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Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.
- Consequence.
- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.
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Schedule

3. Reductive logic, tactical proof, and logic programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.
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Schedule

- Most of what we will introduce will be quite new to most
people, with a fairly significant philosophical basis, and with
quite a lot of ground to be covered.

- Our approach will mainly be conceptual, with little detailed,
formal proof.

- Nevertheless, the formal details of everything we cover are
available in books and papers that will be referenced.
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Lecture 4: Modal and Substructural Logics, Resource
Semantics, and Modelling

- First, two key logical foundations:

- Modal and epistemic logics: there is a great deal of
current work on P-tS for modal logics (mostly B-eS). We
won’t get into it today, but do please ask if you’re
interested. There are a couple of recent papers in the
Logic J. of the IGPL.

- Substructural logics: today’s topics will look briefly at
IMLL and at BI. There is also a strong line of work that
is addressing full linear logic — beyond our scope here —
led by Yll Buzoku and Elaine Pimentel.

- Second, systems concepts:

- Resource semantics: from BI and Separation Logic
- Distributed systems: The ‘distributed systems metaphor’
provides a convenient conceptual language.
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What is a ‘System’?

With a little abstraction, we can employ the ‘distributed systems
metaphor’:

- a collection of interconnected locations,

- at which are situated resources,

- relative to which processes execute — consuming, creating,
moving, combining, and otherwise manipulating resources as
they evolve, so delivering the system’s services.

- many examples, including buildings, businesses, computers,
communication networks (e.g., the internet), and so on —
think about them in terms of their architecture and the
services that they deliver.
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Example: Vending Machine

- locations: customer, vending machine

- resources: money (i.e., kr in Iceland), chocolate bars

- processes (@C): 200kr is consumed, 1 chocolate bar is
produced

Figure: Reykjav́ık University

- Later, we’ll explore a more substantial example in some detail.
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Resource Semantics

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of
processes, and

- expressed in terms of the resources manipulated by those pro-
cesses.

For more on this, see: David Pym. Resource semantics: logic as a
modelling technology. ACM SIGLOG News, April 2019, Vol. 6, No.
2, 5–41. And references therein.
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Resource Semantics

This definition requires a few notes:

- we intend no restriction on the assertions — e.g., permit
‘higher-order’ assertions about state transitions.

- we intend to express all kinds of processes relevant to the
domain

- we require accounting for counting, composition, comparison,
sharing, and separation of resources
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Intuitionistic Multiplicative Linear Logic (IMLL)

ω → ω
Ax

! → ω ” → ε

!,” → ω↑ ε
↑I

! → ω↑ ε ”,ω,ε → ϑ

!,” → ϑ
↑E

!,ω → ε

! → ω ↭ ε
↭ I

! → ω ↭ ε ” → ω

!,” → ε
↭ E
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Resource Semantics and IMLL

Propositions are read directly as resources:

- (200kr ↭ KitKat) and (240kr ↭ KAFFE )

- 440kr ↭ (KitKat ↓ KAFFE )
- and so on.

In the presence of the additives, & and ↔, things are a bit more
interesting.
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Base-extension Semantics for IMLL

- We require this semantics to be context-sensitive — this is to
ensure that we can capture the multiplicativity that is inherent
in IMLL’s inference rules.

- Therefore, we enrich support ↫ with a multiset of atoms T —
‘atomic resources’.

- The details are in:

Alexander Gheorghiu, Tao Gu, and David Pym.
Proof-theoretic Semantics for Intuitionistic Multiplicative
Linear Logic. Studia Logica, 2024.
https://doi.org/10.1007/s11225-024-10158-6.
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Base-extension Semantics for IMLL

Here are some clauses:

↫S
B ω↑ ε i# ↗C ↘ B ↗T ↗p (ω , ε ↫T

C p =≃ ↫S,T
C p) (↑)

↫S
B ω ↭ ε i# ω ↫S

B ε (↭)

! ↫S
B ω i# ↗C ↘ B ↗T (↫T

C ! =≃ ↫S,T
C ω) (Inf)

↫S
B !1 , !2 i# ⇐T1,T2(S = T1 , T2,↫T1

B !1 and ↫T2
B !2) (,)

This is all quite intuitive — e.g., (↑) recalls ↑E ,

[ω,ε]
...

ω↑ ε p

p
↑ E
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Resource Semantics and BI

- A alternative resource semantics is associated with BI, the
logic of bunched implications.

- In BI, the ‘resource interpretation’ resides in its semantics —
as represented in Kripke-style models.

- Let’s first quickly review BI.

- BI can be seen as the direct (essentially free) combination of
IMLL and IPL, with minimal conditions required for the
combination. ‘Bunching’ is the key one.
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Bunched Implications, BI

- Contexts are no longer finite sequences.

- Instead, finite trees:

- internal vertices labelled with either ‘ , ’ (comma,
multiplicative) or ‘ ; ’ (semicolon, additive)

- leaves labelled with formulae

- ! ::= ⇒m | ⇒a | ! , ! | ! ; !
- Substitution of subtrees.
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Bunched Implications, BI

ω → ω
Ax

!(”) → ω
!(”→) → ω

(” ↑ ”→) E

!(” ;”) → ω
!(”) → ω

C
!(”) → ω

!(” ;”→) → ω
W

! → ω ” → ε
!,” → ω ↓ ε ↓I ! → ω ↓ ε ”(ω ,ε) → ϑ

”(!) → ϑ
↓E

!,ω → ε
! → ω ↔↔↓ ε

↔↔↓ I
! → ω ↔↔↓ ε ” → ω

!,” → ε
↔↔↓ E

! → ω ” → ε
!;” → ω ↗ ε

↗I ! → ω ↗ ε ”(ω ;ε) → ϑ
”(!) → ϑ

↗E

!;ω → ε
! → ω ↘ ε

↘ I
! → ω ↘ ε ” → ω

!;” → ε
↘ E

Can also have disjunction, but not needed today.
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Resource Semantics and BI
The simple semantics, given in Lecture 3, will do for now —
(possibly partial) ordered monoid, (R , ⇑, e,⇓) ... . See Gheorghiu
and Pym, Semantical Analysis of the Logic of Bunched
Implications, Studia Logica 2023, for the full story.

r |= p i! r ⇔ V(p)
r |= ↖ never
r |= ↙ always

r |= ω ∝ ε i! r |= ω or r |= ε
r |= ω ′ ε i! r |= ω and r |= ε
r |= ω ∞ ε i! for all s ⇓ r , s |= ω implies s |= ε

r |= I i! r ⇓ e

r |= ω ↓ ε i! there are worlds s and t such that
r ⇓ (s ⇑ t) and s |= ω and t |= ε

r |= ω ∈∈↓ ε i! for all s such that (r ⇑ s) and s |= ω,
r ⇑ s |= ε
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Resource Semantics and BI

The resource reading of BI is very di#erent form that of IMLL :

- The reading resides in models, with structure of composition
(combination) and comparison.

- It is based on sharing and separation.

- The resources required to support ω ↓ ε are the composition
of those required for ω and those required for ε.

- If the resource required for ω ∈∈↓ ε be combined with that
required for ω, then the result is the resource required for ε.

- Major example: Separation Logic.
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Base-extension Semantics for BI

- Generalize the treatment of IMLL.

- We have primitive additive and multiplicative conjunctions
and implications — this is useful for modelling.

- Collections of formulae are now ‘bunches’ — e.g., a , (b ; c).

- Enrich support ↫ with bunches of atoms S , ‘atomic resources’.

- We need a notion of a ‘contextual bunch’, intimately bound
up with substitution into bunches. We won’t get into the
technical details here.

- This is a collection of (atomic) bunches characterized as a
‘bunch with a hole’ — S(·) amounts to the collection of
bunches of shape S instantiated with T ; that is, S(T ).
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Base-extension Semantics for IMLL

Here are some clauses:

↫S
B ω↑ ε i# ↗C ↘ B ↗T ↗p (ω , ε ↫T

C p =≃ ↫S,T
C p) (↑)

Note:
[ω,ε]

ω↑ ε p

p

↫S
B ω ↭ ε i# ω ↫S

B ε (↭)

! ↫S
B ω i# ↗C ↘ B ↗T (↫T

C ! =≃ ↫S,T
C ω) (Inf)

↫S
B !1 , !2 i# ⇐T1,T2(S = T1 , T2,↫T1

B !1 and ↫T2
B !2) (,)
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Base-extension Semantics for BI

Here are some clauses:

↫S
B ω ↓ ε i# ↗C ↘ B ↗T (·) ↗p (ω , ε ↫T (·)

C p =≃ ↫T (S)
C p) (↓)

↫S
B ω ∈∈↓ ε i# ω ↫S , (·)

B ε (∈∈↓)

! ↫S(·)
B ω i# ↗C ↘ B ↗T (↫T

C ! =≃ ↫S(T )
C ω) (Inf)

As with IMLL, note that (↓) tracks the elimination rules.
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Base-extension Semantics for BI

And some more clauses:

↫S
B ω ′ ε i# ↗C ↘ B ↗T (·) ↗p (ω ; ε ↫T (·)

C p =≃ ↫T (S)
C p) (′)

↫S
B ω ∋ ε i# ω ↫S ; (·)

B ε (∋)

Note here that (′) tracks the generalized elimination rule:

[ω ;ε]
ω ′ ε p

p

Details of BI’s B-eS in: Alexander Gheorghiu, Tao Gu, and David
Pym. Proof-theoretic-semantics for the Logic of Bunched
Implications. Submitted, 2024. https://arxiv.org/abs/2311.16719.
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Modelling with Proof-theoretic Semantics I
In general, for the base-extension semantics for some logic — e.g.,
IPL, ILL, BI:

! ↫S(·)
B ω i# ↗C ↘ B, ↗U ⇔ R(A),

if ↫U
C !, then ↫S(U)

C ω

(Gen-Inf)

This admits the kind of resource semantics we desire:

- ω is an assertion describing (a possible state of) the system

- ! specifies a policy describing the executions of a system’s
processes

- S(·) is some ‘contextual’ collection of atomic resources

- B, C are models of the systems — that is, ↫U
C ! says that C is

a model of policy ! when supplied with resource U.

If policy ! were to be executed with contextual resource S(·) based
on the model B, then the result state would satisfy ω.
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Modelling with Proof-theoretic Semantics II

- Recall that we employ the ‘distributed systems metaphor’.

- See, for example,

- David Pym. Resource semantics: logic as a modelling
technology. ACM SIGLOG News, April 2019, 6(2), 5–41

- T. Caulfield, M.-C. Ilau, and D. Pym. Engineering
Ecosystem Models: Semantics and Pragmatics. In Proc.

13th SIMUtools 2021. Springer, 2021
- links at my page

and (many) references therein.
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Modelling with Proof-theoretic Semantics II

- describe each component Ci by a formula ωi — this is its
policy

- its model is given by a base Bi and resources S such that
↫S
Bi

ωi

- model interfacing by a base C governing input/output

- construct a model D of the system by taking the union of the
components, D := B1 △ . . . △ Bn △ C

Remark. This approach to modelling is both compositional and
substitutional.
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Example: Airport Security
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Example: Airport Security modelled in BI

- You arrive at check-in (l1). You show your passport, receive
your boarding-card, and drop your hold-baggage.

- This situation is described by ω1 := p ∈∈↓ ((p ′ t) ↓ h) —
atom p denotes your passport, t denotes the boarding-card
(ticket), and h denotes the baggage-label.

- The ↓ is used because the system bifurcates at this point and
the resources p ′ t and h go to separating components, and
the ∈∈↓ is used because the system is modified: the state of
passport p is changed as it only goes down one branch (the
same as your ticket, t) and is no longer globally available.

- An inferential model is given by a base B1 supporting ω1.
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Example: Airport Security
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Example: Airport Security modelled in BI

- Next, two processes occur in parallel, one through l2 and one
through l3, l4, l5.

- The top path of the picture passes through hold-baggage

security (l2). Here, the label h on your baggage is verified
(and the baggage itself is checked). That h validates is
denoted by ω2 := h ∈∈↓ shold.

- The bottom path of the picture passes through l3, l4, and l5,
modelled by ω3.

- Clearly, we could give a little more detail and model l3, l4, and
l5 separately. No resources are consumed on this path, so
progression between locations would be handled by ∋.
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Example: Airport Security modelled in BI

- Resources: p (passport), t (ticket/card), h (hold-baggage),
shold (security certificate), and scabin (security certificate)

- Component Policies for l1, l2, l3: ω1 = p ∈∈↓ ((p ′ t) ↓ h),
ω2 = h ∈∈↓ shold, and ω3 = t ∋ scabin

- Combined Policy: ω = ω1 ∈∈↓ (ω2 ↓ ω3)

Arriving with a valid ticket t and passport p is modelled by B such
that ↫p ; t

B ω.

33 / 42



And finally ...

- ... you clear passport control, get resource spass

- Eventually, you arrive at the gate (with no money, as the
airport has probably persuaded you to spend it all in its
shops).

- Your ticket and passport are checked, and you are granted
access:

(scabin ′ p ′ t) ∋ sgate

- You board the aircraft. Before it can depart, passengers and
hold-baggage must be reconciled. For each passenger, the
separate certificates must be combined:

sgate ↓ shold ∈∈↓ flight

For more details, see the MFPS 2024 paper, Inferentialist Resource
Semantics.
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Thesis

The paradigm of ‘proof-theoretic semantics’ provides an

account of resource semantics that uniformly encompasses

both the number-of-uses and sharing/separation interpre-

tations of logics.
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Summary

So, what have we covered in ‘Four Lectures on Proof-theoretic
Semantics’?

- Inferentialism and Dummett-Prawitz P-tV.

- B-eS: basics, categorical interpretation, other connections.

- Reductive logic and its semantics through P-tV.

- B-eS for substructual logics and applications in system
modelling.

And what have we not covered? A great deal, including:

- Lots of foundational and philosophical questions.

- Modal logic — classical, intuitionistic, epistemic.

- Full linear logic.

- Predicate logics.

Questions?
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