Four Lectures on Proof-theoretic Semantics

Midlands Graduate School in the
Foundations of Computing Science

Sheffield, April 2025

David Pym
UCL Computer Science and UCL Philosophy
Institute of Philosophy, School of Advanced Study
University of London

1/61

Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.
- Consequence.

- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.

2 /61

Schedule

3. Reductive Logic, Tactical Proof, and Logic Programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming, B-eS, and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.

3/61

Schedule

- Most of what we will introduce will be quite new to most
people, with a fairly significant philosophical basis, and with
quite a lot of ground to be covered.

- Our approach will mainly be conceptual, with little detailed,
formal proof.

- Nevertheless, the formal details of everything we cover are
available in books and papers that will be referenced.

4 /61

Lecture 3: Reductive Logic, Tactical Proof, and
Logic Programming

| want to say some quite simple — but also rather speculative —
things, trying to make some connections between

reductive logic,

tactical proof construction,

proof-theoretic semantics, and

coalgebraic semantics, as a possible unifying theory.

5/61

Reductive Logic: Proof Theory and Proof-search

Here, we have the most basic idea: read inference rules as
reduction operators, from conclusion to premisses. Instead of the

deduction . .
Premiss; ... Premiss, ﬂ
Conclusion ’
the reduction
Sufficient Premiss; ... Sufficient Premissy TT

Putative Conclusion

Here failure to construct a proof derives from failure to reduce to
axiom sequents, say. For example,

F'ep

r

and there is no unpacking of [that exposes an occurrence of p.

6/61

Reductive Logic: Kripke Semantics and
‘Model-checking’

Model-theoretic satisfaction relations also work like this, of course:

weEMoONY iff wErm@and wiEa

w = ¢ %1 iff there are worlds v and v s.t. R(u,v,w) and
uFEMm¢and v Eam Y

and so on.

Here failure to construct a realizer —that is, a transmitter of truth
— derives from failure to reduce to satisfiable atoms:

W}:Mp Iff WEV(p)

That is, we reduce to atoms that do not satisfy this condition.

7/61

Reductive Logic

AIDAD|G>A

hereditary Harrop D

formulae (hHfs) G = A|GAG|DDG|GVG
Ax
PG A EA
GDODA eP
PEA
. right rules
" reduce G
— Ax
PEG AFA
GDAe?P
PEA

Resolution, that is uniform proofs with just the resolution rule

(essentially, D L) the only left rule, can be seen as being complete
for hHfs.

8/61

Reductive Logic

- Logic programming standardly comes with a least fixed point
semantics.

- Interpret programs as sets of atoms (i.e., as subsets of the
Herbrand universe).

- Form a complete lattice of such interpretations.

- Define an operator on such interpretations that corresponds to
the resolution step above.

- The meaning of a program is given by the interpretation that
is the least fixed point of operator.

This construction is intimately connected to Sandqvist’s
completeness theorem. See Alexander Gheorghiu and David Pym.
Definite formulae, Negation-as-Failure, and the Base-extension
Semantics of Intuitionistic Propositional Logic. Bulletin of the
Section of Logic, 2023.

9/61

Reductive Logic

Towards a semantic perspective:

- Let's focus on proofs for now, mainly think of IPL and CPL
for now.

- In reductive logic, we encounter a space — of ‘reductions’ —
that is larger than the space of proofs. And non-proofs are
interesting, useful, and mathematically well structured.

- Semantic structures must account for this. And also for
control in proof-search — many choices are encountered in
performing reductions.

- Let's unpack this a bit, following Pym & Ritter, Oxford Logic
Guide 2004, has a detailed set-up for classical and
intuitionistic logic.

10 /61

When reading the rules of calculus as reduction operators —
let’s think for now of LJ, the sequent calculus for intuitionistic
logic — the key point is that when constructing a reduction,
we may encounter leaves of the form

L p - q J"OtAVPA

No further reductions possible.

In terms of proof-objects, we don't have
X1 1Py s Xk D Pk X pi
Instead, we must introduce an indeterminate

X1:Ply--- Xk Pk Qg

11/61

Why is This Useful?

Why is considering reductions that are proofs useful?

Because in practical reasoning

- such things are encounter a great deal, and
- they can be used to determine proofs.

Proof-search examples:

- In first-order predicate logic, relax the side-conditions on the
quantifier rules.

- In substructural logic, calculate the distribution of formulae in
multiplicative rules not locally, but globally.

All this can be expressed in terms of P-tV, as we shall later
see.

12/61

Theoretical Backstory (not for the faint-hearted)

- A reduction model is a fibred structure 'R — in the sense of
the use of fibred / indexed categories in categorical logic —
interpreting propositions / proofs relative to indeterminates,
which stand for terms and propositions that remain to be
calculated — these will correspond to open proofs in the
Dummett-Prawitz-Schroeder-Heister view recalled below.

- From Pym and Ritter (2004):

R = <(£7 F)v [[_]]7 ‘:>

where

- &£ : B°’ — Cat, where B — the category of indeterminates —
has finite products, each £(B) is a biCCC, and each &(f)
preserves biCC structure on the nose

- F: W — B preserves finite products (for technical reasons)

[—] interprets reduction operators and reductions

= is a satisfaction relation, with familiar properties.

13 /61

Theoretical Backstory

Cat

[®(©):T?7— ¢]d = (W', g), where W’ is a world
accessible from W and g is a morphism
[T]Y" — [#]&" such that [technical indexed
category condition]

14 /61

Theoretical Backstory

- Along with this, we obtain a semantic judgement, defined
relative to the model:

Wke (¢:9)l

between worlds W, indeterminates in ©, sequents I 7- ¢, and
reductions, .

- This yields a consequence relation in the evident way.
- Picks up many judgements of interest.

- This judgement asserts that at stage W in a model that
interprets indeterminates ©, ® is a reduction for the putative
conclusion [7- ¢, which may be written as I 7-® : ¢.

15/ 61

Theoretical Backstory

- In this “truth-functional’ sense, soundness means that all
[7- ¢ for which a reduction can be calculated are true in the
model and completeness means that there is a (term)
reduction model for which all true I' 7- ¢ have reductions.

- Again, Pym & Ritter, Oxford Logic Guide 2004, has the detail
for IPL and CPL.

16 /61

Theoretical Backstory

A reduction @ is interpreted as a map

o]
[r1e’ = [Al&

- Soundness means that every reduction that can be calculated
can be so interpreted in the model.

Completeness means that there is a (term) model consisting
of exactly the reductions that can be calculated.

- Both are stated relative to the judgement

17 /61

Theoretical Backstory (Aside)

In this denotational setting, we can also seek to interpret not only
the realizer of a consequence but the control process.

For example, Prolog’'s strategy of left-to-right clause selection

with depth-first traversal and cut, and the input-output model.

A control process is associated with the realizer @,
constructed using the process E:

g Y

There is a well-developed theory of (bi)simulation (equality)
of processes.

We can explore examples of game-theoretic models that are
able to account for both the structural and operational
aspects of reductive logic.

Again, Pym & Ritter, Oxford Logic Guide, 2004. Many open
questions remain in this area.

18 /61

Milner and LCF: A Concrete Theory of Proof-search
in Reductive Logic

In the late 70s and early 80s, Robin Milner and colleagues worked
on machine-assisted proof, producing the ‘Stanford LCF' and
‘Edinburgh LCF' systems.

This work was about ‘goal-oriented reasoning’” — that is,
proof-search.

- R. Milner. The use of machines to assist in rigorous proof.
Phil. Trans. R. Soc. Lond. A 312, 411-422 (1984).

- M. Gordon. Tactics for mechanized reasoning: a commentary
on Milner (1984) ‘The use of machines to assist in rigorous
proof’. Phil. Trans. R. Soc. Lond. A 373:20140234 (2015).

19 /61

Goals, Theorems, and Procedures

Following Milner:
- A theorem is a (proved) sequent I - ¢
- A goal G is asequent I 7— ¢
Then:
- An event E is [the proving of| a theorem

- An event A 1 achieves a goal [7— ¢ if, for some © C T,
©7— ¢ ~ A7 1, for some equivalence (generalizing
Milner a bit here).

- A procedure is a partial function

p : (list of theorems) — theorem

20/ 61

Tactics

- A tactic is a partial function that takes a goal and returns a
list of goals and a procedure:

tactic : goal — goal list x procedure

- Elementary tactics are given by the the reduction operators
that correspond to the ‘inverses’ of inference rules

Premiss; ... Premiss, ﬂ
Conclusion

Subgoal; ... Subgoalkﬂ
Goal
- A tactic T is valid if, whenever

7(G) = ([G1,--- Gn)]; p)

is defined and whenever [E1, ..., E,] respectively achieve the

goals [Gy, ..., G,], then the event p([E1, ..., Ey]) achieves G.

21/ 61

Tacticals

Complex goals require, in practice, complex strategies.

Need combinators, called tacticals, for composing tactics.

Tactical combinations of tactics are themselves tactics.

Examples would include:

- Basic sequencing

- The definition of uniform proof in the sense of Miller

- In some sense, this is the origin of the ML (‘Meta-Language’)
family of programming languages.

22/ 61

Relate to Theoretical Backstory

- Recall
W LE: cp]]@

[[¢17-°°7¢n]]

- Here, abusing notation a bit

strategy \ / realizer
FE:®

Dly.eosOn = U

A strategy is a tactical combination of tactics

[v]&

A procedure converts/reduces realizers to proofs, working up
to ~.

23/ 61

Relate to Proof-theoretic Semantics

We can see, informally for now, a correspondence between Milner's
analysis and current ideas in proof-theoretic semantics.

Let's work with something like the (Dummett-)Prawitz,
Schroeder-Heister, Piecha , ... , recalling the approach that we
introduced in Lecture 1.

- Proof structures S that are tree-like arrangements of sequents.
- A justification
J: 6§86
that maps structures to structures.

- An ‘open’ / ‘closed’ proof is a proof depending / not
depending on assumptions, respectively.

- Don't need to be concerned with ‘canonical’ proofs for now.

24 /61

Relate to Proof-theoretic Semantics

- Let S be a base.
- Every closed proof in S is (J, S)-valid.

- An open proof is (J, S)-valid if every substitution instance by
closed proofs is (J, S)-valid.

- Recall that we get a notion of consequence

P1y -5 Pn):<J,5> (0

if there is an open proof D of ¢ from ¢1,...,®, such that all
closed substitution instances of D are (J, S)-valid.

- Then we get logical consequence as follows:

P15 On =

iff ¢1,...,6n =5y ¥ holds for every S.

25 / 61

Relate to Proof-theoretic Semantics

- Validity of proofs with respect to J and atomic system S:

denote by
J,5) = ¢
that J generates a closed proof of ¢ w.r.t S
- Then

¢1,.-.,0n = iff thereis a Js.t. for every S
and all J¢,...,J,, if

(leS) }: ¢17°°°7(Jn75) ‘: ¢n,
then (J,S5) = ¢

- J(J1,...,d,) amounts to the procedure, relative to possibly
generalized S (‘ground’ inferences).

26 / 61

Interpretation in Proof-theoretic Semantics

Very roughly:

initial goal
a sequence of tactics
a correct argument

procedure

This has been set up properly in:

P1y -5 Pn ‘:(J,5> ¢
a proof-like structure

canonical proof

justification

A. Gheorghiu and D. Pym. Proof-theoretic semantics and

tactical proof. Manuscript at

https://arxiv.org/abs/2301.02302.

- A. Gheorghiu and D. Pym. Semantic Foundations of
Reductive Reasoning. To appear, Topoi, 2025.

27/ 61

Back to Proof-search

- The reductive view of logic is just as declarative as the
deductive view.

- Proof-search, however, is operational and inherently stateful.

- Tactical proof is a declarative presentation of a stateful idea
— a minor tweak makes this explicit.

- Historically, mathematics has not been all that good at
handling stateful things in elegant ways.

- Relatively recently — in the great scheme of history — the
concept of coalgebra has emerged to fill this gap.

28 / 61

Coalgebra

Coalgebra can be seen as the algebraic generalization of
coinduction.

Essentially, final coalgebras stand in the same relation to
coinduction as initial algebras to induction.

- A coalgebra for an endofunctor F : C — C — an ‘F-coalgebra’
— is a morphism « : X — FX in C, usually written (X, a).

- Intuitively, F assigns structure to a state space X, while «
describes the dynamics/structural decomposition for a system
that traverses this structured space.

- This concept subsumes and generalizes phenomena as
wide-ranging as automata, context-free grammars, datatypes,
games, program semantics, and transition systems.

29 /61

Coalgebra

- In fact, Kripke semantics can be seen coalgebraically.
- Example: BI, the logic of bunched implications (O'Hearn &
Pym, BSL 1999):
- Essentially, freely combines IL and MILL in a bunched

proof-theoretic framework.
- Name comes from sequent calculus: bunched contexts,

separating intuitionistic and linear parts.
- Very different logic from LL: for example, ¢ — 1 =1¢ —o ¥
does not hold.
- It doesn’t matter that it's Bl — though we will revisit Bl in

B-eS in Lecture 4.

- For now, just a useful example of using coalgebra before we
move to proof-search/construction.

30/ 61

Coalgebra: How to Represent a Logic

- Bl's fully general semantics is based on ternary relations or on
Grothendieck topologies, allowing the full metatheory. That's
a long story.
- For now, let's take an ordered monoid (R, C, o, e) of worlds,
r,s, t, ..
ri=p iff reV(p)
ri=_L never
r =T always
r=oVay iff regorriEY
r=¢ANY iff r=¢and r =
re¢—Y iff forall sC r, s k= ¢ implies s =9

r= 1 iff rCe
r=o¢xy iff there are worlds s and t such that
rC(sot)ands=¢and t =
r = ¢ —x iff for all s such that (ros) and s = ¢,
ros =1

31/61

Truth-

functional Semantics, Coalgebraically

Bl can be given by coalgebras for the functor T : C — C,
TX =2 X Pe(X x X) X Pe(XP x X),

where C is the category of posets, 2 the two element poset
and P the convex powerset functor (Egli-Milner order).

The first component interprets of the unit constant /, the
second *, and the third —.

Given a monoid (R, o, e), a poset is given by setting r C s iff
there exists r’ such that ror’ = s.

Then the coalgebra a: R — 2 X Pc(R x R) x Pc(R°P x R) is:

- mo(a(r)) is 1 if r C e and 0 otherwise — for /
- m(a(r)) ={(s,t) | sot C r} — for the conjunction x
- ma(a(r)) ={(s,t) | ros =t} — for the implication —.

32/61

- The coalgebraic interpretation of the logic is given, essentially,
by a natural transformation d from a functor that forms the
formulae of the Bl to the functor T.

- In the specific case of *, given interpretations for ¢ and v, we
obtain the interpretation

Ox(p*) ={u € TX | 3Ix,y) € m1(u),x € 0x(9),y € dx(¥)}

- In the coalgebra associated to a monoid, this corresponds
precisely to the given truth-functional clause for %, but the
class of coalgebraic models strictly extends the class of
truth-functional models.

33/ 61

Proof-search With Substructural Connectives

- Having fixed the basic idea, let's look at proof-search.

- From the computational perspective, the reduction operators
— the tactics, and so the tacticals — that correspond to the
inference rules for multiplicative connectives, such as ® and
—o, and x and —x, are problematic.

- For example,
ArFy Axkx
[)y
- How to calculate the As?

- lterates through the search: suppose 1 = 11 * 1, then need
A=A, A
- Computationally expensive (potentially both time and space).

[= A1, A

- Not just right rules,

r1|_¢ r27¢|_X

[=T4.T
ETE b2

34/61

The input—output model
D\AF 6 -

I'F ¢ T A F gy
' @1 * ¢

The input—output model (Miller)

All ‘resources’ are sent up the first branch.

Those required to close the branch (if possible) are retained on
the branch, with what remains being sent to the next branch.
- Consider how this gives rise to an interesting notion of a J
(don’t worry for now about bases for this).

- Generalize this strategy: more Js (see Harland and Pym,

Resource-distribution via Boolean Constraints, ACM ToCL,
2003).

35/61

Back to coalgebra: the input-output model

Coalgebraically, we can see this as a further structuring of the
search space TX by updating to Bool x In x TX.
Then the coalgebra o : X — Bool x In x TX works as follows:

At a reduction with a multiplicative conjunction leaf

[+ @1 % @2, a is designed to choose to reduce the left-hand
premiss.

In outputs a list of the formulae required for the current proof
of ¢1, and

Bool is a test for termination of that branch.

If a proof is found, the next step of computation defined by «
Is to begin reducing the right-hand premiss with respect to the
context given by I' minus the current value of In.

In is then reset to the empty list and Bool to false.

Could, at least in principle, capture proof-search by taking
coalgebras over reduction models.

But, in the light of recent work, we'd like to simplify things
somewhat.

36 /61

Back to coalgebra: tactical proof

How can we see tactical proof coalgebraically?

- A tactic is a partial function that takes a goal and returns a
list of goals and a procedure:

tactic : goal — goal list x procedure
- How to see this statefully, and so coalgebraically?

tactic : goal — goal list x next goal x procedure

- That is,

Subgoal; ... Next Subgoal ... Subgoalkﬂ
Goal

- Cf. the input-output model or hereditary Harrop resolution

37/61

Hereditary Harrop resolution tactic

Ax
P+ G’ AL A
G DA ecP
PrEA
. right rules
" reduce G
— Ax
PrEG AFA
GDODAec?pP
PEA

Here the stateful, coalgebraic specification of the ‘Next Subgoal’
selects right-hand premisses until atomic and selects the left-hand
premiss and specifies, in the case of Prolog, the leftmost matching

clause.

38 /61

Why coalgebra?

The motivation for adopting a coalgebraic approach is strong;
it handles both

- Kripke semantics, as a framework for defining logics, and
- Proof-search and model-checking procedures.

- The latter point perhaps deserves some expansion.

- Search procedures are not naturally functional, but are
naturally stateful. ML, the programming language initially
developed as language for specifying tactics in the ‘Logic for
Computable Functions’ (LCF) , is not a purely functional
language. Rather, it makes explicit use of imperative
exceptions.

- Exceptions are used to handle failure and continuation/
resumption — essential features of search procedures.

- Thus while deduction naturally has functional accounts,
reduction does not.

39 /61

Directions?

- Can we reconstruct P-tS as a reductive theory? In terms of
base-extension semantics (B-eS),

- bases can be directly read as reduction operators
- but application combinators, which apply base rules, must be
reinterpreted — choice of operator for reduction?
- then, how to incorporate stateful proof-search procedures?
- But this B-eS view doesn’t address the failure of a search to

find a proof.

- This takes us back to the picture of Dummett / Prawitz /
Schroeder-Heister / Milner, which handles proof-like
structures that are not necessarily proofs

- So, perhaps a reductive P-tS requires a unification of these
two views?

40 / 61

41/61

Additional References

D. Miller. A Logical Analysis of Modeules in Logic
Programming. The Journal of Logic Programming 6(1-2),
1989, 79-108.

R. Milner. The Use of Machines to Assist in Rigorous Proof.
Phil. Proc. Royal Soc. A, 1984.
https://doi.org/10.1098/rsta.1984.0067.

D. Pym and E. Ritter. Reductive Logic and Proof-search:
Proof Theory, Semantics, and Control. Oxford Logic Guides
45. Oxford University Press, 2004.

D. Pym. Reductive logic & proof-theoretic semantics: a
coalgebraic perspective. In: Proc. Proof-theoretic Semantics:
Assessment and Future Perspectives, P. Schroeder-Heister and
T. Piecha (editors), Third Tibingen Conference on
Proof-theoretic Semantics, 27-30 March 2019.
https://publikationen.uni-tuebingen.de/xmlui/
handle/10900/93935.

42 /61

Alexander Gheorghiu, Simon Docherty, and David Pym.
Reductive Logic, Proof-search, and Coalgebra: A Perspective
from Resource Semantics. Revised version to appear, Samson
Abramsky on Logic and Structure in Computer Science and
Beyond, Alessandra Palmigiano and Mehrnoosh Sadrzadeh

(editors), Outstanding Contributions to Logic, Springer, 2023.

http://www.cs.ucl.ac.uk/staff/D.Pym/rlp-sc.pdf.
A. Gheorghiu and D. Pym. Proof-theoretic Semantics and
Tactical Proof. Submitted, 2023.
https://arxiv.org/pdf/2301.02302

A. Gheorghiu and D. Pym. Semantic Foundations of
Reductive Reasoning. To appear, Topoi, 2025.
http://www.cs.ucl.ac.uk/staff/D.Pym/Semantic_
Foundations_of_Reduction_Reasoning.pdf.

J. Harland and D. Pym. Resource-distribution via Boolean
constraints. ACM Trans. on Comp. Logic 4(1), 56-90.
Michael J. Gordon, Arthur J. Milner, Christopher P.
Wadsworth. Edinburgh LCF: A Mechanized Logic of
Computation. LNCS 78. Springer, 1979.

43 /61

Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.
- Consequence.

- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.

44 /61

Schedule

3. Reductive Logic, Tactical Proof, and Logic Programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming, B-eS, and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.

45 / 61

Schedule

- Most of what we will introduce will be quite new to most
people, with a fairly significant philosophical basis, and with
quite a lot of ground to be covered.

- Our approach will mainly be conceptual, with little detailed,
formal proof.

- Nevertheless, the formal details of everything we cover are
available in books and papers that will be referenced.

46 / 61

Additional Material

47/ 61

Generalizing Input-Output

At the level of generality of the coalgebraic picture — remaining
agnostic about the exact nature of the termination test — it is easy
to see how this coalgebraic description could incorporate even more
general examples like the resource-distribution model of Harland &
Pym (Resource-distribution via Boolean constraints, ACM ToCL,
2000), where the test is solutions to Boolean constraints.

More generally still, this can be seen as the use of the classical
(sequent) calculus, as a meta-calculus for the reductive
(proof-search) view of non-classical logics, L.

L-search = LK-search 4+ Conditions

- Dummett’s restriction of multiple-conclusion sequent calculus
for IL

- Essentially modal conditions
- Resource-distribution in substructural logics ...

Actually, it's the and—or combinatorics that matter, with negation

a sometimes-convenient tool.
48 /61

The calculus with constraints
The basic idea is handle multiplicative rules as follows:

- Use additive versions instead.

But, label each formula with a Boolean variable to capture
whether or not its occurrence is ‘real’.

Set up a system of Boolean equations that characterize the
existence of multiplicatively correct proofs.

Solve the equations.

Now we can sketch the set-up of formal calculus that captures this
perspective. We will need a some notation and definitions.

- An annotated formula is a formula ¢ together with a Boolean
expression e, written ¢|e].

- The grammar of Boolean expressions is e ::= x | X | x.e | X.e.
- exp(¢) denotes the Boolean expression associated with ¢.

- A sequent consisting wholly of annotated formulae is known
as a resource sequent.
49 /61

Given a multiset of annotated formulae,
A ={d¢ile1], ..., dnlen] } and a total assignment / of
Boolean variables in A, define A[l] = { ¢1[va], ..., ¢nlva] }.

where each ¢; has value v; under /.

Let A[/]* denote the multiset of annotated formulae in A[/]
s.t. e evaluates to 1 under /.

If V ={x1,...,x,} is a set of Boolean vars, then let V
denote {X1,...,X,}. Let {e}” denote the multiset which
contains n copies of the Boolean expression e.

Let I = { ¢1]e1], ..., Pnlen] } be a multiset of annotated
formulae and let {xi,...,x,} be a set of Boolean vars not
occurring in ['. Then define

[. {Xl, ce ,Xn} = {qbl[el.xl], c e ey gbn[en.xn] }

50 / 61

The calculus with constraints

Now we can give the calculus of constraints for Linear Logic (the
calculus for Bl is similar; See Harland and Pym,
Resource-distribution via Boolean constraints, ACM ToCL, 2000.

Rather than give the whole calculus, we give examples of a few key
types of rules.

- Multiplicatives
- Additives

Structural rules (exponentials).

Axiom

51/61

The calculus with constraints

r,(bl[e],qbg[e] = A - .V gbl[e],A.W F.VE gbz[e],A.W
[, (01 ® ¢2)[e] F A [F (¢1 @ ¢2)[e], A

QR

F,gbl[x.e],gbg[?.e] = A Fl—gbl[e],A r|—¢2[e],A

(&bl F A T T (m&a)e A
Mol -a | TEgle?a
O (1o)[e] - A IT Hl(p)[e], 7A
e1=e =1 Ve € exp(lUA)(e3 =0) Asiom

F, p[el] = p[ez], A

52 /61

The calculus with constraints

We define resource derivations:

a resource derivation is a tree regulated by the rules of the
resource calculus

each formula in the endsequent is assigned a distinct Boolean
variable, together with a partial assighment of the Boolean
variables appearing in the derivation

a resource deriviation is total if its assignment of the Boolean
variables is total, other wise it is partial

it i1s closed if all of its leaves are axioms.

A resource proof is a total, closed resource derivation in which all
the Boolean vars in the endsequent and all principal formulae are
assigned the value 1.

53 /61

Logical theory

- Soundness: Let I = A be a resource proof. If A has a
resource proof R with Boolean assignment /, then the linear
proof corresponding to R is a linear proof of [/]* - A[/]}.

The proof proceeds by induction on the structure of resource
proofs. As an example, consider the case for ®R.

If the last rule of the resource proof is ®R, then

A= ¢1[1], A/, and T.V F ¢1[1], A’ W and T.V F ¢o[1], A’ W
have resource proofs, where V and W are disjoint sets of
Boolean vars. By IH, there are linear proofs of

(T = (o0)[1], (A W)[I]! and other one, so there is a
linear proof of (I'.V)[/]}, (T.V)[I]} F (¢1 @ ¢2)[I], A'[I]}, as
required.

54 / 61

Logical theory

- Completeness: If I' = A has a proof @ in the linear sequent
calculus, then there are disjoint sets of Boolean vars V and W
such that .V = A.W has a resource proof R and the linear
proof tree corresponding to R is ®.

The proof proceeds by induction on the structure of proofs in
the linear sequent calculus. It is mainly bureaucratic. We
sketch the case for QR.

The following (immediately provable) lemma is useful: If
[A has a closed resource derivation, then I, ¢[0] - A and
[¢[0], A also have closed resource derivations.

55 /61

Logical theory

If the last rule in the linear proof ® is ®R, then we have that
[= Fl, [> and A = gbl X q52 st. {1 F ¢1,A1 [¢2,A2 are
provable in linear sequent calculus.

By IH, there are disjoint V1, Vo, Wi, Wo sit. T1.V1 F o1, A1.W
[5.Vo | ¢, A>. W5 have resource proofs.

By the lemma above, there are closed resource derivations of
[1.V1,2.{0}" F @1, A1. Wi, A2.{0}" and the other one. It follows
that there are V and W and a total assignment / of V U W s.t.
(M.V1, M. Vo).V = 1, (A1 Wq, Ap. W) W and

(Fl. \/1, F2. V2)V - gbl, (Al Wl, Az. WQ)W have resource proofs,
and the result follows by application of the ®R rule for resource
derivations.

56 / 61

Strategies revisited

- The formal set-up we've establish allows us to give a precise
account of the computational strategies — lazy, eager, and
intermediate — sketched above.

- The construction of a resource proof — which,
combinatorially, is additive (cf. classical sequent calculus) —
generates sets of Boolean constraints.

- Lazy distribrution solves one multiplicative branch’s worth of
Boolean constraints at a time.

- Eager distribution waits until all leaves are closed before
attempt to solve the set of constraints.

- Intermediate distribution a specified finite number of
multiplicative branches is solved, before proceeding to the next
batch.

57 /61

Example

- Reca” P,P,q,q l_ (p®q) ®(p®q)

- A resource proof looks like this (abusing notation here and

there):
P1

P>

Ps3

plxi], plxe], glxs], glxa] F p® q p[x1], p[*2], q[X3], q[xa] - p® q

p
. p
p
p

PP g, qF(PRq) R(P®q)
where the leaves are as follows:

X1 Y1)

X1. 1]

X1.21]

X1.41

s P
> P
» P

Nl

| X2.Y2]
| X2. Y2

X0.20]

X2.22:

» q
» d

X3.23]

| X3-Y3]

X3.Y3]

» q
, d
, q

Xa4.24)]

:X3 .Z3:

| X4.Y4]

Xa-Y4

:X4 .Z4:

58 / 61

The lazy strategy yields the following sequence of constraints and
solutions:

Leaf Constraints added Solutions

59 / 61

The eager strategy would collect the entire set of equations below
and solve them simultaneously:

x1.y1 =1.x.y20 =0, x3.y3 =0, x4.y4 = 0
x1y1=0.0.99=0,x3.yv3 =0, x4.y4 =0
x1.21=0.%0.22 =0, x3.23 =0, X4.24 = 0
x1.21=0.X%0.22=0,x3.23 =0, Xx3.z4 = 1

Intermediate strategies introduce more structure solutions between
these two extremes.

60 / 61

Other bits and pieces

- Stephen Read, in his book Relevant Logic, gives a systematic
account of a (large) family of relevant systems through a few
simple rules.

- The Boolean constaints approach can be applied to this
family.

- Bl is not in that family, but, as remarked, the approach
applies. (Bl is closely related to DW.)

- As usual, see Harland and Pym, ACM ToCL 2000, for details.

- A key, closely related, idea is that of abduction, usually
attributed, in modern logic at least, to Charles Sanders Pearce

(1839-1914).

- Abduction is the basis of the INFER static analyser based on
Separation Logic.

- Conjecture that these methods can be of help in that work.

61/61

