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Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.

- Consequence.
- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.
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Schedule

3. Reductive Logic, Tactical proof, and Logic Programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.
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Schedule

- Most of what we will introduce will be quite new to most
people, with a fairly significant philosophical basis, and with
quite a lot of ground to be covered.

- Our approach will mainly be conceptual, with little detailed,
formal proof.

- Nevertheless, the formal details of everything we cover are
available in books and papers that will be referenced.
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| ecture 2: Base-extension Semantics for Intuitionistic
Propositional Logic

Mark Twain was an inferentialist:

It's not what you don't know that gets you into trouble.
It's what you know for sure that just ain'’t so.

This is the lesson of inferentialist epistemic logic.
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Base-extension Semantics for Intuitionistic Propositional
Logic

- We now turn our attention from the validity of proofs to the
validity of formulae.

- Tor Sandqvist — Base-extension Semantics for Intuitionistic
Sentential Logic, Logic Journal of the IGPL, 2015 — has
given an elegant B-eS for intuitionistic propositional logic.

- This analysis demonstrates very clearly the basic principles of
B-eS, so we'll spend some time today looking at how it works.

- We'll also take a quick look at how the construction of this
paper can be set up in categorical logic, and see that
everything in the B-eS for IPL is formally natural.

And we'lll conclude with some brief thoughts on a connection
between B-eS and P-tV (from yesterday).
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Base-extension Semantics for Intuitionistic Propositional
Logic: Background

- In many ways, B-eS will seem very familiar:
- At its core is a ‘support’ relation for validity that closely
resembles a satisfaction relation in, say, Kripke semantics.
- We establish familiar-looking soundness and
completeness theorems (again, cf. Kripke semantics).
- But the base case of the relation, for atoms, is very different:
- In Kripke semantics, say, the base case of satisfaction
goes something like

wEp iff weV(p)

where )V is a ‘valuation’ of the atoms in the model.
- In B-eS, however, we have something like

H—Bp iff I—Bp

- This difference lies at the core of the nature of the semantics
and has profound consequences for the theory.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Background

There's a backstory to Tor's work on IPL:

- Incompleteness (Piecha and Schroeder-Heister)
- Completeness (Goldfarb, Stafford)

- Tor Sandqvist’'s completeness theorem
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Base-extension Semantics for Intuitionistic Propositional
Logic: Background
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Base-extension Semantics for Intuitionistic Propositional
Logic: Derivability in a Base

- We assume a language containing L. and a denumerably
infinite collection of atomic/ sentences, and closed under the
binary sentential connectives D, A, and V.

- Lower-case italic letters will be used to refer to basic
sentences, upper-case italics to finite sets thereof.

- For sentences in general we shall use lower-case Greek letters,
and for finite sets of sentences, upper-case Greek letters.

- The usual conventions for suppressing set-theoretic notation
will be observed, so that, in the context of symbols such as -
orl-, P,Q means ‘PU Q’, ‘P, ¢ means ¢ U {¢}, etc..
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Base-extension Semantics for Intuitionistic Propositional
Logic: Derivability in a Base

- By a basic rule we mean an ordered pair (Q, r), where r is a
basic sentence and @ a finite (possibly empty) set of pairs of
the form (P, q), where g is a basic sentence and P a (possibly
empty) set of basic sentences: that is,

[P1] [Pn]
di o dn
r
- We write (P1 = q1) , ..., (Px = qx) = r for

AP q1)s -5 (Pryqr) }5 1)

- Intuitively, the rule is read: Given derivations of g; through
qx, to infer r, discharging from the derivations in question
premiss sets P; through Py, respectively.

- A base is a set of basic rules.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Derivability in a Base

- Given a base B, the relation 5 of derivability in B of a basic
sentence from a finite set of basic sentences is inductively
generated by the following two clauses:

- (Ref): S,pFgp
- (App): If ((P1= q1),...,(Px = qix) = r) € B and
S,PiFggiand ...and S, P, b5 g, then S ki r.

- The relations 5 are central to the semantics.

- Key philosophical point: base rules are pre-logical — they do
not reference the (object-level) logical constants.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Derivability in a Base

A couple of lemmas about 3 are needed:

- Lemma (Atomic Weakening). If P 3 g, then U, P 3 q.

- Lemma (Atomic Base-extension): T kg u just in case, for
every C D B, if ¢ t, for every t € T, then ¢ u.

Their proofs are straightforward: see Sandqvist's Base-extension
semantic for intuitionistic sentential logic.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Semantics and Intuitionistic Derivability
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Base-extension Semantics for Intuitionistic Propositional
Logic: Semantics and Intuitionistic Derivability

(At)
(1)
(V)

(A)
(2)
(Inf)

F5 p
Fp L

Fg oV Y

Fg & A Y
Fg @ D
for© £0, ©lFg ¢

iff
iff
iff

iff
iff
iff

=B P

for all atomic p, IFg p

for every atomic p and every
COB, if ke pand ¢ ¢ p,
then IF¢ p

IFg @ and IFg ¥

¢ kg
for every C D B, if IF¢ 0, for every

§ € O, then IFc &

- The use of base extension (recall Prawitz’s justification)

transmits to O via (Inf)

- Could also use the generalized form for A: IFg ¢ Ay iff for
every atomic p and every C D B, if ¢, IF¢, then ¢ p.
- |5 gives a conservative extension of 5 to the full language:
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Base-extension Semantics for Intuitionistic Propositional

Logic: Semantics and Intuitionistic Derivability
The clause for L may at first sight seem a bit surprising, but note:

The given form yields the usual intuitionistic introduction and
elimination rules for negation, defined as =¢ = ¢ D L.

As well as Ex Falso Quodlibet, for any ¢,

L

¢

- So
®1 ®2

1
Recall the set of atoms is assumed to be denumerably infinite.

See Dummett's The Logical Basis of Metaphysics — where the
identification of L with the conjunction of all atoms is explained
through ‘harmony’ — Sandquvist's B-es for IPL, and his notes at

https://sites.google.com/view/pts—symposium-uk/schedule.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Semantics and Intuitionistic Derivability

And what about the clause for disjunction?

- Why not just something analogous the Kripke-style clause, say

Fg &V iff kg ¢ or kg i) ?

- Technical reason: the given clause works, giving completeness,
whereas the Kripke clause does not. See Piecha and
Schroeder-Heister, Sandqvist, and so on.
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Base-extension Semantics for Intuitionistic Propositional

Logic: Semantics and Intuitionistic Derivability
- But why, conceptually?
- Semantics is based on proofs, and this is the
proof-theoretic form (see NJ):

9] ]

V
PVY X X g
X
Hence the technical result, essentially.
- Which corresponds to the 2nd-order definition of the

connectives.
- And we seek to ground in atoms, and note that
implication is handle as pure consequence, via (Inf).
- Can argue that conjunction should also be given in this form.
It can, and it works. See various papers by

Gheorghiu/Gu/Pym.

18 / 50



Generalized A

- Could also use the generalized form for A:

lFr & A iff for every atomic p and every C D B, if
@, IFc p, then IF¢ p.

[0, Y]
GANY X
X

N E
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Base-extension Semantics for Intuitionistic Propositional
Logic: Semantics and Intuitionistic Derivability

- Theorem (Atomic completeness). T IFp q iff T 5 g.

The proof uses the atomic base-extension lemma.

- Lemma (Base extension and transitivity properties)
(a) If Oz ¢ and BC C, then O IF¢ 6.

(b) © IFg ¢ iff, for every C D B, if IF¢ 8, for every 6 € O,
then © k¢ ¢.

(c) © IFg ¢, for every ¢ € ® and, moreover, ® -z 9, then
O Ik .

When IFg ¢, we say that B supports ¢. If every base supporting all
members of © supports ¢, we write © |- ¢ and call the inference
from to © to ¢ valid. An individual sentence ¢ is called valid if

- ¢. By (b) of the lemma above, we have that © I ¢ just in case
© kg .
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Base-extension Semantics for Intuitionistic Propositional

Logic: Semantics and Intuitionistic Derivability

NJ derivability (I-):

(R)
(>1)
(2 E)

(A1)
(AE)

(V1)
(VE)
(LE)

©,0F ¢

if ©,0F 1, then © F ¢ D
fOF@pand ©F ¢ DY, then O F ¢

if©OF ¢ and © -1, then © F ¢ A

fOF oA, then ©F ¢ and © - ¥
fOF@porOF 1y, then ©OF ¢V
fOFoVYyand ©,0F xy and ©,¢ F x, then © |
if ©F L, then © F ¢
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Base-extension semantics for Intuitionistic Propositional
Logic: Soundness

Theorem (Soundness)
If = by &, then = IF €

Proof.

The set-up (see the lemma above) ensures that I is transitive in
the sense that if © IF ¢, for every ¢ € ®, and if ® I 1), then
O IF 1.
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Base-extension semantics for Intuitionistic Propositional
Logic: Soundness

By the inductive definition of -, it is sufficient to prove the
following:

(R ©,0l ¢
(O 1) ifO,6IF 4, then OIF ¢ D o
(DE) ifOlF¢ OIF¢ D, then ¢
(A1) if©IF ¢ and © IF 1), then © IF ¢ A2
(NE) if©IF¢ A, then ©IF ¢ and © I 2
(VIY if Ol orOIF o, then © IF ¢V o
(VE)Y ifOIF¢Viand©,¢l-x and ©,¢ IF y, then O IF x
(LEY if©IF L, then © IF ¢
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Base-extension semantics for Intuitionistic Propositional
Logic: Soundness

These are proved by induction on the structure of the cases,
requiring the transitivity property mentioned above.

Most of the cases are straightforward, but (VE)' is a bit more
delicate thna the others. See Sandquvist.
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Base-extension semantics for intuitionistic propositional
logic: Completeness

Theorem (Completeness)

IFS I €, then = Fpy &.

- The proof of completeness requires the construction of a
'special base’ that contains exactly all of the atomic instances
of the rules of NJ.

- This is weakly analogous to the construction of a term model
in the proof of completeness for NJ and Kripke models.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Completeness

- Although conceptually delicate, the proof of completeness is,
in comparison perhaps to model-theoretic completeness
theorems, technically pleasingly elementary — but delicate.

- The strategy is to simulate an NJ proof using basic sentences
in a ‘special base' that captures the specific inference.
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Special Base

- To see the idea, suppose that © IF (, and that a member of ©
contains as a subformula the conjunction p A q.

Corresponding to the natural deduction rules allowing
inference from p and g to p A g, from p A g to p, and from
p A g to g, the specially tailored base N/ will contain, for a
basic sentence r arbitrarily selected to represent p A g, the
rules, where r, representing p A q, is fresh:
N (=p), (5q)=r
‘NE" (=r)=pand (=r)=q.

- The key step is the construction of the ‘special base’.
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Base-extension Semantics for Intuitionistic Propositional

Logic:

Completeness

How is the ‘special base’ constructed?

Let [ be the set containing all members of = U & and their
subsentences. With every non-basic v € ' associate a basic

sentence ~” such that if 41 # >, then y? + 75.
Also, for every basic g € T, set g” = g.

Conversely, with every basic p associate a sentence p? such

that, for every 7, (7°)% =~ (basic or not) in . If p is not in
the range of —°, set p? = p — so that — is an extension of

the inverse of — defined for all basic sentences.
For any ® and P, write * = {¢’ | ¢ € &} (and
P*={p’ | peP}).
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Base-extension Semantics for Intuitionistic Propositional
Logic: Completeness

So the strategy is to construct a base N/ mimicking the rules of
natural deduction by way of —” such that

(a) for every v € T and every B D N, IFg 4 iff Ik v
(b) for any P and g, if P s g, then P% F g°.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Completeness

These properties of N/ will yield the completeness result in the
following way:

- First, from our hypothesis that © IF (, it follows that
O Iy ¢
because, if B N and kg £, for every £ € ©°, then by (a),

k5 & for every £ € O;

so, because © IF ¢, IF5 ¢, so that IF5 ¢, by (a).

- Then, by the earlier theorem that T I g iff T 5 g, we have
©" Fur ¢B, so that by (b), (©°)! F (¢")%, which is just that
© F (, as desired.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Completeness

N is defined as the base containing all and only rules of the
following forms (and the representing atoms):

(1) (¢" = ¢°) = (¢ DY)

(2) (= (¢2¥)).(=¢") =

(3) (= &), (=v") = (o A¥)

(4) (= (pAY)) = ¢’

(5) (= (pAY)) =

(6) (= ¢") = (¢ V)

(7) (=¢") = (¢ Vo)

(8) (= (¢ V1)), (¢ = p), (¥ = p)=p
9) (= L) =p
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Base-extension Semantics for Intuitionistic Propositional
Logic: Completeness

- The remainder of the proof is a slightly intricate argument by
induction on the structure of everything in sight to establish
properties (a) and (b), as stated above.

- See Sandqvist's Base-extension semantics for intuitionistic
sentential calculus for the details.
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Base-extension Semantics for Intuitionistic Propositional
Logic: Disjunction
Just a few remarks to reflect upon, before we move on:

- Our (Sandqvist's) use of the clause

(V) kg ¢V 1y iff for every atomic p and every
COB, if ¢Ike pand ¥ k¢ p,
then IF¢ p

corresponds to the VE rule in NJ. So, given our construction,
Is completeness surprising? Kripke models get lucky.

- It also corresponds to Beth's treatment of disjunction in
model-theoretic semantics:

wE=oVy iff uEe@andviEY, wherew=u+v

See Lambek and Scott for a discussion.
- It also corresponds to the second-order definition of

disjunction (see, for example, Troelstra and Schwichtenberg
for a discussion).
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Base-extension Semantics for Intuitionistic Propositional
Logic: Disjunction

According to Sandquist, ‘If -5 is taken to signify hypothetical
acceptance on the basis of B, is it intuitively reasonable to require
that I ¢ or I-p 1 whenever IFg ¢ V 1?7 In the view of this author,
no: one may perfectly well take it as hypothetically given that at
least one of ¢ and v holds good without committing oneself
specifically to the one or the other. What must be acknowledged
in such a state is merely that whatever follows from ¢ as well as
from 1 must be accepted outright—albeit, as always, conditionally
on whatever basic rules have been adopted. And this, of course, is
just the idea underlying our clause (V).’
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

- There's a serious tradition of capturing logic, both proof
theory and model theory, in the language of category theory.

- | include at the end some introductory references — a biased
collection, I'm afraid.

- The connections between P-tV and BHK suggest some things
will hang together there.

- But a categorical treatment of B-eS (for IPL) is quite
informative.

- | give a brief introduction /summary, based on Categorical
Proof-theoretic Semantics, by Pym, Ritter, and Robinson,
Studia Logica, 2024.
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

- The main observation is perhaps that the soundness and
completeness results are characterized by natural
transformations in a category of presheaves.

- The status of disjunction is nicely illuminated — it is not a
coproduct, but rather is constructed naturally according to the
2nd-order definition.

- Connections with continuation semantics are exposed. (We
con't get to this today.)
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

- We work with judgements of the form

X1 D Q1yee s Xi i Piyee oy Xm i Om E P(x1, ..oy Xm) ¢ @

read as: if the x;s are witnesses for proofs of the ¢;s, then
d(x1,...,Xm) denotes a proof of ¢ constructed using the rules
of NJ.

- If ®; is a specific proof of ¢;, then it can be substituted for x;
throughout this judgement to give

X1 - qbla"'axm : ¢m - q)(Xl?"'?Xm)[cbi/Xi] : ¢

where the assumption x; : ¢; has been removed and the
occurrence of x; in ® has been replaced by ;.

- We are concerned in the first instance with derivations that

are restricted to the rules of a base.
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

We introduce terms for derivations in a base as
O i=x| Or(P1,...,Pm)

where we work with base rules

[P1] [Pn]

g1 -.- dn °

(Ref)

(X:P),x:pkpx:p

(X:P),(XiZPi)l—B(b,'Zq,' I':].,...,n

(Appr) (X : P)Fg Pr(P1,...,Pp) i r
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

The categorical framework:

- We interpret formulae in presheaves over a base category of
op
‘worlds’: Set””

- This category is ‘cartesian closed’ — it has products
(conjunctions) and exponentials (function spaces,
implications).

. . . o)
- The interpretation a formula ¢ is a functor [¢] : W P, Set.

- The category of worlds is constructed from bases and proofs
in bases.
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

- Base category: The interpretation of an atomic proposition p

op
in Set” " is the functor whose value at ‘world’ (B, (X:P)) is
the set of derivations of p in B from hypotheses (X:P). The
action on morphisms of W is given by substitution.
We define a category VV as follows:

- Objects of W are pairs (B, (X:P)), where B is a base
and (X:P) is a context

- A morphism from (B, (X:P)) to (C,(Y:Q)) is given by
an inclusion of the base C into B and a set of derivations
X : Ptk ®;:qi, where @ ={qg1,...,9m}. We write such
a morphism as (®1,...,P,,)

- ldentity and composition straightforward.
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Base-extension Semantics for Intuitionistic Propositional

Logic: A Category-theoretic View

Define a functor [¢] : W — Set by induction over ¢ as follows:

- [p(B, (X : P)) is the set of derivations (X:P)Fg ®:p. Any
morphism (®1,...,®,,) from (B, (X:P)) to (C,(Y:Q)) maps
a derivation (Y:Q) ¢ ®:p, which is also a derivation
(Y:Q) Fp ®:p, to the derivation
(X:P)Fp ®[P1/x1,...,Pn/xn]: p.

— [[¢ A 1] is the product of the functors [¢] and [¢/]

- [¢ D ¥] is defined as [[¢] D [«] (the exponential functor)

- [¢ vV ¢] is defined as follows: let F = [[¢]l, G = [[+/], and
K((B,(X:P)),p) = (F > [pl) > (6 > [p]) > [P(B, (X:
P)). This can be extended to a functor W x A — Set.
Then [[¢ V 9] is defined as V4K (a construction that handles
the form of the V-clause in the category)

- [L] is defined as follows: let
K((B,(X:P)),p) =[pl(B,(X:P)). This can be extended to
a functor W x A — Set. Then [ L] is defined as V4 K.
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

If F and G are functors between categories C and D, then a
natural transformation n between F and G is family of morphisms

that satisfies the following:
- 1 must associate to every object x in C an arrow
nx : F(x) = G(x)
- forevery f : x =y in C, n, o F(f) = G(f) o nx, where o
denotes composition of morphisms.

Informally, the notion of a natural transformation captures that a

given map between functors can be done consistently over an
entire category. In the situation above, we refer to the structure

being ‘natural in x'.
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Base-extension Semantics for Intuitionistic Propositional
Logic: A Category-theoretic View

- Since formula ¢ (and so contexts [') are interpreted as
presheaves, consequences @ : [ = ¢ are interpreted as maps
between functors.

- It turns out that everything is formally natural.

- Lemma: Algebraic Soundness. Suppose I IF5 ¢. Let W be
the category Wh. Then there exists a natural transformation
ns:[M1"Y — L™

- Lemma: Algebraic Completeness. Consider any base B. Let

W' be the category WB./ If there e,xists a natural
transformation ng:[IT" — [¢]" . then I I3 ¢.

The usual logical statements of soundness and completeness follow.
The latter employs the ‘special base’, as previously described.
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Base-extension Semantics for Intuitionistic Propositional
Logic: B-eS and P-tV; B-eS and Logic Programming

A few pointers:

- B-eS and P-tV: Gheorghiu and Pym, Studia Logica, 2025,
have shown that, for IPL, its P-tV semantics with canonical
proofs based on elimination rules can be recovered from its
B-eS, so giving a partial resolution of Prawitz's conjecture.

- B-eS and Logic Programming: Gheorghiu and Pym, Bulletin
of the Section of Logic, 2023, have shown that the least-fixed
point construction on the Herbrand universe that gives the
semantics of logic programs (defined, following Miller, through
hereditary Harrop formulae) can be used to reconstruct the
metatheory of IPL’s B-eS. Too much to discuss here, but a lot
is going on there, and the constructions are informative.

- Tor Sandqvist, Base-extension Semantics as Meaning Theory.
5th P-tS Symposium, London, February 2025. Manuscript:
https://sites.google.com/view/pts-symposium-uk/schedule
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Additional References

Warren Goldfard. On Dummett’'s “Proof-theoretic
Justifications of Logical Laws". In Advances in
Proof-Theoretic Semantics.

Will Stafford and Victor Nascimento. Following All the Rules:

Intuitionistic Completeness for Generalized Proof-Theoretic
Validity. Analysis, 10.1093/analys/anac100, 2024.

Tor Sandqvist. Atomic bases and the validity of Peirce’s law.
Presented at “The meaning of proofs: Celebrating the World
Logic Day’, 2022:https:
//sites.google.com/view/wdl-ucl2022/home.

Tor Sandqvist. Base-extension Semantics as Meaning Theory:
Some philosophical reflections on negation, disjunction, and
quantification. Available from https://sites.google.com/
view/pts-symposium-uk/schedule.

J. Lambek and P. Scott. Introduction to higher-order
categorical logic. Cambridge University Press, 1986.
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Additional References

- D. Pym, E. Ritter, and E. Robinson. Categorical
Proof-theoretic Semantics. Studia Logica,
https://doi.org/10.1007/s11225-024-10101-9, 2024.

- A. Gheorghiu and D. Pym. Definite formulae,
Negation-as-Failure, and the Base-extension Semantics of
Intuitionistic Propositional Logic. Bulletin of the Section of
Logic, 2023. Manuscript:
http://www.cs.ucl.ac.uk/staff/D.Pym/NaFP-tS.pdf.

- S. Mac Lane and |. Moerdijk. Sheaves in Geometry and Logic.
Springer, 1994.

- R. Seely. Hyperdoctrines, Natural Deduction, and the Beck
Condition. Math. Log. Quarterly 1983.
https://doi.org/10.1002/malq.19830291005.

- T. Streicher. PhD thesis, Passau, 1988.

- T. Streicher. Semantics of Type Theory: Correctness,
Completeness and Independence Results. Birkhauser, 2012.
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Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.

- Consequence.
- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.
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Schedule

3. Reductive Logic, Tactical Proof, and Logic Programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.
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Schedule

- Most of what we will introduce will be quite new to most
people, with a fairly significant philosophical basis, and with
quite a lot of ground to be covered.

- Our approach will mainly be conceptual, with little detailed,
formal proof.

- Nevertheless, the formal details of everything we cover are
available in books and papers that will be referenced.
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