Unfolding the semantics, this is equivalent to TωI⊥,N ∪{ϕ[} ` ⊥[. Thus,545

the sense in which ϕ is absurd is that its interpretation under TωI⊥ contains546

absurdity; that is, ϕ is absurd iff ⊥[ ∈ TωI⊥(ϕ). What does this tell us547

about the meaning of ¬ϕ? Since there s no proof of ⊥[, we have that the548

meaning of ¬ϕ is that there is no proof of (ϕ)[ in N . This is the negation-549

as-failure principle. How does it yield the clause for ⊥ in Figure 4?550

Passing through (∗) in Section 4.1,551


B ⊥ iff N ∪B ` ⊥[552

Since there is no introduction rule for ⊥[ in N , it must be that B derives553

it. Thus, there is rule in B of the following form:554

[Σ1]
p1 ...

[Σn]
pn

⊥[555

To simplify matters, we introduce alien q and q̄ as ‘conjunctions’ of some556

subset q1, ..., qk and qk+1, ..., qn of p1, ...,pn in the inferentialist sense. That557

is, we introduce the following, where Πi = Σj iff qi = pi for i, j ∈ {1, ..., n}:558

[Π1]
q1 ...

[Πn
qn ]

q

[Πk+1]
qk+1 ...

[Πn
qn ]

q̄559

Doing this allows us to replace the above rule with the following:560

q q̄

⊥[561
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In this case, the inferential behaviour of q and q̄ is that they are contra-562

dictory propositions: together, they infer absurdity.563

In this way, negation is implicit in atoms. What is significant from this564

analysis is that the semantics of ⊥ requires us to observe that there is no565

proof of it and thus extend the space with proofs of contradictory q and q̄.566

If they are proved in B, then one has proved absurdity; if B has proved567

absurdity, then one has proofs for each of these. The subtlety is that since568

we do not have negation explicit in our atoms, we only admit the principle569

that some atoms are contradictory. If we prove all atoms, then we prove570

these contradictory atoms; and, if we prove these contradictory atoms, then571

we have proved absurdity. This justifies the clause for ⊥,572


B ⊥ iff 
B p for any p ∈ A573

Piecha and Schroeder-Heister [30, 21] have argued that there are two574

perspectives on atomic systems: the knowledge view and the definitional575

view. This becomes clear according to various ways in which a program576

may be regarded in LP. The negation-as-failure protocol makes use of the577

definitional perspective; its analogue in terms of knowledge is the closed-578

world assumption. In this case, a knowledge base treats everything that is579

not known to be valid as invalid. There is significant literature about the580

closed-world assumption that may be useful for understanding P-tS and581

what it tells us about reasoning — see, for example, Clark [3], Reiter [24],582

and Kowalski [14, 13], and Harland [11, 12].583

5. Conclusion584

Proof-theoretic semantics is the paradigm of meaning based on proof (as585

opposed to truth). Essential to this approach is the use of atomic systems,586

which give meaning to atomic propositions. Base-extension semantics is587

a particular instance of proof-theoretic semantics that proceeds by an in-588

ductively defined judgement whose base case is given by provability in an589

atomic system. It may be regarded as capturing the declarative content of590

proof-theoretic semantics in the Dummett-Prawitz tradition — see Ghe-591

orghiu and Pym [8]. Sandqvist [27] has given a base-extension semantics592

for intuitionistic propositional logic. Completeness follows by construct-593

ing a special bespoke base in which the validity of a complex proposition594

simulates a natural deduction proof of that formula.595
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In the base-extension semantics, the meaning of the logical constants is596

derived from the rules of NJ, while the atomic systems give the meaning597

of atomic propositions. These atomic systems, which include Sandqvist’s598

special bases that delivers completeness, all sit within the hereditary Harrop599

fragment of IPL. The significance of this is that an effective operational600

reading of definite formulae renders them meaning-conferring in a sense601

analogous to the use of atomic systems. Moreover, this operational account602

coheres with the independently conceived notion of derivability in an atomic603

system. Of course, that atomic systems and programs are intimately related604

has been studied before — see Schroeder-Heister and Hallnäs [9, 10].605

Significantly, the operational reading of the definite formulae allows606

from a simple proof-theoretic model-theoretic semantics that captures the607

idea of unfolding the inferential content of a set of definite clauses or an608

atomic system. In this paper, we have used the operational account of defi-609

nite formulae to prove the completeness of intuitionistic propositional logic610

with respect to its base-extension semantics. The aforementioned special611

base is interpreted as a program so that completeness follows immediately612

from the existing completeness result of the model-theoretic semantics of613

the logic programming language. Doing this reveals the subtle meaning of614

negation in proof-theoretic semantics.615

Historically, the negation of a formula is understood as the denial of616

the formula itself. This is indeed the case in the model-theoretic semantics617

of IPL — see Kripke [15]. Using the connection to logic programming in618

this paper, we see that in base-extension semantics, negation is defined by619

the failure for there to be a proof. Thus, denial is conceptionally prior to620

negation. In short, base-extension semantics consider the space of reduc-621

tions, which is larger than the space of proofs, including failed searches.622

As illustrated above, the connection between logic programming and base-623

extension semantics is quite intuitive and useful. More specifically, the T624

operator delivering the semantics of logic programming corresponds to the625

application of a rule in a proof system; hence, the Tω construction is fun-626

damental to proof-theoretic semantics. Since logic programming has been627

studied for various logics (see, for example, the treatment of BI in Gheo-628

rghiu et al. [7]), this suggests the possibility for uniform approaches to set-629

ting up base-extension semantics for logics by studying their proof-search630

behaviours. In particular, work by Harland [11, 12] on handling negation631

in logic programming may be used to address the difficulties posed by the632

connective — see Kürbis [16].633
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It remains to investigate further the connection between proof-theoretic634

semantics and reductive logic, in general, and base-extension semantics and635

logic programming, in particular.636
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