Four Lectures on Proof-theoretic Semantics

Midlands Graduate School in the Foundations of Computing Science Sheffield, April 2025

David Pym
UCL Computer Science and UCL Philosophy
Institute of Philosophy, School of Advanced Study
University of London

- 1. What is Proof-theoretic Semantics (P-tS)?
 - Inferentialism.
 - Consequence.
 - Proof-theoretic Validity (P-tV).
- 2. Base-extension Semantics (B-eS):
 - B-eS for Intuitionistic Propositional Logic.
 - Naturality, categorically speaking.
 - B-eS and P-tV.

- 3. Reductive logic, tactical proof, and logic programming:
 - Reductive Logic and P-tV.
 - Tactical Proof.
 - Remarks on Logic Programming and Coalgebra.
- 4. Modal and Substructural Logics, Resource Semantics, and Modelling:
 - B-eS for Modal Logics.
 - B-eS for Substructural Logics.
 - Resource Semantics and Modelling with B-eS.

- Most of what we will introduce will be quite new to most people, with a fairly significant philosophical basis, and with quite a lot of ground to be covered.
- Our approach will mainly be conceptual, with little detailed, formal proof.
- Nevertheless, the formal details of everything we cover are available in books and papers that will be referenced.

Lecture 4: Modal and Substructural Logics, Resource Semantics, and Modelling

- First, two key logical foundations:
 - Modal and epistemic logics: there is a great deal of current work on P-tS for modal logics (mostly B-eS). We won't get into it today, but do please ask if you're interested. There are a couple of recent papers in the Logic J. of the IGPL.
 - Substructural logics: today's topics will look briefly at IMLL and at BI. There is also a strong line of work that is addressing full linear logic beyond our scope here led by YII Buzoku and Elaine Pimentel.
- Second, systems concepts:
 - Resource semantics: from BI and Separation Logic
 - Distributed systems: The 'distributed systems metaphor' provides a convenient conceptual language.

What is a 'System'?

With a little abstraction, we can employ the 'distributed systems metaphor':

- a collection of interconnected *locations*,
- at which are situated *resources*,
- relative to which *processes* execute consuming, creating, moving, combining, and otherwise manipulating resources as they evolve, so delivering the system's services.
- many examples, including buildings, businesses, computers, communication networks (e.g., the internet), and so on think about them in terms of their architecture and the services that they deliver.

Example: Vending Machine

- locations: customer, vending machine
- resources: money (i.e., kr in Iceland), chocolate bars
- processes (@C): 200kr is consumed, 1 chocolate bar is produced

Figure: Reykjavík University

- Later, we'll explore a more substantial example in some detail.

Resource Semantics

How can we reason about such systems?

Resource Semantics

How can we reason about such systems?

Definition (Resource Semantics)

A resource semantics for a system of logic is

- an interpretation of its formulae as assertions about states of processes, and
- expressed in terms of the resources manipulated by those processes.

For more on this, see: David Pym. Resource semantics: logic as a modelling technology. ACM SIGLOG News, April 2019, Vol. 6, No. 2, 5–41. And references therein.

Resource Semantics

This definition requires a few notes:

- we intend no restriction on the assertions e.g., permit 'higher-order' assertions about state transitions.
- we intend to express all kinds of processes relevant to the domain
- we require accounting for counting, composition, comparison, sharing, and separation of resources

Intuitionistic Multiplicative Linear Logic (IMLL)

$$\frac{\overline{\phi} \vdash \overline{\phi} \quad Ax}{\Gamma \vdash \phi \quad \Delta \vdash \psi} \quad \otimes I \qquad \qquad \frac{\Gamma \vdash \phi \otimes \psi \quad \Delta, \phi, \psi \vdash \chi}{\Gamma, \Delta \vdash \phi \otimes \psi} \quad \otimes E$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \multimap \psi} \quad \multimap I \qquad \qquad \frac{\Gamma \vdash \phi \multimap \psi \quad \Delta \vdash \phi}{\Gamma, \Delta \vdash \psi} \quad \multimap E$$

Resource Semantics and IMLL

Propositions are read directly as resources:

- $(200kr \rightarrow KitKat)$ and $(240kr \rightarrow KAFFE)$
- 440kr → (KitKat * KAFFE)
- and so on.

In the presence of the additives, & and \oplus , things are a bit more interesting.

Base-extension Semantics for IMLL

- We require this semantics to be context-sensitive this is to ensure that we can capture the multiplicativity that is inherent in IMLL's inference rules.
- Therefore, we enrich support \Vdash with a multiset of atoms T 'atomic resources'.
- The details are in:

Alexander Gheorghiu, Tao Gu, and David Pym. Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic. Studia Logica, 2024. https://doi.org/10.1007/s11225-024-10158-6.

Base-extension Semantics for IMLL

Here are some clauses:

This is all quite intuitive — e.g., (\otimes) recalls $\otimes E$,

$$egin{array}{cccc} [\phi,\psi] & & dots & & dots$$

Resource Semantics and BI

- A alternative resource semantics is associated with BI, the logic of bunched implications.
- In BI, the 'resource interpretation' resides in its semantics as represented in Kripke-style models.
- Let's first quickly review BI.
- BI can be seen as the direct (essentially free) combination of IMLL and IPL, with minimal conditions required for the combination. 'Bunching' is the key one.

Bunched Implications, BI

- Contexts are no longer finite sequences.
- Instead, finite trees:
 - internal vertices labelled with either ', ' (comma, multiplicative) or '; ' (semicolon, additive)
 - leaves labelled with formulae
- $\Gamma ::= \emptyset_m \mid \emptyset_a \mid \Gamma, \Gamma \mid \Gamma; \Gamma$
- Substitution of subtrees.

Bunched Implications, BI

$$\frac{\Gamma(\Delta) \vdash \phi}{\Gamma(\Delta') \vdash \phi} \quad (\Delta \equiv \Delta') \quad E$$

$$\frac{\Gamma(\Delta; \Delta) \vdash \phi}{\Gamma(\Delta) \vdash \phi} \quad C \qquad \frac{\Gamma(\Delta) \vdash \phi}{\Gamma(\Delta; \Delta') \vdash \phi} \quad W$$

$$\frac{\Gamma \vdash \phi \quad \Delta \vdash \psi}{\Gamma, \Delta \vdash \phi * \psi} \quad *I \qquad \frac{\Gamma \vdash \phi * \psi \quad \Delta(\phi, \psi) \vdash \chi}{\Delta(\Gamma) \vdash \chi} \quad *E$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi} \quad \to I \qquad \frac{\Gamma \vdash \phi \to \psi \quad \Delta \vdash \phi}{\Gamma, \Delta \vdash \psi} \quad \to E$$

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma; \Delta \vdash \phi \land \psi} \quad \land I \qquad \frac{\Gamma \vdash \phi \land \psi \quad \Delta(\phi; \psi) \vdash \chi}{\Delta(\Gamma) \vdash \chi} \quad \land E$$

$$\frac{\Gamma; \phi \vdash \psi}{\Gamma \vdash \phi \supset \psi} \quad \supset I \qquad \frac{\Gamma \vdash \phi \supset \psi \quad \Delta \vdash \phi}{\Gamma: \Delta \vdash \psi} \quad \supset E$$

Can also have disjunction, but not needed today.

Resource Semantics and BI

The simple semantics, given in Lecture 3, will do for now — (possibly partial) ordered monoid, $(R, \circ, e, \sqsubseteq)$ See Gheorghiu and Pym, Semantical Analysis of the Logic of Bunched Implications, *Studia Logica* 2023, for the full story.

$$r \models p$$
 iff $r \in \mathcal{V}(p)$
 $r \models \bot$ never
 $r \models \top$ always

 $r \models \phi \lor \psi$ iff $r \models \phi \text{ or } r \models \psi$
 $r \models \phi \land \psi$ iff $r \models \phi \text{ and } r \models \psi$
 $r \models \phi \rightarrow \psi$ iff for all $s \sqsubseteq r, s \models \phi \text{ implies } s \models \psi$
 $r \models I$ iff $r \sqsubseteq e$
 $r \models \phi * \psi$ iff there are worlds s and t such that $r \sqsubseteq (s \circ t)$ and $s \models \phi$ and $t \models \psi$
 $r \models \phi \twoheadrightarrow \psi$ iff for all s such that $(r \circ s)$ and $s \models \phi$, $(s \circ t)$ and $(s \mapsto \phi)$ and $(s \mapsto \phi)$

Resource Semantics and BI

The resource reading of BI is very different form that of IMLL :

- The reading resides in models, with structure of composition (combination) and comparison.
- It is based on *sharing* and *separation*.
- The resources required to support $\phi * \psi$ are the composition of those required for ϕ and those required for ψ .
- If the resource required for $\phi \twoheadrightarrow \psi$ be combined with that required for ϕ , then the result is the resource required for ψ .
- Major example: Separation Logic.

Base-extension Semantics for BI

- Generalize the treatment of IMLL.
- We have *primitive* additive and multiplicative conjunctions and implications this is useful for modelling.
- Collections of formulae are now 'bunches' e.g., $a_9(b_3c)$.
- Enrich support \Vdash with bunches of atoms S, 'atomic resources'.
- We need a notion of a 'contextual bunch', intimately bound up with substitution into bunches. We won't get into the technical details here.
- This is a collection of (atomic) bunches characterized as a 'bunch with a hole' $S(\cdot)$ amounts to the collection of bunches of shape S instantiated with T; that is, S(T).

Base-extension Semantics for IMLL

Here are some clauses:

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \phi \otimes \psi \quad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B} \,\forall T \,\forall p \,(\phi, \psi \Vdash_{\mathcal{C}}^{T} p \implies \Vdash_{\mathcal{C}}^{\mathcal{S}, T} p) \quad (\otimes)$$

Note:

$$egin{array}{ccc} [\phi,\psi] \ \phi\otimes\psi & p \ \hline p \end{array}$$

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \phi \multimap \psi \quad \text{iff} \quad \phi \Vdash_{\mathcal{B}}^{\mathcal{S}} \psi$$
 (\multimap)

$$\Gamma \Vdash_{\mathcal{B}}^{\mathcal{S}} \phi \qquad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B} \, \forall T \, (\Vdash_{\mathcal{C}}^{T} \, \Gamma \implies \Vdash_{\mathcal{C}}^{\mathcal{S}_{9}T} \phi)$$
 (Inf)

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \Gamma_{1}, \Gamma_{2} \quad \text{iff} \quad \exists T_{1}, T_{2}(S = T_{1}, T_{2}, \Vdash_{\mathcal{B}}^{T_{1}} \Gamma_{1} \text{ and } \Vdash_{\mathcal{B}}^{T_{2}} \Gamma_{2}) \qquad (9)$$

Base-extension Semantics for BI

Here are some clauses:

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \phi * \psi \qquad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B} \, \forall T(\cdot) \, \forall p \, (\phi_{\,_{\mathcal{C}}} \psi \Vdash_{\mathcal{C}}^{T(\cdot)} p \implies \Vdash_{\mathcal{C}}^{T(\mathcal{S})} p) \qquad (*)$$

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \phi \twoheadrightarrow \psi \quad \text{iff} \quad \phi \Vdash_{\mathcal{B}}^{\mathcal{S}, (\cdot)} \psi \tag{$-*$}$$

$$\Gamma \Vdash_{\mathcal{B}}^{\mathcal{S}(\cdot)} \phi \qquad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B} \, \forall \, T \, (\Vdash_{\mathcal{C}}^{T} \, \Gamma \implies \Vdash_{\mathcal{C}}^{\mathcal{S}(T)} \, \phi) \tag{Inf}$$

As with IMLL, note that (*) tracks the elimination rules.

Base-extension Semantics for BI

And some more clauses:

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \phi \wedge \psi \quad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B} \, \forall T(\cdot) \, \forall p \, (\phi \, \S \, \psi \, \Vdash_{\mathcal{C}}^{T(\cdot)} p \implies \Vdash_{\mathcal{C}}^{T(\mathcal{S})} p) \quad (\wedge)$$

$$\Vdash_{\mathcal{B}}^{\mathcal{S}} \phi \supset \psi \quad \text{iff} \quad \phi \Vdash_{\mathcal{B}}^{\mathcal{S}_{\mathfrak{F}}(\cdot)} \psi \tag{\supset}$$

Note here that (\land) tracks the generalized elimination rule:

$$egin{array}{ccc} & & & [\phi\,;\psi] \ \hline \phi \wedge \psi & & p \ \hline & p \end{array}$$

Details of BI's B-eS in: Alexander Gheorghiu, Tao Gu, and David Pym. Proof-theoretic-semantics for the Logic of Bunched Implications. Submitted, 2024. https://arxiv.org/abs/2311.16719.

Modelling with Proof-theoretic Semantics I

In general, for the base-extension semantics for some logic — e.g., IPL, ILL, BI:

$$\Gamma \Vdash_{\mathcal{B}}^{S(\cdot)} \phi \qquad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B}, \forall U \in \mathbb{R}(\mathbb{A}), \\
\text{if } \Vdash_{\mathcal{C}}^{U} \Gamma, \text{then } \Vdash_{\mathcal{C}}^{S(U)} \phi$$
(Gen-Inf)

This admits the kind of resource semantics we desire:

- ϕ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- $S(\cdot)$ is some 'contextual' collection of atomic resources
- \mathcal{B}, \mathcal{C} are models of the systems that is, $\Vdash_{\mathcal{C}}^{\mathcal{U}} \Gamma$ says that \mathcal{C} is a model of policy Γ when supplied with resource \mathcal{U} .

Modelling with Proof-theoretic Semantics I

In general, for the base-extension semantics for some logic — e.g., IPL, ILL, BI:

$$\Gamma \Vdash_{\mathcal{B}}^{S(\cdot)} \phi \qquad \text{iff} \quad \forall \mathcal{C} \supseteq \mathcal{B}, \forall U \in \mathbb{R}(\mathbb{A}), \\
\text{if } \Vdash_{\mathcal{C}}^{U} \Gamma, \text{then } \Vdash_{\mathcal{C}}^{S(U)} \phi$$
(Gen-Inf)

This admits the kind of resource semantics we desire:

- ϕ is an assertion describing (a possible state of) the system
- Γ specifies a policy describing the executions of a system's processes
- $S(\cdot)$ is some 'contextual' collection of atomic resources
- \mathcal{B}, \mathcal{C} are models of the systems that is, $\Vdash_{\mathcal{C}}^{\mathcal{U}} \Gamma$ says that \mathcal{C} is a model of policy Γ when supplied with resource \mathcal{U} .

If policy Γ were to be executed with contextual resource $S(\cdot)$ based on the model \mathcal{B} , then the result state would satisfy ϕ .

Modelling with Proof-theoretic Semantics II

- Recall that we employ the 'distributed systems metaphor'.
- See, for example,
 - David Pym. Resource semantics: logic as a modelling technology. ACM SIGLOG News, April 2019, 6(2), 5–41
 - T. Caulfield, M.-C. Ilau, and D. Pym. Engineering Ecosystem Models: Semantics and Pragmatics. In *Proc.* 13th SIMUtools 2021. Springer, 2021
 - links at my pageand (many) references therein.

Modelling with Proof-theoretic Semantics II

Modelling with Proof-theoretic Semantics II

- describe each component C_i by a formula ϕ_i this is its policy
- its model is given by a base \mathcal{B}_i and resources S such that $\Vdash_{\mathcal{B}_i}^S \phi_i$
- model *interfacing* by a base $\mathcal C$ governing input/output
- construct a model \mathcal{D} of the system by taking the union of the components, $\mathcal{D} := \mathcal{B}_1 \cup \ldots \cup \mathcal{B}_n \cup \mathcal{C}$

Remark. This approach to modelling is both *compositional* and *substitutional*.

Example: Airport Security

Example: Airport Security modelled in BI

- You arrive at *check-in* (l_1) . You show your passport, receive your boarding-card, and drop your hold-baggage.
- This situation is described by $\phi_1 := p * ((p \land t) * h)$ atom p denotes your passport, t denotes the boarding-card (ticket), and h denotes the baggage-label.
- The * is used because the system bifurcates at this point and the resources $p \land t$ and h go to separating components, and the -* is used because the system is modified: the state of passport p is changed as it only goes down one branch (the same as your ticket, t) and is no longer globally available.
- An inferential model is given by a base \mathcal{B}_1 supporting ϕ_1 .

Example: Airport Security

Example: Airport Security modelled in BI

- Next, two processes occur in parallel, one through l_2 and one through l_3 , l_4 , l_5 .
- The top path of the picture passes through *hold-baggage* security (l_2) . Here, the label h on your baggage is verified (and the baggage itself is checked). That h validates is denoted by $\phi_2 := h *s_{hold}$.
- The bottom path of the picture passes through l_3 , l_4 , and l_5 , modelled by ϕ_3 .
- Clearly, we could give a little more detail and model l_3 , l_4 , and l_5 separately. No resources are consumed on this path, so progression between locations would be handled by \supset .

Example: Airport Security modelled in BI

- **Resources:** p (passport), t (ticket/card), h (hold-baggage), s_{hold} (security certificate), and s_{cabin} (security certificate)
- Component Policies for l_1, l_2, l_3 : $\phi_1 = p \twoheadrightarrow ((p \land t) * h)$, $\phi_2 = h \twoheadrightarrow s_{hold}$, and $\phi_3 = t \supset s_{cabin}$
- Combined Policy: $\phi = \phi_1 (\phi_2 * \phi_3)$

Arriving with a valid ticket t and passport p is modelled by \mathcal{B} such that $\Vdash_{\mathcal{B}}^{p_{\S}t} \phi$.

And finally ...

- ... you clear passport control, get resource s_{pass}
- Eventually, you arrive at the gate (with no money, as the airport has probably persuaded you to spend it all in its shops).
- Your ticket and passport are checked, and you are granted access:

$$(s_{cabin} \land p \land t) \supset s_{gate}$$

- You board the aircraft. Before it can depart, passengers and hold-baggage must be reconciled. For each passenger, the separate certificates must be combined:

$$s_{gate} * s_{hold} - * flight$$

For more details, see the MFPS 2024 paper, *Inferentialist Resource Semantics*.

Thesis

The paradigm of 'proof-theoretic semantics' provides an account of resource semantics that uniformly encompasses both the number-of-uses and sharing/separation interpretations of logics.

Additional References

- Alexander Gheorghiu, Tao Gu, and David Pym.
 Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic. *Studia Logica*, 2024.
 https://doi.org/10.1007/s11225-024-10158-6.
- Alexander Gheorghiu, Tao Gu, and David Pym. Inferentialist Resource Semantics. In *Proc. Mathematical Foundations of Programming Semantics* (MFPS), Oxford, June 2024. Electronic Notes in Theoretical Informatics and Computer Science (ENTICS). https://arxiv.org/pdf/2402.09217.
- Alexander Gheorghiu, Tao Gu, and David Pym.
 Proof-theoretic-semantics for the Logic of Bunched Implications. Submitted, 2024.
 https://arxiv.org/abs/2311.16719.
- Timo Eckhardt and David Pym. Base-extension Semantics for Modal Logics. *Logic Journal of the IGPL*, 2024.

Additional References

- S. Ishtiaq and P. O'Hearn. Bl as an Assertion Language for Mutable Data Structures. *Proc. ACM POPL*, 2001.
- P. O'Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic 5(2), 215–244, 1999.
- Alexander Gheorghiu and David Pym. Semantical Analysis of the Logic of Bunched Implications. *Studia Logica* (2023). https://link.springer.com/article/10.1007/s11225-022-10028-z.
- Yves Lafont. Introduction to Linear Logic. *TEMPUS Summer School on Algebraic and Categorical Methods in Computer Science (Lecture Notes)*. Brno, Czech Republic, 1993.
- J.-Y. Girard. LINEAR LOGIC : ITS SYNTAX AND SEMANTICS.
 - https://girard.perso.math.cnrs.fr/Synsem.pdf.

Additional References

- Timo Eckhardt and David Pym. Base-extension Semantics for S5 Modal Logic. In press, *Logic Journal of the IGPL*, 2025. Manuscript (extended version).
- David Pym. Resource semantics: logic as a modelling technology. ACM SIGLOG News, April 2019, Vol. 6, No. 2, 5–41.
- T. Caulfield, M.-C. Ilau, and D. Pym. Engineering Ecosystem Models: Semantics and Pragmatics. In *Proc. 13th SIMUtools 2021*. Springer, 2021.

Summary

So, what have we covered in 'Four Lectures on Proof-theoretic Semantics'?

- Inferentialism and Dummett-Prawitz P-tV.
- B-eS: basics, categorical interpretation, other connections.
- Reductive logic and its semantics through P-tV.
- B-eS for substructual logics and applications in system modelling.

And what have we not covered? A great deal, including:

- Lots of foundational and philosophical questions.
- Modal logic classical, intuitionistic, epistemic.
- Full linear logic.
- Predicate logics.

Questions?

- 1. What is Proof-theoretic Semantics (P-tS)?
 - Inferentialism.
 - Consequence.
 - Proof-theoretic Validity (P-tV).
- 2. Base-extension Semantics (B-eS):
 - B-eS for Intuitionistic Propositional Logic.
 - Naturality, categorically speaking.
 - B-eS and P-tV.

- 3. Reductive Logic, Tactical Proof, and Logic Programming:
 - Reductive Logic and P-tV.
 - Tactical Proof.
 - Remarks on Logic Programming and Coalgebra.
- 4. Modal and Substructural Logics, Resource Semantics, and Modelling:
 - B-eS for Modal Logics.
 - B-eS for Substructural Logics.
 - Resource Semantics and Modelling with B-eS.

- Most of what we will introduce will be quite new to most people, with a fairly significant philosophical basis, and with quite a lot of ground to be covered.
- Our approach will mainly be conceptual, with little detailed, formal proof.
- Nevertheless, the formal details of everything we cover are available in books and papers that will be referenced.