
Modular Tableaux Calculi for
Separation Theories

Simon Docherty1 and David Pym2

University College London1,2 and The Alan Turing Institute2,
London, UK

{simon.docherty.14,d.pym}@ucl.ac.uk

Abstract. In recent years the key principles behind Separation Logic
have been generalized to generate formalisms for a number of verifi-
cation tasks in program analysis via the formulation of ‘non-standard’
models utilizing notions of separation distinct from heap disjointness.
These models can typically be characterized by a separation theory, a
collection of first-order axioms in the signature of the model’s under-
lying ordered monoid. While all separation theories are interpreted by
models that instantiate a common mathematical structure, many are
undefinable in Separation Logic and determine different classes of valid
formulae, leading to incompleteness for existing proof systems. General-
izing systems utilized in the proof theory of bunched logics, we propose
a framework of tableaux calculi that are generically extendable by rules
that correspond to separation theories axiomatized by coherent formu-
las. This class covers all separation theories in the literature — both
classical and intuitionistic — as well as axioms for a number of related
formalisms appropriate for reasoning about complex systems, security,
and concurrency. Parametric soundness and completeness of the frame-
work is proved by a novel representation of tableaux systems as coherent
theories, suggesting a strategy for implementation and a tentative first
step towards a new logical framework for non-classical logics.

Keywords: Bunched logic; Coherent logic; Kripke semantics; Proof the-
ory; Separation Logic; Separation theories; Substructural logic; Tableaux

1 Introduction

Separation Logic [44], introduced by Ishtiaq & O’Hearn [36], Reynolds [50] and
Yang & O’Hearn [55], is a Hoare-style program logic suitable for reasoning about
programs that mutate data structures. In its original formulation, the assertion
language of Separation Logic is based on a model of O’Hearn & Pym’s logic
of bunched implications [45] formulated by considering heaps as possible worlds
with internal structure that allows their decomposition into separate pieces of
memory. This decomposition is witnessed in the logic by the separating conjunc-
tion ∗, with φ ∗ ψ informally read as ‘the heap can be split into separate parts;
one satisfying φ and the other satisfying ψ’.

2 Simon Docherty and David Pym

Calcagno, O’Hearn & Yang [14] abstract the details of the heap model to
a structure called a separation algebra, a partial-deterministic and cancellative
monoid model of the Boolean logic of bunched implications (BBI), which can be
used to generate bespoke separation logics suitable for program analysis tasks be-
yond that of the original formalism. Conflicting definitions of separation algebra
have since been given by adding/removing first-order properties or strengthen-
ing/weakening the monoid properties [11, 15, 23, 26]. These mutually exclusive
definitions can be encompassed in a framework of separation theories [11], col-
lections of first-order axioms (separation properties) common to separation logic
models which the definition of (B)BI model can be extended by. All separation
logics in the literature can be seen to be models of separation theories, while the
frameworks Views [23] and Iris [38] explicitly implement the idea of generating
program logics parametrically by separation theory.

Recent work has revealed an expressivity gap between the logic of bunched
implications and common separation theories in the literature, however. Broth-
erston & Villard [11] and Larchey-Wendling & Galmiche [41] have shown that
separation properties like indivisibility of units and partial deterministic compo-
sition determine distinct sets of valid BBI formulae, leading to the incompleteness
of standard proof systems with respect to typical classes of memory models. To
make matters worse, Brotherston & Villard additionally show that many separa-
tion properties (among them partial determinism) are undefinable in BBI, and
thus cannot be axiomatized by the logic. Similar arguments can be made for
BI [48], the intuitionistic logic of bunched implications. This is an increasingly
relevant issue given the growing number of intuitionistic separation logics, most
prominent amongst them Iris, a framework that utilizes a ‘later’ modality [42]
that can only be nontrivially defined in intuitionistic systems.

This expressivity gap is a significant problem for Separation Logic. A theorem
prover for deriving assertions satisfied by the underlying model is a necessary
component of any implementation of a separation logic, with the deployable
proof theory of the standard formalism crucial for its scalability to large code
bases [13, 55]. Standard implementations are model-specific, however, and only
suitable for the heap model. In order to account for the large numbers of bespoke
separation logics, as well as Views/Iris-style frameworks, we require tools that
support parametrization by separation theory.

Technical Approach. The present work generalizes methods pioneered on
tableaux systems for a range of logics including and related to BI and BBI [21,
22, 24, 29, 31, 39] to specify modular tableaux calculi for the breadth of classical
and intuitionistic separation theories in the literature, proved sound and com-
plete uniformly and parametrically in choice of separation theory. While previ-
ous systems implicitly implement a systematic method for constructing tableaux
proof theory for bunched logics, subtle but signficant changes must be made to
additionally capture separation theories. Past systems can be formulated as par-
ticular instances of our framework, thus making the systematic method explicit.

First, we specify tableaux proof systems for BI and BBI, the propositional
basis for Separation Logic. The key difference between our calculi and tableaux

Modular Tableaux Calculi for Separation Theories 3

systems previously given in the literature is that we do not outsource any part
of the derivation of proofs to an algebra of labels or auxilliary proof system for
constraints. Instead, we utilize frame expansion rules that are of the same form
as the standard logical expansion rules of the system. These rules capture the
same structural properties (and more) but can also be added/removed in a mod-
ular fashion. Crucially, this ensures separation properties — for example, partial
determinism — are not hard-coded into the basic systems via the structure of
labels, and facilitates the parametricity of our completeness theorem.

We extend these systems with a rule schema for separation properties ax-
iomatized by coherent formulae; a subset of first-order formulae with a special
syntactic form. This set contains every separation property that can be found
in the literature and is expressive enough to include virtually any axiom that
might be utilized in future. The strength of this statement can be justified by a
folklore result recently reconstructed by Dyckhoff & Negri [27] that shows that
every first-order axiom can be reconstructed as an equivalent system of coherent
formulae . We thus obtain a modular framework of (B)BI+Σ-tableaux systems,
where Σ is an arbitrary collection of coherent axioms.

In order to prove soundness and completeness of the system, we utilize a novel
representation of labelled tableaux systems as theories of coherent logic. The key
insight here is that the translation of coherent formulae into tableaux rules is
not one way: tableaux rules can naturally be seen as coherent formulae in a
signature augmented with special predicate symbols. The parametric soundness
and completeness of the framework can then be reduced to proving the soundness
and completeness of Tarskian truth for coherent logic with respect to a meta-
tableaux method, a problem positively resolved by Bezem & Coquand [4]. To
our knowledge, the application of this technique to labelled tableaux is new,
although, in the aforementioned work, Bezem & Coquand show how to encode
the tableaux method for first-order classical logic as a coherent theory, and trace
the idea of abbreviating formulae with predicate symbols to Skolem [52].

Contributions. We identify three principal contributions.

1. An exhaustive, sound and complete proof theory for the full breadth of sep-
aration theories in the literature. Notably, this includes intuitionistic sepa-
ration theories that have never been considered proof theoretically.

2. A new technique for constructing proof systems for essentially any logic
interpreted on Kripke structures that are axiomatized by coherent theories.

3. The identification of tableaux systems with theories of coherent logic.

On points 2 and 3, we believe many prefixed/labelled tableaux systems in the lit-
erature (e.g., [28]) are subsumed by this method, with their respective ‘Hintikka
set’ completeness proofs actually localized instances of the parametric complete-
ness theorem given here. This suggests coherent logic is a natural mathemat-
ical foundation for Kripke semantics and opens up the possibility of a logical
framework for non-classical logics via the representation of tableaux systems as
coherent theories. As Bezem & Coquand [4] mention, reasoning in coherent logic
is constructive and proof objects can easily be produced from derivations. We
discuss these possibilities in more detail in Section 6.

4 Simon Docherty and David Pym

Related Work. While much work has been done on the proof theory of
BI and BBI [9, 31, 34, 46], as well as proof systems for the concrete heap model
of Separation Logic [5, 30, 33], very little exists for separation theories. A key
exception to this is Hóu et al.’s [35] labelled sequent calculi for propositional
abstract separation logic. There, a labelled sequent calculus for BBI is extended
with rules corresponding to the most common separation properties – partial
determinism, cancellativity, indivisible unit and disjointness – and completeness
and cut elimination is proved. In Hóu’s PhD dissertation [32] the properties
cross-split and splittability are additionally handled, although completeness for
these new rules requires ‘non-trivial changes’ to the previous proofs.

The classes of model captured by our systems strictly extend those of Hóu
et al. — in particular, by additionally considering classes of BI models that
are appropriate for intuitionistic separation logics — and our calculi are proved
complete uniformly. Our systems are also generically extendable according to
a rule schema, meaning the framework should be suitable for new separation
theories devised in the future. A deficiency of our approach with respect to Hóu
et al’s is a lack of implementation, though we note that the representation of our
systems as theories of coherent logic suggests off-the-shelf coherent logic provers
could be used to give naive implementations of our framework.

Brotherston & Villard [11] deal with the undefinability of separation theories
by defining a conservative extension of BBI called HyBBI, extending the syntax
with nominals, satisfaction operators and binders. This extra expressivity leads
to the axiomatizability of the undefinable separation properties. This work is not
specifically concerned with proof theory, giving only a Hilbert-style system for
HyBBI, and has the defect of requiring modifications to the syntax of Separation
Logic. In addition, a significant theoretical reformulation would be required to
capture intuitionistic separation theories this way. In contrast, in our work the
necessary machinery is internalized within the proof system and both Boolean
and intuitionistic cases are taken care of uniformly.

Finally, we connect our work to a recent line of research in proof theory in-
vestigating the generation of proof rules from coherent theories. Simpson [51]
and Braüner [8] have used this technique to produce natural deduction rules,
while Negri [43] has extensively developed it to generate systems of labelled
sequent rules from frame conditions axiomatized by generalized coherent formu-
lae. To our knowledge the present work is the first application of these ideas to
the tableaux method. In addition, we believe the encoding of the proof systems
themselves as coherent theories is novel.

2 Preliminaries

The Logics of Bunched Implications. We first recall O’Hearn & Pym’s logics
of bunched implications BI and BBI [45], the propositional basis of Separation
Logic’s assertion language. BI and BBI are archetypal examples of bunched log-
ics; systems given by combining the standard additives of classical or intutionis-
tic propositional logic with the multiplicatives of a substructural logic. This idea

Modular Tableaux Calculi for Separation Theories 5

ξ ` φ η ` ψ
ξ ∗ η ` φ ∗ ψ

η ∗ φ ` ψ
η ` φ−∗ ψ

ξ ` φ−∗ ψ η ` φ
ξ ∗ η ` ψ

(φ ∗ ψ) ∗ ξ ` φ ∗ (ψ ∗ ξ) φ ∗ ψ ` ψ ∗ φ φ ∗ I a` φ

Fig. 1. Rules for the multiplicative fragment of (B)BI.

has been developed to give logics for reasoning about concurrency [25] and the
layering structure of complex systems [18, 19, 24], Hennessey-Milner-style pro-
cess logics for reasoning about security and systems modelling [1] and modal
and epistemic systems for reasoning about reachability/knowledge subject to
the availability of resources [22, 29].

Let Prop be a set of atomic propositions, ranged over by p. The set of all
formulae of (B)BI is generated by the following grammar:

φ ::= p | > | ⊥ | I | φ ∧ φ | φ ∨ φ | φ→ φ | φ ∗ φ | φ−∗ φ.

For BI, the standard connectives are interpreted intuitionistically; in BBI, clas-
sically. Negation is defined by ¬φ := φ→ ⊥. Figure 1 gives Hilbert rules for the
multiplicative fragment of the logics.

A BI frame is given by a tuple X = (X,≤, ◦, E), where (X,≤) is a partial
order, ◦ : X2 → P(X) a binary composition (where P(X) denotes the power
set of X) and E ⊆ X a unary relation. This structure must satisfy the following
axioms, where the outermost universal quantification is left implicit:

(Comm) z ∈ x ◦ y → z ∈ y ◦ x (Up) e ∈ E ∧ e ≤ e′ → e′ ∈ E
(Weak) ∃e ∈ E(x ∈ x ◦ e) (Contr) x ∈ y ◦ e ∧ e ∈ E → y ≤ x
(Assoc) t′ ≥ t ∈ x ◦ y ∧ w ∈ t′ ◦ z → ∃s, s′, w′(s′ ≥ s ∈ y ◦ z ∧ w ≥ w′ ∈ x ◦ s′).

The axioms formalize intuitive ideas about the composition of generic resources:
for example, that the composition satisfies a generalized associativity that is
compatible with the comparison order. This analysis is known as resource se-
mantics.

A sound interpretation of BI is given by extending the standard poset seman-
tics for propositional intuitionistic logic. This requires a persistent valuation: a
map V : Prop → P(X) such that x ∈ V(p) and x ≤ y entail y ∈ V(p). We call
a BI frame X together with a persistent valuation V a Kripke BI model. The
satisfaction relation �V is given in Fig 2. As standard for intuitionistic logics,
persistence extends to all formulae of BI. Kripke BBI models and their associ-
ated semantics are given by the special case of the definitions for BI when the
partial order ≤ is equality.

Coherent Logic. Coherent logic is the fragment of first-order logic consisting
of formulae of the form A1(⇀x)∧· · ·∧An(⇀x)→ ∃⇀y1B1(⇀x,⇀y1)∨· · ·∨∃⇀ymBm(⇀x,⇀ym),
for n,m ≥ 0, where each Ai is an atomic formula involving only variables from
the vector ⇀x, and each Bi is the conjunction of atomic formulae involving only
variables from the vectors ⇀x and ⇀yi . In a coherent formula, the variables ⇀x

6 Simon Docherty and David Pym

r � p iff r ∈ V(p) r � > r 6� ⊥
r � φ ∧ ψ iff r � φ and r � ψ r � φ ∨ ψ iff r � φ or r � ψ
r � φ→ ψ iff for all r′ ≥ r, r′ � φ implies r′ � ψ; r � I iff r ∈ E
r � φ ∗ ψ iff there exists r′, s, t such that r ≥ r′ ∈ s ◦ t, s � φ and t � ψ
r � φ−∗ ψ iff for all r′, s, t such that r ≤ r′, t ∈ r′ ◦ s, s � φ implies t � ψ

Fig. 2. Satisfaction for (B)BI. BBI is the case where ≤ is substituted with =.

are implicitly universally quantified (with scope the whole formula) and both
⇀x and ⇀yi may be empty. The case n = 0 is a consequent that is always true
— > → ∃⇀y1B1(⇀x,⇀y1) ∨ · · · ∨ ∃⇀ymBm(⇀x,⇀ym) — similarly, the case m = 0 is an
antecedent that is always false: A1(⇀x) ∧ · · · ∧ An(⇀x)→ ⊥. The case m = 1 with
empty ⇀y1 gives the Horn clause fragment of first-order logic utilized in logic
programming and first-order theorem provers based on the resolution method.

We call a set of coherent formulae Φ a coherent theory. Models of coherent
theories are given in a way standard for first-order logic: a Tarskian model of Φ is
a non-empty set X together with an interpretation I, which assigns to every n-
ary relation symbol R in the signature a set RI ⊆ Xn such that for each coherent
formulae in Φ, for all ⇀x ∈ X, the consequent ∃⇀y1 ∈ X(BI(⇀x,⇀y1)) ∨ · · · ∨ ∃⇀ym ∈
X(BI(⇀x,⇀ym)) is true whenever the antecedent AI1 (⇀x) ∧ · · · ∧AIn(⇀x) is true.

Many common mathematical structures are axiomatized by coherent theo-
ries. For example, algebraic structures like groups, rings, lattices and fields, as
well as total, partial, and linear orders. Further examples are found in the the-
ory of confluence for term rewriting systems [4, 53]. Of interest for our purposes,
(B)BI frames are axiomatized by coherent theories. As we will see, virtually
every separation property in the literature is given directly as a coherent axiom.

3 Modular Tableaux Calculi for Separation Theories

The Base Tableaux Systems. We begin with tableaux systems designed for
the semantics of (B)BI as outlined in Section 2. As is standard for tableaux
systems, derivations in our calculi are implicit attempts to construct a counter-
model for the formula φ to be proved. This is done via the derivation of syntactic
expressions that give partial specifications of a (B)BI model that can be realized
as a real model if the formula is invalid. If every possible countermodel construc-
tion (i.e., every branch of a tableau) results in a contradiction, then we may
conclude that no countermodel exists and call such a tableau a proof of φ.

A labelled formula Sφ : x is given by a sign S ∈ {T,F} together with a
(B)BI formula φ and a label x ∈ {ci | i ∈ N}. A labelled formula states that a
(B)BI formula φ is true (T) or false (F) at the state represented by the label x.
A constraint is a syntactic expression of the form x ∼ y, R∗xyz or Ex, where
x, y, z ∈ {ci | i ∈ N}. Constraints are partial specifications of the structure of
a (B)BI frame corresponding to a partial order ≤, composition ◦, or unit set E
respectively. Unlike other bunched logic tableaux systems, we only utilize atomic

Modular Tableaux Calculi for Separation Theories 7

Logical expansion rules

〈T∧〉
Tφ ∧ ψ : x ∈ F

〈{Tφ : x,Tψ : x}, ∅〉
〈F∧〉

Fφ ∧ ψ : x ∈ F
〈{Fφ : x}, ∅〉 | 〈{Fψ : x}, ∅〉

〈T∨〉
Tφ ∨ ψ : x ∈ F

〈{Tφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉
〈F∨〉

Fφ ∨ ψ : x ∈ F
〈{Fφ : x,Fψ : x}, ∅〉

〈TI〉 TI : x ∈ F
〈∅, {Ex}〉

Frame expansion rules

〈Ref〉
Expr(x) ∈ C ∪ F
〈∅, {x∼ x}〉

〈Trans〉
x∼ y, y ∼ z ∈ C
〈∅, {x∼ z}〉

〈Cong〉
x∼ y, y ∼ x,Expr(x) ∈ C
〈∅, {Expr(y/x)}〉

〈Com〉
R∗xyz ∈ C
〈∅, {R∗yxz}〉

〈Weak〉
Expr(x) ∈ F ∪ C
〈∅, {Eci, R∗xcix}〉

〈Contr〉
R∗xyz,Ey ∈ C
〈∅, {x ∼ z}〉

with ci a fresh label, Expr(x) any expression in which x occurs.

Fig. 3. Shared rules for the tableaux systems.

labels, as opposed to a monoidal algebra of labels that encodes properties of the
multiplicative connectives. New constraints are derived only by frame expansion
rules, rather than by using the properties of the algebra of labels and a separate
proof system for constraints. A constrained set of statements (CSS) is a pair
〈F , C〉, where F is a set of labelled formulae and C is a set of constraints. It is
finite if F and C are.

Informally, tableaux are trees annotated with finite CSSs. Each branch de-
termines a CSS 〈F , C〉 where F (respectively C) is the union of the formula
(constraint) sets that occur on the branch. Figures 3 and 4 give rules dictating
the expansion of tableaux: Figure 3 gives rules shared by both the BI and BBI
systems, while Figure 4 gives rules specific to each system. While ci, cj , ck de-
note concrete fresh labels, x, y, z etc. are label variables. An instance of a rule is
triggered for a branch CSS when a concrete substitution instance of the premiss
holds of it, and the same label substitutions carry through to the (branching)
CSS(s) that the conclusion dictates are added to the tree. We now define (B)BI
tableaux formally, with ⊕ giving concatenation of lists.

Definition 1 (Tableau). A (B)BI tableau for a finite CSS 〈F0, C0〉 is a list of
CSSs, called branches, built inductively according to the following rules:

1. The one branch list [〈F0, C0〉] is a tableau for 〈F0, C0〉;
2. If the list Tm ⊕ [〈F , C〉]⊕ Tn is a tableau for 〈F0, C0〉 and

Premiss
〈F1, C1〉 | . . . | 〈Fk, Ck〉

is a (B)BI expansion rule from Figures 3 or 4 for which a concrete instance
of Premiss is fulfilled by 〈F , C〉, then the list Tm⊕ [〈F ∪F1, C∪C1〉; . . . ; 〈F ∪
Fk, C ∪ Ck〉]⊕ Tn is a tableau for 〈F0, C0〉.

8 Simon Docherty and David Pym

Logical expansion rules for BI

〈T→〉
Tφ→ ψ : x ∈ F and x∼ y ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : y}, ∅〉

〈F→〉
Fφ→ ψ : x ∈ F

〈{Tφ : ci,Fψ : ci}, {x∼ ci}〉

〈T∗〉
Tφ ∗ ψ : x ∈ F

〈{Tφ : ci,Tψ : cj}, {R∗cicjck, ck ∼ x}〉
〈F∗〉

Fφ ∗ ψ : x ∈ F and R∗yzw,w ∼ x ∈ C
〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

〈T−∗〉
Tφ−∗ ψ : x ∈ F and x∼ w,R∗wyz ∈ C

〈{Fφ : y}, ∅〉 | 〈{Tψ : z}, ∅〉
〈F−∗〉

Fφ−∗ ψ : x ∈ F
〈{Tφ : cj ,Fψ : ck}, {x∼ ci, R∗cicjck}〉

Frame expansion rules for BI

〈Assoc〉 t∼ t′, R∗xyt,R∗t′zw ∈ C
〈∅, {ci ∼ cj , ck ∼ w,R∗yzci, R∗xcjck}〉

〈Up〉
Ex, x∼ y ∈ C
〈∅, {Ey}〉

Logical expansion rules for BBI

〈T¬〉
T¬φ : x ∈ F
〈{Fφ : x}, ∅〉

〈F¬〉
F¬φ : x ∈ F
〈{Tφ : x}, ∅〉

〈T→〉
Tφ→ ψ : x ∈ F

〈{Fφ : x}, ∅〉 | 〈{Tψ : x}, ∅〉
〈F→〉

Fφ→ ψ : x ∈ F
〈{Tφ : x,Fψ : x}, ∅〉

〈T∗〉
Tφ ∗ ψ : x ∈ F

〈{Tφ : ci,Tψ : cj}, {R∗cicjx}〉
〈F∗〉

Fφ ∗ ψ : x ∈ F and R∗yzx ∈ C
〈{Fφ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

〈T−∗〉
Tφ−∗ ψ : x ∈ F and R∗xyz ∈ C
〈{Fφ : y}, ∅〉 | 〈{Tψ : z}, ∅〉

〈F−∗〉
Fφ−∗ ψ : x ∈ F

〈{Tφ : ci,Fψ : cj}, {R∗xcicj}〉

Frame expansion rules for BBI

〈Assoc〉
R∗xyt,R∗tzw ∈ C
〈∅, {R∗yzci, R∗xciw}〉

〈Sym〉
x∼ y ∈ C
〈∅, {y ∼ x}〉

with ci, cj , ck fresh labels, Expr(x) any expression in which x occurs.

Fig. 4. Tableaux rules for (B)BI

A (B)BI tableau for φ is a (B)BI tableau for 〈{Fφ : c0}, ∅〉. ut

Definition 2 (Closed tableau/proof). A CSS 〈F , C〉 is closed if one of the
following closure conditions holds: (1) Tφ : x ∈ F , Fφ : y ∈ F and x ∼ y ∈ C;
(2) F> : x ∈ F ; (3) T⊥ : x ∈ F ; (4) FI : x ∈ F and Ex ∈ C. A CSS is open iff
it is not closed. A tableau is closed iff all its branches are closed. A proof for a
formula φ is a closed tableau for φ. ut

We note that we could simply add 〈T¬〉, 〈F¬〉, and 〈Sym〉 to the BI system
and obtain one for BBI. However, this causes a significant amount of redundancy
in the production of labels and constraints while requiring many more derivation
steps in proofs, something that does not arise with the BBI rules given.

Extension with Coherent Axioms. Figure 5 gives a number of separation
properties taken from across the Separation Logic literature [11, 14, 15, 26]. A
separation theory is a collection Σ of axioms from Figure 5. All of the separation
properties given are axiomatized as coherent formulae and we now show how to
translate them into tableaux expansion rules and closure conditions. First, each

Modular Tableaux Calculi for Separation Theories 9

Partial Determinism z ∈ x ◦ y ∧ z′ ∈ x ◦ y → z = z′

Total ∃z(z ∈ x ◦ y)

Cancellativity z ∈ x ◦ y ∧ z ∈ x ◦ y′ → y = y′

Single Unit x ∈ E ∧ x′ ∈ E → x = x′

Indivisible Units x ∈ y ◦ z ∧ x ∈ E → y ∈ E
Disjointness x ∈ y ◦ y → y ∈ E
Splittability x ∈ E ∧ x ∈ E → ⊥, x ∈ E ∨ x ∈ E, x ∈ E → ∃y, z(y ∈ E ∧ z ∈ E ∧ x ∈ y ◦ z)
Cross-Split x ∈ t ◦ u ∧ x ∈ v ◦ w → ∃a, b, c, d(t ∈ a ◦ b ∧ u ∈ c ◦ d ∧ v ∈ a ◦ c ∧ w ∈ b ◦ d)

Upwards-Closed z ∈ x ◦ y ∧ z ≤ z′ → ∃x′, y′(z′ ∈ x′ ◦ y′ ∧ x ≤ x′ ∧ y ≤ y′)
Downwards-Closed z ∈ x ◦ y ∧ x′ ≤ x ∧ y′ ≤ y → ∃z′(z′ ∈ x′ ◦ y′ ∧ z′ ≤ z)
Non-Branching x ≤ y ∧ x ≤ y′ → y ≤ y′ ∨ y′ ≤ y
Always-Joins x ≤ y ∧ x ≤ y′ → ∃z(y ≤ z ∧ y′ ≤ z)
Increasing z ∈ x ◦ y → y ≤ z
Unit Self Joining Ex→ x ∈ x ◦ x
Normal Increasing z ∈ x ◦ y ∧ Ez → x ≤ z

Fig. 5. Separation properties.

first-order atomic formula is translated into constraints: Tr(z ∈ x ◦ y) = R∗xyz,
Tr(x ∈ E) = Ex, Tr(x ≤ y) = x ∼ y and Tr(x = x′) = x ∼ x′, x′ ∼ x. Given
A1(⇀x) ∧ · · · ∧ An(⇀x) → ∃⇀y1B1(⇀x,⇀y1) ∨ · · · ∨ ∃⇀ymBm(⇀x,⇀ym) with n,m 6= 0, we
obtain the frame expansion rule

Tr(A1(⇀x)), . . . , T r(An(⇀x)) ∈ C
〈∅, C1〉 | . . . | 〈∅, Cm〉

,

where each Ci is the set of constraints translated from the conjuncts of Bi, using
fresh labels ⇀ci in place of the previously quantified ⇀yi. For example, the separation
properties Cross-Split and Non-Branching are translated to the rules

R∗tux,R∗vwx ∈ C
〈∅, {R∗cicjt, R∗ckclu,R∗cickv,R∗cjclw}〉

and
x∼ y, x∼ y′ ∈ C

〈∅, {y ∼ y′}〉 | 〈∅, {y′ ∼ y}〉
,

where ci, cj , ck, cl are fresh labels. The special case n = 0 gives a rule with premiss
Expr1(x1), . . . , Exprp(xp) ∈ F ∪ C, where each Expri(xi) is any expression
in which xi occurs and the xi are the universally quantified variables in the
original formula. The case m = 0 gives a new closure condition consisting of the
conjunction of constraints translated from the antecedent of the original formula.

Note that the property Splittability is defined by a system of coherent axioms.
This axiomatization additionally requires a new type of constraint to be added
to the tableaux system for their translated rules: E, for the complement of E.

Given a separation theory Σ, a (B)BI + Σ-tableau/proof is defined in the
same way as Definitions 1 and 2, except that a tableau can also be expanded by
translated Σ-rules, and any new closure properties obtained from Σ can factor
into the closure of a tableau and thus into proofs.

We give an example of a tableau proof in Figure 6. The formula (¬I−∗⊥)→ I
is valid in BBI models satisfying Total, but not in all BBI models [40, 48], and
Figure 6 — written, for clarity, using the traditional representation of tableaux

10 Simon Docherty and David Pym

(1)
(2)
(3)

(4)
(5)
(6)

〈{F(¬I−∗ ⊥)→ I : c0}, ∅〉
〈{T¬I−∗ ⊥ : c0, FI : c0},∅〉

〈∅, {R∗c0c0c1}〉

〈{F¬I : c0}, ∅〉
〈{TI : c0}, ∅〉
〈∅, {c0 ∼ c0}〉

⊗

〈{T⊥ : c1}, ∅〉
⊗

Premiss
〈F→〉, from (1)
Total, from (1)

〈T−∗〉, from (2), (3)
〈F¬〉, from (4)
〈Ref〉, from (5)

Fig. 6. Tableau proof of (¬I−∗ ⊥)→ I in the BBI + Total system.

and using ⊗ to denote closed branches — shows that the tableaux system for
BBI + Total proves it. The left-hand branch is closed because both FI : c0,
TI : c0 and c0 ∼ c0 occur, while the right is closed because T⊥ : c1 occurs.

4 Applications to Separation Logics

The construction principles guiding the wide variety of separation logics in the
literature are described in Jensen [37]: a separation logic is determined by a
programming language, an assertion logic to describe machine state — a first-
order theory of (B)BI generated by validity in a concrete model of (B)BI + Σ for
some separation theory Σ — and a specification logic to describe computations
— typically a logic of Hoare triples {φ}C{ψ}, where φ and ψ are formulas of the
assertion language and C a program. Soundness of the frame rule,

{φ }C {ψ }
{φ ∗ χ }C {ψ ∗ χ }

,

where χ does not include any free variables modified by the program C, witnesses
the coherence of these different aspects, and facilitates Separation Logic’s char-
acteristic ‘local reasoning’, which allows conclusions about a program’s effect on
the global state to be derived from reasoning on just the resource it accesses.

To demonstrate the wide applicability of our framework we now give a num-
ber of separation logic models satisfying separation theories captured by our
tableaux systems. Because of space constraints this selection is demonstrative
rather than exhaustive. Other examples include Petri nets [14]; step-indexed
models for storable locks [12] and the Iris framework [38]; separation logics
incorporating named [47] and fractional [7] permissions; and separation logics
designed for message passing [54] and amortized resource analysis [3].

Heaps. Our first example is given by the standard memory models of Sep-
aration Logic [36]. A heap is a partial function h : N → Z, representing an
allocation of memory addresses to values. Given heaps h, h′, h#h′ denotes that
dom(h)∩dom(h′) = ∅; h·h′ denotes the union of functions with disjoint domains,
which is defined iff h#h′. The empty heap, [], is defined nowhere.

Let H denote the set of all heaps. Then HeapBBI = (H, ·, {[]}) is a BBI
frame. Letting h v h′ denote that h′ extends h, HeapBI = (H,v, ·, H) defines a

Modular Tableaux Calculi for Separation Theories 11

(1)
(2)
(3)
(4)
(5)

〈{Fφ ∗ ψ → ψ : c0}, ∅〉
〈{Tφ ∗ ψ : c1, Fψ : c1},{c0 ∼ c1}〉

〈{Tφ : c3, Tψ : c4}, {R∗c3c4c2, c2 ∼ c1}〉
〈∅, {c4 ∼ c2}〉
〈∅, {c4 ∼ c1}〉

⊗

Premiss
〈F→〉, from (1)
〈T∗〉, from (2)
Increasing, from (3)
〈Trans〉, from (2), (3)

Fig. 7. Tableau proof of φ ∗ ψ → ψ in the BI + Increasing system.

BI frame. These frames generate the standard classical and intuitionistic mod-
els of Separation Logic. HeapBBI satisfies Partial Determinism, Cancellativity,
Single Unit, Indivisible Units, Cross-Split and Unit Self Joining; HeapBI addi-
tionally satisfies Splittability, Upwards-Closed, Downwards-Closed, Increasing
and Normal Increasing while dropping Single Unit and Unit Self Joining.

One of the key properties distinguishing the standard memory models is that
weakening for ∗ (i.e., φ∗ψ → ψ) is valid in the intuitionistic heap model but not
the classical. Cao et al. [15] show that this corresponds to the separation property
Increasing. Figure 7 — again, written using the traditional representation of
tableaux — shows a single branch tableaux proof of φ∗ψ → ψ for BI+Increasing,
closed because Tψ : c4, Fψ : c1 and c4 ∼ c1 occur.

Permissions. Permissions are incorporated into variants of separation log-
ics that are designed to reason about certain kinds of concurrent algorithms
and more fine-grained notions of memory disjointness: for example, disjointness
modulo shared read permission. Hóu [32] reports a schema of Clouston that
encompasses many such models: we recall it, with two concrete instances.

Let V be a set of values and ? : V 2 → V an associative and commutative
partial function. Denote by HV the set of V-valued heaps h : N → V . Then
HeapV = (HV , ◦?, {[]}) is a BBI frame, where ◦? is defined by

h1 ◦? h2(n) =


h1(n) ? h2(n) if n ∈ dom(h1) ∩ dom(h2) and h1(n) ? h2(n) ↓
h1(n) if n ∈ dom(h1) \ dom(h2)

h2(n) if n ∈ dom(h2) \ dom(h1)

undefined otherwise.

Hóu defines Bornat et al.’s [6] counting permissions model with V = Z2 and

(x, i) ? (y, j) =


(x, i+ j) if x = y, i < 0 and j < 0

(x, i+ j) if x = y, i+ j ≥ 0 and (i < 0 or j < 0)

undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Indivisible Units, Single
Unit, Cross-Split and Unit Self Joining.

Hóu defines Dockins et al.’s [26] binary tree model by considering the set T
of non-empty binary trees with leaves labelled > or ⊥ that are quotiented by the
smallest congruence that identifies any subtree in which all leaves have the same

12 Simon Docherty and David Pym

label with a single leaf carrying that label. Then V = Z × T , and ? is defined,
where ∨ (∧) denotes pointwise disjunction (conjunction) of equivalent trees, by

(x, [t]) ? (y, [t′]) =

{
(x, [t ∨ t′]) if x = y and [t ∧ t′] = [⊥]

undefined otherwise.

This frame satisfies Partial Determinism, Cancellativity, Single Unit, Indivisible
Units, Disjointness, Splittability, Cross-Split and Unit Self Joining.

Crash Hoare Logic. Chen et al. [17] use a separation logic to verify that the
FSCQ file system meets its specification and secures its data under any sequence
of crashes. Cao et. al. [15] give the underlying model as the following BI frame.
Let V + be the set of non-empty lists over a set V and ε the empty list. Buffer
heaps are defined to be heaps h : N → V +. Let Hbuff be the set of all buffer
heaps. Then Heapbuff = (Hbuff ,≤, ·, {[]}) is a BI frame, where · is the usual heap
composition, and h1 ≤ h2 iff dom(h1) = dom(h2) and ∀x ∈ N, ∃l ∈ V +∪{ε} such
that h1(x) = l⊕h2(x). This frame satisfies Partial Determinism, Cancellativity,
Single Unit, Indivisible Units, Cross-Split, Upwards-Closed, Downwards-Closed,
Always-Joins, Non-Branching, Unit Self Joining, and Normal Increasing.

Typed Heaps. Cao et al. [15] give an example derived from the handling
of multibyte locks in Appel’s [2] Verified System Toolchain separation logic for
CompCert C. Let a typed heap be a partial map h : N → {char, short1, short2}
such that h(n) = short1 implies h(n+ 1) = short2. Let Htyp denote the set of all
typed heaps. Then HeapTyp = (Htyp,≤, ◦, Htyp) is a BI frame, where h1 ≤ h2

iff, for all n ∈ dom(h1) either n ∈ dom(h2) and h1(n) = h2(n) or h1(n) = char,
and h ∈ h1 ◦h2 iff h1 ·h2 ≤ h. This frame satisfies Indivisible Units, Disjointness,
Splittability, Cross-Split, Upwards-Closed, Downwards-Closed, Non-Branching,
Increasing, and Normal Increasing.

5 Metatheory

Tableaux Systems as Coherent Theories. Just as coherent formulae yield
tableaux rules, tableaux rules yield coherent formulae, allowing a complete spec-
ification of our calculi as coherent theories. Our framework determines a first-
order signature: for each formula φ of (B)BI, we have unary relation symbols Tφ
and Fφ, together with the unary relation symbol E, the binary relation symbol
∼ and the ternary relation symbol R∗.

Given a rule premiss ‘Sφ : x ∈ F and A1x
1
1 . . . x

1
k1
, . . . , Amx

m
1 . . . xmkm ∈ C’ we

obtain the coherent antecedent C(⇀x) ≡ Sφ(x) ∧
∧
iAix

i
1 . . . x

i
ki

. For the j − th
conclusion 〈Fj , Cj〉 of the rule we obtain ∃⇀yjCj(⇀x,⇀yj), where Cj is the conjunction
of atomic formulae translated from the constraints in Fj ∪ Cj , with any fresh
labels ⇀c that occurred substituted with ⇀yj . The translated rule is thus C(⇀x) →
∃⇀y1C1(⇀x,⇀y1)∨ · · · ∨∃⇀ynCn(⇀x,⇀yn). For example, the instance of the BI rule 〈F−∗〉
for φ−∗ψ becomes Fφ−∗ψ(x)→ ∃y1, y2, y3(Tφ(y2)∧Fψ(y3)∧x∼y1∧R∗y1y2y3).

There are some special cases to pay attention to. For tableaux rules with
premiss Expr(x) ∈ F ∪ C the antecedent of the translated coherent formula

Modular Tableaux Calculi for Separation Theories 13

is >. This is not the case for rules with premiss Expr(x) ∈ C: these must be
translated into a separate rule for each of the finitely many ways x can occur
in each constraint. Finally, each closure condition ‘S1φ1 : x1, . . . ,Snφn : xn,
A1y

1
1 . . . y

1
k1
, . . ., and Amy

m
1 . . . ymkm ’ gives

∧
i Siφi(xi) ∧

∧
iAiy

i
1 . . . y

i
ki
→ ⊥.

Given a (B)BI formula φ, the finite coherent theory Φ
(B)BI+Σ
φ is given by the

translated (B)BI + Σ-frame expansion rules, the translated closure conditions
and the instances of translated logical expansion rules for subformulae of φ. We
note that we could specify the whole tableaux system for (B)BI + Σ as an infinite
coherent theory (similar to the axiomatization of a Hintikka set in standard
tableaux completeness proofs), but finiteness is required for our argument.

Soundness and Completeness. We now prove soundness and completeness
of the tableaux method via an analogous result for the Tarskian semantics of
coherent logic. First, we show that the existence of a Kripke (B)BI +Σ-model
with a state that doesn’t satisfy φ is equivalent to the existence of a Tarskian

model of Φ
(B)BI+Σ
φ ∪ {∃x.Fφ(x)}.

Definition 3 (Induced Kripke Model of M). Given a Tarskian model M
of Φ

(B)BI+Σ
φ , define [a] = {b | a ∼I b, b ∼I a} and XM = {[a] | a ∈ X}.

Then [a] ≤M [b] iff a ∼I b, [c] ∈ [a] ◦M [b] iff RI∗abc, and EM = {[a] | EIa}.
VM(p) = {[a] | ∃b(b∼I a and TpI(b))}.

1. If M is a model of ΦBI+Σφ , the induced Kripke frame is given by XM =
(XM,≤M, ◦M, EM); the induced Kripke model is given by (XM,VM).

2. If M is a model of ΦBBI+Σφ , the induced Kripke frame is given by XM =
(XM, ◦M, EM); the induced Kripke model is given by (XM,VM).

The induced Kripke frame is a well-defined structure because of the frame
tableaux rules, with [−] forming equivalence classes and ≤M, ◦M, and EM
independent from the choice of representatives due to 〈Cong〉. The (B)BI +Σ-
frame properties for the induced frame follow from their correspondent rules in
the tableaux and the valuation VM is independent of choice of representative
and persistent for induced Kripke BI +Σ-models.

Lemma 1. Given a Tarskian model M of Φ
(B)BI+Σ
φ , the induced Kripke model

XM is a Kripke (B)BI +Σ-model. ut

The significance of this model is that satisfiability of subformulae ψ of φ
is determined by the interpretation of the relation symbols Sψ in the original
Tarskian model. A simple proof by induction yields the next lemma.

Lemma 2. Let M be a Tarskian model of the coherent theory Φ
(B)BI+Σ
φ , ψ a

subformula of φ and a ∈ X. 1. If TψI(a) holds in M, then [a] �VM ψ; 2. If
FψI(a) holds in M, then [a] 6�VM ψ. ut

We can also induce Tarskian models from Kripke models. Let (X ,V) be a
Kripke (B)BI + Σ-model. We define the induced Tarskian model by taking X
to be the carrier, and defining the interpretation I by ∼I = ≤, RI∗ = {(a, b, c) |
c ∈ a ◦ b}, EI = E, TψI = {x | x �V ψ} and FψI = {x | x 6�V ψ}.

14 Simon Docherty and David Pym

Lemma 3. Every Kripke (B)BI+Σ-model (X ,V) with a state x (not) satisfy-

ing φ induces a model of Φ
(B)BI+Σ
φ ∪{∃x.Tφ(x)} (Φ

(B)BI+Σ
φ ∪{∃x.Fφ(x)}). ut

We now connect the existence of a closed tableaux to Bezem & Coquand’s [4]
breadth-first forward reasoning proof system for coherent logic. In their system,
judgments of the form X
Φ D are derived, where X is a set of atomic first-order
sentences, Φ a finite coherent theory and D a closed coherent disjunction; a first-
order sentence with the same syntactic shape as the consequent of a coherent
formula. The derivation of the judgment X
Φ D is defined inductively:

1. (Base)X
Φ D holds if for one of the disjuncts ∃⇀y.C ofD, there are constants
⇀a such that all conjuncts of C[⇀y := ⇀a] occur in X;

2. (Inductive Step) Consider all closed instances Ci → Di of Φ-axioms such
that the conjuncts of Ci occur in X but the conjuncts of no disjunct Ci,j
of Di do. There exist finitely many, with their consequents thus enumerated
D0, . . . , Dn. Let ∃⇀yi,j .Ci,j denote the j-th of the mi disjuncts of Di, and
denote by Ci,j the substitution of ⇀yi,j with fresh constants. Infer X
Φ D
from ∀j0 ∈ {1, . . . ,m0}, . . . ,∀jn ∈ {1, . . . ,mn}(X,C0,j0 , . . . , Cn,jn
Φ D).
Importantly, if a Di is ⊥, then mi = 0, and X
Φ D is trivially inferred.

A derivation can be seen as a kind of tableau, branching at each stage by
adding every possible consequence of Φ obtainable from the atomic first-order
sentences at the current node. A semi-decidable procedure is given to systemat-
ically search for a derivation of X
Φ D. First check the base case. If it doesn’t
hold, apply the inductive step to any Φ-axioms fireable from X. If there are
none, X forms an Herbrand countermodel of Φ against D. If the inductive step
can be applied, apply the search procedure recursively to all premisses. Bezem
& Coquand show that successful termination corresponds to Tarskian truth.

Theorem 1 ([4]). X
Φ D is derivable iff the search procedure successfully
terminates for X
Φ D iff D is true in all Tarskian models of X,Φ.

It is straightforward that the search procedure for {Fφ(a)}
Φ
(B)BI+Σ
φ ⊥

corresponds precisely to an exhaustive search for a closed tableau for φ.

Lemma 4. There exists a closed (B)BI + Σ-tableaux for φ iff the search pro-

cedure for {Fφ(a)}
Φ
(B)BI+Σ
φ ⊥ successfully terminates. ut

Hence if a closed (B)BI + Σ-tableaux does not exist for φ, there exists a

Tarskian modelM of Φ
(B)BI+Σ
φ ∪{∃x.Fφ(x)}. By Lemma 2, the induced Kripke

model XM has a state [a] such that [a] 6�VM φ, establishing that φ fails to be
valid for Kripke (B)BI +Σ-models. Conversely, if a closed tableaux does exist,

then there is no Tarskian model ofM of Φ
(B)BI+Σ
φ ∪ {∃x.Fφ(x)}. By Lemma 3,

φ is valid in Kripke (B)BI + Σ-models, as otherwise any countermodel would

generate a Tarskian model M of Φ
(B)BI+Σ
φ ∪ {∃x.Fφ(x)}, a contradiction.

Theorem 2 (Soundness & Completeness for (B)BI+Σ-Tableaux). φ is
valid in Kripke (B)BI+Σ-models iff φ is provable in the (B)BI+Σ-tableaux
system. ut

Modular Tableaux Calculi for Separation Theories 15

6 Conclusions and Further Work

We have given a framework of tableaux systems that exhaustively captures the
breadth of separation theories in the literature. Our framework is proven sound
and complete parametrically by a novel representation of tableaux systems as
coherent theories that allows us to apply existing theory from coherent logic.
This resolves the expressivity gap between the logics of bunched implications
and the separation logics defined upon them, and provides proof theory for the
assertion languages of a wide array of program logics.

The completeness of tableaux systems is usually proved by defining a notion
of a Hintikka set : a saturated set of (labelled) formulae (and possibly constraints)
that can be transformed into a term model of the logic. It is then shown that
the uncloseability of a tableau generates a Hintikka set that can be used as a
countermodel, thus entailing invalidity of any formula without a tableau proof.
Our method can be seen as a generalization of this idea, implemented para-
metrically by choice of tableaux system. While we have focused on Separation
Logic, this technique is adaptable to virtually any logic interpreted on relational
structures, including the breadth of bunched and modal logics. That this can
all be performed in the setting of coherent logic suggests the significance of the
fragment extends beyond the generation of proof rules for frame conditions. We
aim to investigate the possibility of using coherent logic as a logical framework
for non-classical logics more generally in work to be presented.

The implementation of our systems is of principal importance for future
work. Our tableaux representation suggests existing coherent logic provers (see
[49] for a survey) may already be suitable, though tactics designed specifically
for tableaux coherent theories may have to be developed to make this efficient.
A closely related goal is the development of Separation Logic implementations
that utilize our systems as assertion language provers; if such an implementation
could be done parametrically it would be very powerful indeed. Finally, our
results suggest interesting theoretical work. Coherent logic has close connections
to topos theory, and Caramello [16] has developed techniques to transfer results
between mathematical fields via bridges between the classifying topoi of coherent
theories. We wish to investigate if any results of logical interest can be found by
utilizing the representation of tableaux as coherent theories.

References

1. G. Anderson and D. Pym. A Calculus and Logic of Bunched Resources and Pro-
cesses. Theoret. Comput. Sci., 614:63–96, 2016.

2. A. W. Appel. Program Logics for Certified Compilers. CUP, 2014.
3. R. Atkey. Amortised Resource Analysis with Separation Logic. Log. Meth. Comput.

Sci., 2(17):1–33, 2011.
4. M. Bezem and T. Coquand. Automating Coherent Logic. In Proc. LPAR 2005,

LNCS 3836:246–260, 2005.
5. J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic as-

sertion checking with separation logic. In Proc. FMCO 2005, LNCS 4111:115–137,
2005.

16 Simon Docherty and David Pym

6. R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission Accounting in
Separation Logic. In Proc. POPL 2005, ACM, 259–270, 2005.

7. J. Boyland. Checking interference with fractional permissions. In Proc. SAS 2003,
LNCS 2694:55–72, 2003.

8. T. Braüner. Hybrid Logic and its Proof-Theory. Applied Logic Series 37, Springer
Netherlands, 2011.

9. J. Brotherston. Bunched Logics Displayed. Studia Logica 100(6):1223–1254, 2012.
10. J. Brotherston and M. Kanovich. Undecidability of Propositional Separation Logic

and Its Neighbours. J. ACM, 61(2):https:doi.org/10.1145/2542667, 2014.
11. J. Brotherston and J. Villard. Parametric Completeness for Separation Theories.

In Proc. POPL 2014, ACM, 453–464, 2014.
12. A. Buisse, L. Birkedal, and K. Støvring. A Step-Indexed Kripke Model of Separa-

tion Logic for Storable Locks. In Proc. MFPS 2011, ENTCS 276:121–143, 2011.
13. C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Anal-

ysis by Means of Bi-abduction. J. ACM, 58(6), 2011.
14. C. Calcagno, P. O’Hearn, and H. Yang. Local Action and Abstract Separation

Logic. In Proc. LICS 2007, IEEE, 366–378, 2007.
15. Q. Cao, S. Cuellar, and A. Appel. Bringing Order to the Separation Logic Jungle

In Proc. APLAS 2017, LNCS, to appear.
16. O. Caramello. Theories, Sites, Toposes: Relating and studying mathematical theo-

ries through topos-theoretic ‘bridges’. OUP, 2017.
17. H, Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek and N. Zeldovich.

Using Crash Hoare Logic for Certifying the FSCQ File System. In Proc. SOSP
2015, ACM, 18–37, 2015.

18. M. Collinson, K. McDonald, and D. Pym. A Substructural Logic for Layered
Graphs. J. Logic Comput., 24(4):953–988, 2014.

19. M. Collinson, K. McDonald, and D. Pym. Layered Graph Logic as an Assertion
Language for Access Control Policy Models. J. Logic Comput., 27(1):41–80, 2017.

20. M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling.
Math. Struct. Comput. Sci. , 19:959–1027, 2009.

21. J.-R. Courtault and D. Galmiche. A Modal BI Logic for Dynamic Resource Prop-
erties. In Proc. LFCS 2013, Springer Berlin Heidelberg, 134–138, 2013.

22. J.-R. Courtault, D. Galmiche, and D. Pym. A Logic of Separating Modalities.
Theoret. Comput. Sci., 637:30–58, 2016.

23. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, H. Yang.Views: composi-
tional reasoning forconcurrent programs. In Proc. POPL 2013, ACM,287–300, 2013.

24. S. Docherty and D. Pym. Intuitionistic Layered Graph Logic. In Proc. IJCAR
2016, LNAI 9706:469–486, 2016.

25. S. Docherty and D. Pym. Stone-Type Dualities for Separation Logics. Submitted.
26. R. Dockins, A. Hobor, and A.W. Appel. A Fresh Look at Separation Algebras and

Share Accounting. In Proc. APLAS 2009, LNCS 5904:161–177, 2009.
27. R. Dyckhoff and S. Negri. Geometrisation of First-Order Logic. Bull. Symb. Log.,

21(2):123–163, 2015.
28. M. Fitting. Tableau Methods of Proof for Modal Logics. Notre Dame J. Form.

Log., 13(2):237–247, 1972.
29. D. Galmiche, P. Kimmel, and D. Pym. A Substructural Epistemic Resource Logic.

In Proc. ICLA 2017, LNCS 10119:106–122, 2017.
30. D. Galmiche and D. Méry. Tableaux and resource graphs for separation logic. J.

Logic Comput., 20(1):189–231, 2007.
31. D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux.

Math. Struct. Comput. Sci., 15:1033–1088, 2005.

Modular Tableaux Calculi for Separation Theories 17

32. Z. Hóu. Labelled Sequent Calculi and Automated Reasoning for Assertions in
Separation Logic. PhD thesis, The Australian National University, 2015.

33. Z. Hóu, A. Tiu, and R. Goré. Automated Theorem Proving for Assertions in
Separation Logic with All Connectives. In Proc. CADE 25, LNCS, 501–516, 2015.

34. Z. Hóu, A. Tiu, and R. Goré. A Labelled Sequent Calculus for BBI: Proof Theory
and Proof Search. In Proc. TABLEAUX 2013, LNCS 8123:172–187, 2013.

35. Z. Hóu, R. Clouston, A. Tiu, and R. Goré. Proof Search for Propositional Abstract
Separation Logics via Labelled Sequents In Proc. POPL 2014, ACM, 465–476, 2014.

36. S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable Data Struc-
tures. In Proc. POPL 2001, ACM, 14–26, 2001.

37. J. Jensen. Enabling Concise and Modular Specifications in Separation Logic. PhD
dissertation, IT University of Copenhagen, 2014.

38. R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D. Dreyer. Iris
from the ground up: A modular foundation for higher-order concurrent separation
logic. under consideration for publication in J. Functional Programming, 2017.

39. D. Larchey-Wendling. The Formal Strong Completeness of Partial Monoidal
Boolean BI. J. Log. Comput., 26(2):605–640, 2016.

40. D. Larchey-Wendling and D. Galmiche. The Undecidability of Boolean BI Through
Phase Semantics. In Proc. LICS 2010, IEEE Computer Soc. Press, 140–149, 2010.

41. D. Larchey-Wendling and D. Galmiche. Looking at Separation Algebras with
Boolean BI-eyes. In Proc. TCS 2014, LNCS 8705:326–340, 2014.

42. H. Nakano. A Modality for Recursion. In Proc. LICS 2000, IEEE Computer Soc.
Press, 255–266, 2000.

43. S. Negri. Proof analysis beyond geometric theories: from rule systems to systems
of rules. J. Logic Comput., 26(2): 513–537, 2016.

44. P. O’Hearn. A Primer on Separation Logic. Software Safety and Security; Tools for
Analysis and Verification. NATO Science for Peace and Security Series 33:286–318,
2012.

45. P. O’Hearn and D. Pym. The Logic of Bunched Implications. Bull. Symb. Log.,
5(2):215–244, June 1999.

46. J. Park, J. Seo, and S. Park. A Theorem Prover for BBI. In Proc. POPL 2013,
ACM, 219–232, 2013.

47. M. Parkinson. Local Reasoning for Java. PhD thesis, Univ. of Cambridge, 2005.
48. D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.

Applied Logic Series 26, Springer Netherlands, 2002.
49. A. Polonsky. Proofs, Types, and Lambda Calculus. PhD thesis, University of

Bergen, 2012.
50. J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In

Proc. LICS 2002, IEEE Computer Soc. Press, 55–74, 2002.
51. A. Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD

Thesis, University of Edinburgh, 1994.
52. Th. Skolem. Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit und

Beweisbarkeit mathematischen Sätze nebst einem Theoreme über dichte Mengen,
Skrifter I, 4: 1–36, Det Norske Videnskaps-Akademi, 1920.

53. Terese. Term Rewriting Systems. Cambridge University Press, 2003.
54. J. Villard, É. Lozes and C. Calcagno. Proving Copyless Message Passing. In Proc.

APLAS 2009, LNCS 5904:194–209, 2009.
55. H. Yang and P. O’Hearn. A Semantic Basis for Local Reasoning. In Proc. FOS-

SACS 2002, LNCS 2303:402–416, 2002.

