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Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.
- Consequence.
- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.

2 / 59



Schedule

3. Reductive Logic, Tactical Proof, and Logic Programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming, B-eS, and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.
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Schedule

- Most of what we will introduce will be quite new to most
people, with a fairly significant philosophical basis, and with
quite a lot of ground to be covered.

- Our approach will mainly be conceptual, with little detailed,
formal proof.

- Nevertheless, the formal details of everything we cover are
available in books and papers that will be referenced.
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Lecture 1: What is Proof-theoretic Semantics?

This first lecture will be high level and informal.

We may not cover all the slides.

More text than normal on slides to help as notes.
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Introduction

- Inferentialism is a philosophical/metaphysical position that
seeks to explain meaning not in terms of denotation but
rather in terms of inferential connections between sentences
and the role of terms in those sentences — here we conceive
of sentences and terms in a quite general sense — in
explaining those connections.

- In modern times, it’s most prominent advocate is Robert
Brandom:

- Making it Explicit, Harvard 1994
- Articulation Reasons, Harvard 2001
- Reasons for Logic, Logic for Reasons, with Ulf Hlobil,
Routledge 2024.

- See also Yaroslav Peregrin, Inferentialism: Why Rules Matter,
Manmillan 2014.

- There is a substantial and quite lively literature.
- Prehistory includes Frege, Carnap, and Wittgenstein, and
more.
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Introduction

- Significant connections with the philosophy of language.

- And with natural language semantics

- See Nissim Francez’s book, Proof-theoretic semantics, College
Publication 2015.

- We won’t explore this aspect any further in these lectures.
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Introduction

Proof-theoretic semantics (P-tS) can, in modern terms, be seen as
a logical realization of inferentialism.

- Some key figures, stressing our focus in these lectures: Prawitz
Dummett, Martin-Löf, Kowalski, Peter Schroeder-Heister and
Thomas Piecha, and the Tübingen school, Tor Sandqvist.

- Other longstanding key figures include Sundholm, Wansing,
Pereira, Fereira, Fereira, Goldfarb, Steinberger, and many
other fine contributors. In recent years, joined by people such
as Ayhan, Piccolomini d’Aragona, Sta↵ord, Tranchini,
Gheorghiu, Gu, Eckhardt, Buzoku, Pimentel, Ritter, Robinson,
and many other fine contributors.

For a snapshot of the community:

https://sites.google.com/view/ptsnetwork/pts-seminars

Sincere apologies for brevity and omissions.
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Logical Consequence

Model-theoretic Semantics:

- Logical consequence explained in terms of models.

- Standard definition — of validity — as articulated by Tarski:

� |= � i↵ for all models M, if, for all  2 �, |=M  ,
then |=M �

where M denotes a model and � a set of formulae.

- Also write � |=M � . . . .

- So, consequence amounts to transmission — in the sense of
implication in the (usually classical) metatheory — of truth.

- As Peter S-H points out, the categorical concept of truth is
prior to the hypothetical concept of consequence.
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Logical Consequence

- Proof-theoretic consequence is usually expressed in terms of
derivability in a formal system, such as

- Hilbert-type axiomatic systems,
- Gentzen-type natural deduction systems, L- and N-type,
and

- tableaux systems, often labelled.

- A consequence � `K � is derivable in a formal system if it can
be generated from elements of � using the rules, including
axioms, of K.

- The justification of inference or deduction in K is achieved by
showing that the rules of K are correct, so that a derivation in
K establishes a valid consequence; that is,

� `K � implies � |= �

- This is usually called soundness.

- A few things to note here.
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Logical Consequence

- If the converse of (� `K � implies � |= �) also holds, so that
validity implies provability — usually called completeness —
then the proof-theoretic consequence relation matches the
model-theoretic one.

- Establishing completeness often involves constructing a term
model in which provability and model-theoretic consequence
coincide exactly.

- Establishing completeness for validity then involves a
contrapositive against all models. See, for example, van
Dalen’s Logic and Structure. (Though see Gheorghiu and
Pym, Semantical Analysis of the Logic of Bunched
Implications. Studia Logica (2023) for a di↵erent approach to
completeness, beyond our scope here.)

11 / 59



Logical Consequence

Before moving on, let’s note a few things:

- In this discussion so far we have presumed a notion of ‘model’.

- And we have taken truth as the fundamental foundation of
consequence and therefore the basis of the justification of
inference.

- Defining models can be a significant undertaking — e.g.,
Kripke models of intuitionistic predicate logic; see, again, van
Dalen’s Logic and Structure — and they can of course be
quite big.

- As Wilfrid Hodges has pointed out very carefully,
model-theoretic semantics and model theory are really quite
di↵erent things.

- Proofs are not ‘just syntax’ as is often implied. Rather, proofs
are mathematical objects with static and dynamic structure,
just like other mathematical objects.
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Logical Consequence

- Prawitz explains in Logical Consequence from a Constructivist
Point of View, M-tS conflates the meaning of the logical
constants with the meaning of truth, since logical structure is
defined in terms of interpretations.

- For example, if T is defined as the least set satisfying certain
properties, including ‘� ^  2 T i↵ � 2 T and  2 T ’, then
no information is gained about ^ by saying that it satisfies
this relationship.

- Moreover, M-tS fails to provide a genuinely consequential
relationship between � and �.
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Logical Consequence

- Tennant, in Entailment and Proofs, observes that a
consequential reading of a consequence judgment � ` �
implies that � follows from � by some valid reasoning. This
requires a notion of a valid argument that encapsulates the
forms of valid reasoning.

- We must, therefore, explicate the semantic conditions required
for an argument that demonstrates

 1, . . . , n, therefore, �

to be valid.
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Logical Consequence

- So, that’s how we think about model-theoretic semantics.

- However, there’s always been an alternative view, in which
inference is taken as the foundation for semantics.

- Following Prawitz, as above, these semantic conditions ought
to be based on the logical structure of  1, . . . , n and some
fixed laws of thought.

- ‘Meaning-as-Use’ is a rather established idea:

- Wittgenstein, Brandom, etc., as discussed.
- The Brouwer-Heyting-Kolmogorov semantics (weakly, I
guess).

- Structural Operational Semantics (strongly).

- Also connections to simulation modelling (Kuorikoski).
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Logical Consequence

- Consequently, we abandon the denotationalist perspective on
logic, on which M-tS rests, where meaning is given relative to
interpretation.

- Instead, we adopt the inferentialist perspective, in which
meaning is given in terms of inferential relationships, that we
have discussed.
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Proof-theoretic Semantics (P-tS)

- Here are going to explore Proof-theoretic Semantics (P-tS),
paying attention to two logical points of view:

- Proof-theoretic Validity (P-tV) — the tradition of
Prawitz (starting from Ideas and Results in Proof
Theory) and Dummett (The Logical Basis of
Metaphysics) — in which we ask how can the validity of
proofs be defined in terms of inference

- Base-extension Semantics (B-eS) — dispenses with
logical proofs as such and is concerned with defining the
validity of formulae in terms of inference.

- B-eS will be the primary focus of these lectures, but we will
begin — for context and for historical completeness — with a
summary of P-tV.
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Proof-theoretic Semantics (P-tS)

Dummett (see The Logical Basis of Metaphysics) on circularity in
semantics:

- Fairly common philosophical position: no e↵ective justification
of a logical law is possible.

- Why? Because all justifications require reasoning/argument,
necessarily employing the target logical law.

- Arises because logicians tend to regard soundness and
completeness theorems as being of value that is independent
of justifications of meaning: mathematically, we are typically
concerned with the relationship between model-theoretic and
proof-theoretic consequence, without unpacking how models
confer meaning beyond their having independent
mathematical existence.

- Prawitz delivers this attack against model-theoretic semantics
in On the idea of a general proof theory.

- And P-tS gives us a degree of control.
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Proof-theoretic Semantics (P-tS
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Proof-theoretic Validity (P-tV)

- How can the validity of a proof be judged inferentially?

- Key background, at least in historical terms, builds on the
idea of natural deduction rules, which ‘introduce’ and
‘eliminate’ the logical constants.

- The relationship between introduction and elimination rules
leads to notions of ‘reduction’ on proofs.

- Key references her are Gentzen’s Untersuchungen uber das
logische Schließen [Investigations into Logical Deduction]
(1934) and, especially, Prawitz’s Natural Deduction: A
Proof-Theoretical Study (1971).

- Let’s have a very brief reminder of what a natural deduction
system looks like.
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Proof-theoretic Validity (P-tV)

The calculus NJ:

�1 �2
�1 ^ �2

^ I
�1 ^ �2
�i

(i = 1, 2) ^ E

�i
�1 _ �2

(i = 1, 2) _ I

[�1] [�2]
...

...
�1 _ �2 � �

�
_ E

[�]
...
 

� �  
� I

� � �  

 
� E
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Proof-theoretic Validity (P-tV)

Normalization:

- Intro-Elim reductions:
���
···  
 

!I
�!  

··· �
�

!E
 

normalizes to

�
···
 

- A point to note is that normalization steps in natural
deduction correspond to (�) reduction steps in the �-calculus.

- Correspondingly, (�x : [�].[ ])[�] !� [ ][ [�]/x ] in the
�-calculus.

- The required set of reductions is quite large and quite delicate
to identify: see Girard, Lafont, and Taylor’s Proofs and Types
for a clear and e�cient presentation.

22 / 59



Proof-theoretic Validity (P-tV)

- A key motivation lies in the following remarks by Gentzen (see
Szabo’s Collected Papers of Gerhard Gentzen):

The introductions represent, as it were, the ‘definitions’ of
the symbols concerned, and the eliminations are no more,
in the final analysis, than the consequences of these defini-
tions. This fact may be expressed as follows: In eliminating
a symbol, we may use the formula whose terminal symbol
we are dealing only ‘in the sense a↵orded it by the intro-
duction of that symbol’.

- Prawitz used his normalization theory for NJ to develop a
semantic concept reflecting this intuition. Dummett later
developed the philosophical underpinnings of the idea.

- Later, we shall see that this is very far from being the only
way to think about things.

23 / 59



Proof-theoretic Validity (P-tV)

- The basic idea of P-tV in the Dummett-Prawitz tradition is
that arguments are valid by virtue of their form.

- One begins with some class of canonical proofs relative to
which validity is computed. Arguments are valid if they
represent a canonical proof, with basic premisses:

- priority of canonical proofs
- reduction of closed non-canonical arguments to canonical
ones

- the substitutional view of open arguments — open
arguments are justified by their closed instances.

See Schroeder-Heister’s Validity Concepts in Proof-theoretic
Semantics for a formal account of this version of P-tS.

- Closely related to the Brouwer-Heyting-Kolmogorov (BHK)
interpretation of intuitionism (see, e.g., Schroeder-Heister’s
Model-Theoretic vs. Proof-Theoretic Semantics.

- P-tV is fundamentally a constructional semantics.
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Bases (Atomic Rules)
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Bases (Atomic Rules)

- Axiom case and simple case (Level 1):

p
Axiom

p1 . . . pk
p

For example, with apologies to Tor and Tammy,

Luna is a fox Luna is female

Luna is a vixen

Luna is a vixen

Luna is female

Luna is a vixen

Luna is a fox

- Interesting case (Level 2):

[P1] [Pn]
q1 . . . qn

r

with dischargeable hypotheses — we’ll return to this later

– Lots of other cases, with subtle choices
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Dischargaeable Hypotheses

- Does discharging arise in atomic systems?

- Examples may readily be found in natural language.

- Conceptually related in such a way as to call for
hypothesis-discharging modes of inference: if I accept that
Sandy is a sibling of Mary, then I am committed to accepting
anything that follows both from the hypothesis that Sandy is
a brother of Mary and from the hypothesis that Sandy is a
sister of Mary.

- So we have, for any sentence p and using ) for
consequences, the rule

() ‘Sandy is a sibling of Mary’),
(‘Sandy is a brother of Mary’ ) p),

(‘Sandy is a sister of Mary’ ) p) ) p

- More discussion and pointers in Sandqvist’s Base-extension
semantics for intuitionistic sentential logic.
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Bases (Atomic Rules)

- The choice of the form of atomic rules in bases has a
profound e↵ect on the strength of the semantics that is
obtained — see, for example, Tor Sandqvist’s presentation at
the World Logic Day event at UCL in 2022,

https://sites.google.com/view/wdl-ucl2022/home

- Note that base rules are pre-logical — they do not refer to the
logical constants.

- Note that base rules such as the Level 2 rules mentioned
above permit discharge of assumptions (cf. NJ, discussed
above).

- This class is used in the B-eS for intuitionistic propositional
logic Lecture 2).
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Proof-theoretic Validity in the Dummett-Prawitz Tradition
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hJ, Si-validity — A General View

Prawitz, in Ideas and Results in proof Theory, introduces the idea
of S-validity of proofs for a base S . To set up such a semantics of
proofs relative to a base S , we need a few auxiliary ideas:

– Let S be a base of atomic rules: bases are essential to give
ground validity — they assert that atoms have a grounding in
inferential validity. Prawitz has been discussing this even
recently.

– Let D be a system of proof rules.
– Suppose that the ‘canonical’ proofs of D are those � that are
elements of the set C(D).

– Let S denote the class of proof-structures, regulated by the
rules of D.

– Let J be a procedure on proof-structures that yields
proof-structures.
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hJ, Si-validity — A General View

31 / 59



hJ, Si-validity — A General View

We can define validity of proofs, relative to a base and a
justification.

A closed proof does not depend on assumptions; open, otherwise.

hJ, Si-validity: closed proofs

1. Every closed proof in S is hJ, Si-valid.
2. A closed canonical proof is hJ, Si-valid if its immediate

subproofs are hJ, Si-valid.
3. A closed non-canonical proof is hJ, Si-valid if it reduces via J

to a hJ, Si-valid canonical proof.
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hJ, Si-validity — A General View

Case 3 requires the role of J: a proof-structure � is hJ, Si-valid —
that is, represents a proof — if either � 2 C(D) or if J can be
applied to � to yield an element of C(D).
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hJ, Si-validity — A General View

An open proof
�1, . . . ,�k

�
 

is hJ, Si-valid if, for every list of closed hJ, Si-valid proofs,

�1 �k

. . .
�1 �k

the proof
�1 �k

. . .
�
 

is hJ, Si-valid
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hJ, Si-validity
A notion of consequence w.r.t J and S is now given as follows:

�1, . . . ,�k |=hJ,Si  

holds if there is an open proof

�1, . . . ,�k
�
 

s.t. for all S and every list of hJ, Si-valid closed proofs

�1 . . . �k

�1 �k

the proof
�1 . . . �k

�1 �k
�
 

is hJ, Si-valid
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hJ, Si-validity
Examples of justifications:

- Normalization of NJ proofs, in the sense of Prawitz — see
Ideas and Results in Proof Theory, and Peter S-H’s Validity
Concepts in Proof-theoretic Semantics — choices around
notion of canonical, intro- and elim-based versions of
definitions.

- And so, the reduction theory of the corresponding (according
to ‘Curry-Howard’) typed �-terms.

- The BHK-type interpretations — see Troelstra and van Dalen,
Constructivism in Mathematics. These essentially trivialize
the set-up.

- The reduction theory of the �µ-calculus and its extensions.
- With a bit of e↵ort/imagination: cut-reduction in proof-nets
... .

These examples all live within ‘deductive logic’. In fact, ‘reductive
logic’, which we’ll encounter in Lecture 3, is perhaps a more
natural place to look.
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hJ, Si-validity

- Consider the setting of NJ with justification given by its usual
normalization procedure.

- Can consider that the ‘canonical’ proofs of D — i.e., those �
that are elements of the set of C(D) — are those with an
introduction rule as the last step.

- But other choices.
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hJ, Si-validity

- Recall
�1, . . . ,�k |=hJ,Si  

defined in terms of the existence of proofs.

- We can enrich this idea — see Lecture 3 — with a notion of
realizer, allowing us to consider the space of witnesses for
such consequences.
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hJ, Si-validity

- If J specifies a reduction system — as with normalization in
natural deduction, as described in, for example Ideas and
Results in proof Theory or Model-theoretic vs. Proof-theoretic
Semantics — hJ, Si-valid proofs can be defined inductively on
their component structure.

- In this case, the semantics of proofs of implications presents a
particular issue.
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hJ, Si-validity

- We expect a construction of an implicational formula � �  
to be a construction that given a construction of � yields a
construction of  .

- However, such a condition on a construction of � �  , as
formulated above, would be satisfied vacuously if there be no
construction of � relative to the system S in question.

- It follows (cf. Kripke’s semantics of implication) that it’s
better to give the semantics of proofs of implications relative
to all possible extensions S ✓ S 0.

- In fact, Prawitz (Ideas and Results in Proof Theory) points
out that the extensions considered can be restricted to those
required by J for the construction of  .
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hJ, Si-validity
In summary, all this set-up yields a notion of logical consequence
with respect to J and S as follows:

- Denote by hJ, Si |= � that J generates with respect to S a
closed canonical proof of �.

- Then

�1, . . . ,�k |=hJ,Si i↵ there is a J such that, for every S
and all J1, . . . , Jk , if
hJ1, Si |= �1, . . . , hJk , Si |= �k ,
then hJ, Si |=  

- In the case of the BHK interpretation, the structure of proofs
is trivialized.

- The set-up remains truly more general, however: we’ll later, in
Lecture 3, that P-tV provides a conceptual framework for
reductive logic, where many notions of ‘canonical’ and
‘justification’ are of interest.
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Prawitz’s Conjecture

- Recall our remark early on that P-tV is fundamentally a
constructional semantics.

- In fact, Prawitz conjectured that his notion of P-tV
corresponds to intuitionistic propositional logic (IPL) —
remains open.

- Piecha et al. have shown that, for a slightly simplified P-tV,
IPL is incomplete.

- Sta↵ord has shown that Piecha et al’s semantics amounts to
‘general inquisitve logic’, which is the intermediate logic that
extends IPL with (the admissible, but not derivable)

H � (� _  )
(H � �) _ (H �  )

where H is hereditary Harrop (we’ll meet hHfs again in
Lecture 3).
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Prawitz’s Conjecture

In a recent paper — From Proof-theoretic Validity to
Base-extension Semanics for Intuitionistic Propositional Logic,
Studia Logica, 2025 — Gheorghiu and Pym have show that IPL
encapsulates the declarative content of a P-tV based on
elimination rules.

The details of this are beyond our scope here.
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The Dogma of Standard Semantics (following Peter S-H)

- As we have seen, the model-theoretic and proof-theoretic
accounts of logical consequence are fundamentally di↵erent.

- Two key, interrelated ideas are common to them, however:
(1) the assumption that a categorical concept — that is,

unqualified, unconditional, absolute — is prior to the
hypothetical —- that is, contingent upon a theory —
concept of consequence; for classical logic,

- model-theoretically, this is the notion of truth in
structure the

- proof-theoretically, this is validity with respect to a
construction or justification

(2) the transformational view of consequence; for classical
logic,

- the transmission of truth between interpretations of
formulae in a model

- the transmission of validity from the premisses to
the conclusion of a model.
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The Dogma of Standard Semantics (following Peter S-H)

- The two assumptions have been called the dogma of standard
semantics (Schroeder-Heister and Contu, Logik in der
Philosophie, 2005).

- Denote constructions of of proof-theoretic structures by Cs
(simplifying out earlier more detailed notation) and define
validity with respect to a structure by C |= �,

�1, . . . ,�k |= � i↵ for all C1 . . .Ck , C1 |= �1, . . . ,Ck |= �k
implies f (C1 . . .Ck) |= �

where f is a constructive transformation that generates a
structure that validates the conclusion from structures that
validate the premisses.

- This notion of the transmission of (the categorical concept of)
validity is at the core of P-tV, but is it really inferential?
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The Dogma of Standard Semantics (following Peter S-H)

- It can be argued that on consequence as transmission of
categorical concepts blocks the way towards a concept that is
really based on inference and deserves the name ‘inferential
semantics’.

- It can, therefore, be argued that need to avoid forms of
definition in which assumptions are interpreted as placeholders
for proofs.

- This problem is particularly acute in P-tV that is based on
ideas of introduction and elimination’.

46 / 59



Definitional Reflection (following Peter S-H)

- So, the dogma of standard semantics e↵ectively imposes the
primacy of closed proofs over open proofs.

- How can we give up the dogma of standard semantics?

- Sequent calculi, in the sense of Gentzen’s LJ and LK, provide
a way forward.

- This view will also provide a technical connection to the idea
of reductive logic that we’ll consider in Lecture 3.
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Aside: Sequent Calculus

We don’t need to get into a lot of detail, but the basic idea is that
the rules somehow directly manipulate consequences by introducing
logical operators either on the left or the right. For example,

�,�1,�2, �0 ` �
�,�1 ^ �2, �0 ` �

^ L
� ` �,�1,�0 � ` �,�2,�0

� ` �,�1 ^ �2,�0 ^ R

�,�1, �0 ` � �,�1, �0 ` �
�,�1 _ �2, �0 ` �

_ L
� ` �,�1,�2,�0

� ` �,�1 _ �2,�0 _ R

�, �0 ` �,�,�0 �, , �0 ` �,�0

�,� �  , �0 ` �,�0 � L
�,�, �0 ` �, ,�0

�, �0 ` �,� �  ,�0 � R

�,�, �0 ` �,�,�0 Ax
�, �0 ` �,�,�0 �,�, �0 ` �,�0

�, �0 ` �,�0 Cut
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Definitional Reflection (following Peter S-H)

- Simplifying a bit, let’s consider

� ` � Ax
� ` � �, �0 `  

�, �0 `  Cut

- The view that assumptions are placeholders for proofs now
corresponds to cuts

` �1 . . . ` �k �1, . . . ,�k `  
`  

- So we restore an inferential foundation.
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Definitional Reflection (following Peter S-H)

- How can sequent-style rules be justified?

- We can use a theory of external definitions that is inspired by
logic programming.

- This is the first of a few connections between P-tS and logic
programming.
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Definitional Reflection (following Peter S-H)

A definition is a system of clauses of the form

D

8
>>>>>>>>>>><

>>>>>>>>>>>:

a1 ( A11
..._

a1 ( A1k1
...^

an ( An1
..._

an ( Ankn

where the ai s are atoms and the Aijs are sets of atoms (so we have
an inductive definition). Generalizing this view leads us to the
characterization of logic programs through hereditary Harrop
formulae.
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Definitional Reflection (following Peter S-H)

- How are such definitions used?

- Through the left- and right-rules (in the sense of the sequent
calculus), definitional closure and definitional reflection,
respectively:

� ` Aij

� ` ai
` ai and

�,Ai1 ` � . . . �,Aiki ` �
�, ai ` �

ai `

respectively — everything that follows from all the defining
conditions of ai follows from ai .

- This leads us to reductive logic, which we shall consider in
Lecture 3.
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Definitional Reflection (following Peter S-H)

- A last word on Definitional Reflection (DR).

- As Peter S-H and Lars Hallnäs have shown, in natural
deduction, DR shows how to derive elimination rules from
introduction rules. Since we have

�

� _  
 

� _  

the defining conditions of � _  are � and  .

- So DR warrants the elimination rule

[�] [ ]
...

...
� _  � �

�
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Summary: Paradigms of Meaning

denotationalism – inferenatialism
meaning based on truth – meaning based on inference

model-theoretic semantics – proof-theoretic semantics
e.g., Tarski/Kripke semantics – e.g., base-extension semantics
e.g., interpretation of proofs – e.g., proof-theoretic validity

in models
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Schedule

1. What is Proof-theoretic Semantics (P-tS)?

- Inferentialism.
- Consequence.
- Proof-theoretic Validity (P-tV).

2. Base-extension Semantics (B-eS):

- B-eS for Intuitionistic Propositional Logic.
- Naturality, categorically speaking.
- B-eS and P-tV.
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Schedule

3. Reductive Logic, Tactical Proof, and Logic Programming:

- Reductive Logic and P-tV.
- Tactical Proof.
- Remarks on Logic Programming, B-eS, and Coalgebra.

4. Modal and Substructural Logics, Resource Semantics, and
Modelling:

- B-eS for Modal Logics.
- B-eS for Substructural Logics.
- Resource Semantics and Modelling with B-eS.
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