
Local Causal Reasoning in Multiagent Systems
(Extended Abstract)

Pinaki Chakraborty1∗, Tristan Caulfield1∗, and David Pym2,1∗

1 University College London, England, UK pinaki.chakraborty.22@ucl.ac.uk,
t.caulfield@ucl.ac.uk, david.pym@sas.ac.uk
2 Institute of Philosophy, University of London

England, UK david.pym@sas.ac.uk
∗ corresponding author

Abstract. Causal reasoning is essential for the design, audit, and in-
terpretation of decision-making in multi-agent systems. Recent develop-
ments have brought this need to the fore in multi-agent LLM systems,
notably in retrieval-augmented generation (RAG), where techniques from
information retrieval are used to augment model inference within mod-
ular workflows. We propose a behaviour-centric model of system con-
figurations and a unified language for reasoning about such systems.
Our framework introduces an intervention operator that captures the
notion of mechanism change, reflecting interventionist views of causa-
tion, while a separation-logic-style conjunction supports local reasoning
via explicit system interfaces, consistent with mechanistic accounts that
explain phenomena through organized and modifiable parts. Agent pol-
icy changes are treated as interventions on the components they control,
enabling counterfactual analysis and attribution of responsibility within
the same logic. We define actual causation directly in this language and
show, via time-unfolding of finite system runs, that our notion aligns with
the Halpern-Pearl account of actual causation in the acyclic structural
model induced by the run. We establish van Benthem-Hennessy-Milner-
style correspondence results: a bisimulation that respects both transi-
tions and interventions characterizes logical equivalence under finiteness
assumptions. Thus, we integrate system evolution with modular decom-
position within a single language: its modalities refer directly to config-
uration transitions, interventions on mechanisms, and interface-indexed
decompositions. We apply the framework to a retrieval-augmented gen-
eration (RAG) workflow for LLM-based systems to specify explicit inter-
faces, model mechanism changes as interventions, and answer design-time
causal queries such as, whether some admissible mechanism change guar-
antees a stated safety constraint while preserving invariants modularly
across an interface.

Keywords: Logic · Transition systems · Distributed systems · Behaviour
· Agency · Decision-making · Strategic reasoning · Causality · Interven-
tions · Separation · Large language models · Retrieval-augmented gener-
ation

2 P. Chakraborty, T. Caulfield, and D. Pym

1 Introduction

Causal reasoning sits at the heart of explanation, control, and design in sys-
tems composed of many interacting parts. In contemporary deployments — from
software microservice ecosystems [11,28] and cyber-physical controllers to multi-
agent LLM workflows and increasingly the mechanistic interpretability of neural
networks [19]. Practitioners do not only ask ‘did X cause Y ?’ ; instead, they
routinely ask ‘what change of mechanism or policy will guarantee or prevent Y ,
while preserving invariants elsewhere?’. This paper develops a logical framework
that addresses that design-oriented question with minimal structural assump-
tions and with an explicit account of mechanism change as a first-class interven-
tion. We integrate the logic with system dynamics and modular structure: its
modalities speak directly about system transitions, interventions, and it respects
a form of van Benthem-Hennessy-Milner correspondence [7].

The Halpern-Pearl (HP) programme [20,33] axiomatizes actual causation us-
ing structural equations and value-setting interventions. It underpins a large
body of work in causal analysis. In many engineered systems, however, the nat-
ural unit of intervention is not a fixed value but a rule: a policy switch, a con-
troller update, a threshold change, or a mode transition. Standard structural
causal models (SCMs) can encode such régime changes by adding latent ‘switch’
variables or by moving to a family of models. However, such encodings obscure
locality and make it difficult to reason within a single logic about which mecha-
nism changes are admissible and which invariants they preserve.

Large systems are reasoned about modularly on the principle that well-
designed interfaces allow change and verification of parts in isolation while pre-
serving global behaviour. Motivated by this, we adopt a view that a system is a
collection of components with observable behaviours; each component updates
according to a local rule (mechanism) that depends only on a declared ‘influ-
ence context’. Agents supply policies that feed into these local mechanisms; a
policy profile parametrizes the overall dynamics. Most importantly, we treat in-
terventions as first-class mechanism changes: an intervention rewrites some local
rules (policy changes are just a special case). The logic features a single dynamic
operator to represent the effect of such an edit and the behaviours reachable
afterwards (Section 4).

A system may be carved into two regions separated by a named interface
that makes dependencies explicit: components on the left may depend on the
interface, and components on the right may depend on the interface, but neither
side reaches through the interface to the other. This ‘boundary’ lets us reason
locally: a statement about the left side can be checked using only the left-side
model (plus the shared interface), and likewise for the right. If we make a mech-
anism change that is confined to the right side and does not alter the interface,
all facts established about the left side at the current configuration continue to
hold after the update. The interface functions as a locus of manipulability and
control, and provides a means of stable, targeted change emphasized by inter-
ventionist accounts of causation [20,38]. We use an interface-indexed separating
conjunction operator: a statement of the form ‘φ on the left and ψ on the right’

Local Causal Reasoning in Multiagent Systems 3

asserts that φ holds in the model restricted to the left-hand components and ψ
holds in the model restricted to the right-hand components, with the two sides
sharing only the declared interface. This construction mirrors the locality dis-
cipline of logic of bunched implications which enables compositional reasoning
about independent parts [32].

We define actual causation (in the sense of Halpern and Pearl [20,21]) di-
rectly in our logical language, and by an ‘unfolding’ construction show that in
any finite run of our system models, this notion conforms with Halpern-Pearl
actual causes in an acyclic structural model built from that run, with mechanism
changes represented as updates to the model itself. The notion of an interface
also echoes Causal Influence Diagrams [15,23]: changing a policy corresponds to
replacing a decision node’s policy. Unlike do-calculus [33] with fixed mechanisms,
we reason over a set of admissible mechanism changes: if a change is confined
to one side of a declared interface, facts established about the other side still
hold. Agent policies fit into this framework as first-class interventions, and coor-
dinated policy changes by multiple agents are just sets of such edits. Practically,
this lets causality practitioners pose the design-time questions such as ‘is there
an admissible mechanism change after which the desired property holds on all
continuations?’, and obtain a modular safety guarantee.

In Section 1, we motivate the design goals and relate them to engineering
practice and needs. Section 2 discusses the behaviour-centric system model, in-
terfaces, interventions, and system decompositions. Section 3 introduces agents,
and policy profiles, and shows how policy changes are represented as interven-
tions. Section 4 presents L(⟨θ⟩,∗Λ) and its semantics on restricted models. Sec-
tion 5 defines actual causation and establishes alignment with HP-framework via
a time-unfolding construction. Section 6 instantiates the framework on represen-
tative systems (agentic RAG-LLM workflows). Section 7 develops the interven-
tion-preserving bisimulation and establishes soundness and completeness. Sec-
tion 8 reflects on philosophical motivations, summarizes limitations, and sketches
quantitative extensions.

2 The system modelling framework

In this section, we adopt a deliberately minimalist, behaviour-centric view of
systems: instead of enumerating internal state, a component is specified by the
behaviours an external observer can witness and by how those behaviours influ-
ence other components. This draws a line between intensional state (irrelevant
here) and extensional behaviour (observable facts). This point of view, intro-
duced in [17], represents a more abstract view of models of distributed systems
than that based on process calculus and process logic as introduced in, for ex-
ample, [3,9,10], building on a body of earlier work cited therein. Also refer to
[13] for a related perspective, and to [36] for a historical background.

This section is devoted to the base behavioural model of system evolution; in
Section 3 we discuss agents and policies. Formally, let C be the set of components
and B the set of all behaviours. A mapping B : C → 2B assigns to each c ∈ C

4 P. Chakraborty, T. Caulfield, and D. Pym

its allowable behaviours B(c). A configuration specifies the current behaviour of
every component (cf. [13] for a similar theme).

Definition 1 (Configuration). A configuration over C is a total function f :
C → B with f(c) ∈ B(c) for all c ∈ C. The set of all configurations is FC; when
C is clear we write F . □

To model evolution we use influence mechanisms: for each component, a
function that, given its current behaviour and the behaviours of selected others,
returns its next behaviour.

Definition 2 (Influence mechanisms and contexts). For each c ∈ C, the
influence context Inf(c) ⊆ C \ {c} lists those components whose behaviours are
relevant for updating c. An influence mechanism for c is a function Ic : B(c)×∏

d∈Inf(c) B(d)→ B(c). The set I = {Ic}c∈C denotes all such mechanisms. □

Definition 3 (Transition relation). Given (C,B, I), the transition relation
∆I ⊆ F × F contains (f, f ′) iff there exists exactly one c ∈ C such that f ′(c) =
Ic(f(c), (f(d))d∈Inf(c)) and for all, d ̸= c : f ′(d) = f(d). Thus, each step updates
precisely one component according to its corresponding mechanism. □

Definition 4 (System model). A system model is M = (C,B, I, F,∆I , Γ),
where F and ∆I are as above, and Γ : P → 2F is a valuation assigning to each
atomic proposition the set of configurations where it holds. For brevity we often
write M = (F,∆I , Γ). □

Example 1. Let C = {c1, c2, c3} with B(c1) = {b11, b12, b13}, B(c2) = {b21, b22},
B(c3) = {b31}. Take Inf(c1) = ∅, Inf(c2) = {c1}, Inf(c3) = ∅, and mechanisms
Ic1(b11) = b12, Ic1(b12) = b13, Ic1(b13) = b11, Ic2(b21, b12) = b22, Ic2(b21,_) =
b21, Ic2(b22,_) = b22, Ic3(b31) = b31. Let f1 be a configuration such that
f1(c1) = b11, f1(c2) = b21, f1(c3) = b31. Then updating c1 yields f2 with f2(c1) =
b12 and f2(c2) = b21, f2(c3) = b31, so (f1, f2) ∈ ∆I . □

To analyse subsystems, we use partial configurations and an interface that
mediates dependencies across a decomposition.

Definition 5 (Partial configuration). If C′ ⊆ C, a partial configuration over
C′ is a function f ′ : C′ →

⋃
c∈C′ B(c) with f ′(c) ∈ B(c). The restriction of f ∈ F

to C′ is f↾C . □

Definition 6 (Admissible interface-cut). Let M have component set C and
influence map Inf(·). A triple (C1, I, C2) with C1 ∪ C2 = C and I = C1 ∩ C2 is
an admissible interface-cut iff the following conditions are satisfied:

1. (Left locality) For all c ∈ C1 \ I, Inf(c) ⊆ C1 ∪ I.
2. (Right locality) For all c ∈ C2 \ I, Inf(c) ⊆ C2 ∪ I.
3. (Interface closure) For all c ∈ I, Inf(c) ⊆ I.

A model is interface-admitting if it admits at least one interface-cut. □

Local Causal Reasoning in Multiagent Systems 5

Remark 1. For each c ∈ Ci, one may view Ic as a local mechanism Iic over Ci∪I
(the two coincide on shared inputs). □

Example 2 (Interface). With the contexts and mechanisms from Example 1, take
C1 = {c1, c2}, C2 = {c1, c3}, and I = C1 ∩ C2 = {c1}. Then the three interface
conditions hold, so {c1} is an interface. □

Definition 7 (Restriction along a cut). Fix an admissible interface-cut λ =
(C1, I, C2) in a system model M. For j ∈ {1, 2}, the Cj-restriction M↾Cj is
the system model obtained by: keeping only components in Cj; and, restricting
behaviours and configurations to Cj; and, inducing a transition relation on Cj

from ∆I ; that is, fj ∆λ
Cj
f ′j iff there exist f, f ′ in M with f∆If

′, f ↾Cj
= fj,

f ′ ↾Cj
= f ′j, and f ′ ↾I= f ↾I . By locality and interface-closure in Definition. 6,

M↾Cj
is well-defined. Moreover, if f∆If

′ inM, then for j = 1, 2, f↾Cj
∆λ

Cj
f ′↾Cj

and f ′↾I f ′ = f↾I . □

Interventions replace (some of) the right-hand sides of the influence mecha-
nisms while preserving the input contexts Inf(c).

Definition 8 (Intervention payload). Given a modelM, for a component c,
let Inp(c) :=

∏
d∈Inf(c) B(d). An intervention payload is a pair (T,JT) where

T ⊆ C and JT = {Jc : B(c) × Inp(c) → B(c)c∈T provides replacement mech-
anisms for exactly the targets in T . Applying (T,JT) to an augmented model
M yields M[T 7→ JT], which keeps C, B, Inf(·), F , and Γ unchanged; and re-
places Ic by Jc for c ∈ T , leaving Ic unchanged for c /∈ T , with the transition
relation recomputed from the modified family of mechanisms. If θ denotes an
intervention, we write Mθ =M[T 7→ JT]. □

Example 3. In Example 1, let θ = ({c1}, {I ′c1}) be an such that I ′c1(b11) =
I ′c1(b12) = I

′
c1(b13) = b11. In the intervened model Mθ, every reachable config-

uration f satisfies f(c1) = b11; consequently c2 remains at b21. □

Remark 2. IfM is interface-admitting and θ is cut-preserving i.e., it leaves all in-
fluence contexts unchanged and does not rewrite the mechanisms of any interface
component of any admissible interface-cut, then every interface-cut (C1, I, C2)
admissible inM remains admissible inMθ; in particular,Mθ admits the same
(C1, I, C2). □

Definition 9 (Augmented model). An augmented model is a tuple M̂ =
(C,B, I, F,∆I , Γ, cut, J·K), where the first six components form a system model,
cut : Λ → {(C1, I, C2)} assigns admissible interface-cuts (Definition 6), and
J·K interprets each label θ by installing the corresponding intervention payload
(Definition 8) and updating the induced transition relation. □

3 Agents and agency

Many systems are steered by decision makers whose choices are best viewed as
policy changes to parts of the mechanism. Our goal is to reason about questions

6 P. Chakraborty, T. Caulfield, and D. Pym

such as: what if an actor switches policy, which edits guarantee a safety property,
and how should responsibility be attributed? We keep agency lightweight and
compatible with the existing intervention modality, rather than introducing a
separate strategic calculus (see [1] for an alternative approach).

Agents and policies: Let M̂ = (C,B, I, F,∆I , Γ, cut, J·K) be an augmented
model, and A be a finite set of agents. For each component c ∈ C, write
Ac ⊆ A for the agents that are permitted to change c’s mechanism. A policy
choice by an agent can be viewed as, from a set of admissible replacements,
selecting new mechanisms for c ∈ Ac. Concretely, for a coalition A ⊆ A, it
is an intervention payload (T,JT) with T ⊆

⋃
a∈A{ c ∈ C | a ∈ Ac}, and,

JT = {Jc : B(c) × Inp(c) → B(c)}c∈T . For each c, let Adm(c) be the set of ad-
missible local mechanisms Jc : B(c)×

∏
d∈Inf(c) B(d)→ B(c), required to respect

locality (depend only on Inf(c)). We require that these mechanisms respects the
fixed influence boundary: Inp(c) =

∏
d∈Inf(c) B(d) and Jc depends only on Inf(c).

Definition 10 (Policy profile). A policy profile is a mapping Π = {Πa | a ∈
A} such that each Πa assigns, to every c ∈ ac, a mechanism Πa(c) ∈ Adm(c).
The mechanism in force at c under Π is IΠc = Πa(c) if there is a unique a with
c ∈ ac; and otherwise, IΠc = Ic. □

Definition 11. Given a coalition A ⊆ A and a finite target set T ⊆
⋃

a∈A ac
with replacement mechanisms JT = {Jc ∈ Adm(c) | c ∈ T}, the policy inter-
vention θA,JT

has interpretation JθA,JT
K(M̂, Π) = (M̂[T 7→ JT], Πθ). where

M̂[T 7→ JT] rewrites the local mechanisms for c ∈ T to Jc, and the updated
policy profile Πθ is obtained by overriding the sub-profile of A so that for each
a ∈ A and c ∈ ac, Πθ(a)(c) = Jc if c ∈ T ; and otherwise, Πθ(a)(c) = Πa(c) For
non-policy (pure) interventions we set Πθ := Π. □

Definition 12. Fix an augmented model M̂ = (C,B, I, F,∆I , Γ, cut, J·K) and a
policy profile Π. Let IΠ = {IΠc }c∈C be the family of local mechanisms in force
under Π (Definition 10). The transition relation induced by Π is ∆Π

I ⊆ F ×F
defined by f∆Π

I f
′ iff there exists c ∈ C such that f ′(c) = IΠc (f(c), (f(d))d∈Inf(c)).

Here, for all d ̸= c : f ′(d) = f(d). If an intervention θ has interpretation
JθK(M̂, Π) = (M̂θ, Πθ) with updated mechanisms Iθ in M̂θ (Definition 11),
then the post-intervention transition steps are taken with respect to ∆Πθ

Iθ . □

4 Syntax and semantics

4.1 Syntax

Let P be a denumerable set of atomic propositions. Fix two denumerable sets
of labels, Θ (symbols naming admissible interventions), ranged over by θ, and
Λ (symbols naming admissible interface-cuts), ranged over by λ. The language
L(⟨θ⟩,∗Λ) is generated by:

φ ::= p | ¬φ | φ ∧ φ | □φ | ♢φ | ⟨θ⟩φ | φ∗λ ψ,

Local Causal Reasoning in Multiagent Systems 7

where p ∈ P, θ ∈ Θ, and λ ∈ Λ. As usual, φ ∨ ψ, φ → ψ, and ⊤,⊥ are defined
classically. We write ♢+φ (resp. □+φ) as shorthand for the existential (resp.
universal) modality over the transitive closure of the transition relation (see
semantics).

4.2 Semantics

We work with augmented models (Definition. 9) M̂ = (C,B, I, F,∆I , Γ, cut, J·K),
where cut : Λ → {(C1, I, C2) | C1 ∪ C2 = C, I = C1 ∩ C2} selects admissible
interface-cuts, and J·K interprets each intervention label θ ∈ Θ as a mechanism-
change operator with M̂θ = (C,B, Iθ, F,∆θ

I , Γ, cut, J·K), leaving F ,Γ , cut, and
J·K unchanged; but inducing ∆θ

I from the modified influence mechanisms Iθ
(Definition 8).

Definition 13. Satisfaction (M̂, f,Π) |= φ is defined by

(M̂, f,Π) |= p iff f ∈ Γ (p)

(M̂, f,Π) |= ¬φ iff (M̂, f,Π) ̸|= φ

(M̂, f,Π) |= φ ∧ ψ iff (M̂, f,Π) |= φ and (M̂, f,Π) |= ψ

(M̂, f,Π) |= ♢φ iff for some f ′ ∈ F s.t. (f ∆Π
I f ′ and (M̂, f ′, Π) |= φ)

(M̂, f,Π) |= □φ iff for all f ′ ∈ F s.t. (f ∆Π
I f ′ implies (M̂, f ′, Π) |= φ)

(M̂, f,Π) |= ⟨θ⟩φ iff for some f ′ ∈ F s.t. (f (∆
Πθ
Iθ

)⋆ f ′ and (M̂θ, f
′, Πθ) |= φ)

(M̂, f,Π) |= φ∗λ ψ iff (C1, I, C2) is interface-admitting in M̂ and
(M̂↾C1 , f↾C1 , Π) |= φ and (M̂↾C2 , f↾C2 , Π) |= ψ

Here (∆θ
I)

∗ is the reflexive and transitive closure of ∆θ
I (zero or more steps).

We also use the shorthands ♢+φ (resp. □+φ) for existential (resp. universal)
modalities over the transitive closure ∆+

I . □

For C ′ ⊆ C, we write M̂↾C′= (C ′,B↾C′ , I↾C′ , FC′ , ∆C′
, Γ↾C′ , cut↾C′ , J·K) where

FC′ is the set of partial configurations g : C ′ →
⋃

c∈C′ B(c) with g(c) ∈ B(c)
; and, Γ ↾C′ (p) = {g ∈ FC′ | for some f ∈ Γ (p) with f ↾C′= g} (valuation
restricted to C ′); and, ∆C′ ⊆ FC′ × FC′ is given by (g, g′) ∈ ∆C′

iff, for some
f, f ′ ∈ F , f↾C′= g, f ′↾C′= g′, (f, f ′) ∈ ∆I .

When λ = (C1, I, C2) is admissible, the restricted relation ∆λ
Ci

coincides
with the transition obtained by executing only the local mechanisms on Ci while
keeping the interface I fixed; this follows from left/right locality and interface-
closure (Definition 6), and therefore satisfaction in M̂↾Ci is well-defined. Under
agent policy interventions (Section 3), replacement influence mechanisms for any
c depend only on Inf(c) and no mechanism for components in I is altered.

5 Actual causation system models

Halpern-Pearl structural causal models (SCMs) [20,33] represent a scenario by
endogenous variables V , an exogenous context U , and structural equations F

8 P. Chakraborty, T. Caulfield, and D. Pym

that determine each Vi from its parents. Interventions are value-setting changes
do(X = x) that replace the equation for X and induce counterfactual worlds.
HP define actual cause of an effect ψE via three clauses: (AC1) actuality (X = x
and ψE both hold), (AC2) counterfactual dependence under a contingency (there
exists W such that [X ← x′,W ← w] ¬ψE), and (AC3) minimality. SCMs excel
at post-hoc analysis, but design-time reasoning about which mechanism changes
are admissible and where they apply often forces one to move across families of
models or to introduce ad-hoc switch variables.

Philosophically, our choice to treat mechanism change as the core interven-
tion aligns with manipulability accounts of causation: causes are what can be
purposefully changed to control effects. In engineered, multiagent settings the
natural unit of manipulation is rarely a variable-value assignment but a rule
edit. Making such edits first-class situates the logic at the level of design and
control, not merely post-hoc explanation. Viewing agent’s policies as interven-
tions matches the agency-as-capacity-to-intervene view: agents have an admis-
sible policy set over its observations. A choice by the agent is represented by
an intervention whose interpretation updates exactly the mechanisms for those
components it can control. This matches interventionist accounts of causation,
where control is analysed via counterfactual changes one can bring about [38],
and it is conformant with mechanistic views that explain phenomena by opera-
tions of organized parts and their modifiable activities [30,36].

Another closely related formalism is that of Causal Influence Diagrams which
extend classical influence diagrams with a causal interpretation of arcs, combin-
ing chance, decision, and utility nodes within a single directed acyclic graph and
supporting counterfactual reasoning via Pearl’s do-calculus [23,33,35]. Recent
work extends CIDs to agent modelling, sequential decision-making, and safety
analysis in multi-agent systems [15,27,22]. In contrast, our framework treats both
mechanistic and policy-induced changes uniformly through a single intervention
modality ⟨θ⟩φ, interpreted directly in the transition semantics.

We define an actual cause as follows:

Definition 14 (Actual cause). Let f0, f1 ∈ F be configurations, and let the
effect be a formula ψE whose atoms lie in a designated set CE ⊆ C. A non-
empty set of components C⋆ ⊆ C is an actual cause of (M̂, f1, Π) |= ψE from f0
(written CauseΠ(f0, f1;C

⋆, ψE)) iff the following hold:

(AC1) Actuality: (M̂, f0, Π) |= ♢+(ψE ∧ χC⋆(f0)) and f0(c) = f1(c), for all
c ∈ C⋆

(AC2m) Counterfactual dependence with witness: There exists a wit-
ness set W ⊆ C, an admissible interface-cut λ = (C1, I, C2),3 and an inter-
vention label θ ∈ Θ such that (M̂, f0, Π) |= ⟨θ⟩ (χW (f0) ∗λ δC⋆\W (f0)) implies
(M̂, f0, Π) |= ⟨θ⟩ □+¬(ψE ∧ χC⋆(f0)). Intuition: holding the witness W fixed
as in f0 while altering at least one coordinate in C⋆\W (via some admissible θ)
prevents the effect from arising along all post-intervention continuations.
3 For example, take W ⊆ C1 and (C⋆\W) ⊆ C2 so that χW (f0) and δC⋆\W (f0) can

be conjoined via ∗λ.

Local Causal Reasoning in Multiagent Systems 9

(AC3) Minimality No proper subset C ′ ⊊ C⋆ satisfies AC1 and AC2m with
the same f0, f1 and some (possibly different) W,λ, θ. □

5.1 HP-alignment

Our notions (Definition 14) are aligned with the Halpern-Pearl framework in the
following sense: for any finite evolution, a time-unfolded structural causal model
(SCM) whose variables are the components in our set-up indexed by discrete
steps can be built. This yields an acyclic SCM suitable for defining standard HP
actual causation.

We can associate a ‘time-unfolding’ of an SCM to a finite run of the system
models. Fix a policy profile Π, a finite sequence of configurations (f0, . . . , fn)
with fi (∆Π

I)+ fi+1, and a (deterministic) choice of an updating component si ∈
C for each unit step along the run (so that si is the unique component updated
at the i-th micro-step). Define the SCM Munf(n,Π) = ⟨U, V, F ⟩ as follows:

1. Endogenous variables V = {V i
c | c ∈ C, i = 0, . . . , n }, with dom(V i

c) = B(c).
2. Exogenous variables U = {U0, S

1, . . . , Sn }, where U0 fixes the initial con-
figuration and Si is a scheduler selecting si.

3. Structural functions F :

V 0
c = f0(c) (determined by U0),

V i
c =

{
IΠc (V i−1

c , (V i−1
d)d∈Inf(c)) if Si = c,

V i−1
c if Si ̸= c,

i = 1, . . . , n.

This graph is acyclic (edges point from time i−1 to i) and has a unique solution
for any context u⃗ = (U0 = f0, S

i = si), namely V i
c = fi(c).

Interventions can be viewed as change in model: a mechanism or policy in-
tervention θ ∈ Θ that (possibly) rewrites the influence mechanisms for a subset
Sθ ⊆ C induces a modified unfolded SCM Mθ

unf(n,Π) by replacing, for all c ∈ Sθ

and all i ≥ 1, the right-hand side IΠc (· · ·) with the post-intervention mechanism
IΠθ
c (· · ·); all other equations remain unchanged. This mirrors our semantics

where (M̂, Π) is mapped to (M̂θ, Πθ) before taking (reflexive-transitive) steps.

Theorem 1 (HP-alignment). Let (f0, . . . , fn) be a causal chain in (M̂, Π)
with outcome fn and let ψE be an effect formula whose atoms lie in CE ⊆ C.
Suppose C⋆ ⊆ C is an actual cause of ψE from f0 to fn in the sense of Defini-
tion 14, witnessed by (W,λ, θ) for AC2m. Define the unfolded SCM Munf(n,Π)
and the effect formula

φn
E :=

∧
c∈CE

(V n
c = fn(c))

Let X := {V 0
c | c ∈ C⋆} and x := (f0(c))c∈C⋆ . Then there exists a context

u⃗ (namely U0 = f0 and the schedule realizing the chain) such that, in the HP
sense:

1. AC1. (Munf(n,Π), u⃗) |= (X=x) ∧ φn
E.

10 P. Chakraborty, T. Caulfield, and D. Pym

2. AC2. There is a (possibly empty) set W ′ ⊆ V (encoding the witness W
initially) such that, in the modified model Mθ

unf(n,Π),

(Mθ
unf(n,Π), u⃗) |=

[
X ← x′, W ′ ← w∗]¬φn

E

for some x′ differing from x on at least one coordinate (corresponding to
δC⋆\W (f0)) while w∗ fixes W ′ to their values in u⃗.

3. AC3. X is minimal for AC1–AC2 above.

Hence X=x is an HP actual cause of φn
E in the unfolded model.

Proof (Proof sketch). AC1: By construction of Munf(n,Π), the unique solution
under u⃗ is V i

c = fi(c), hence φn
E holds and X=x holds.

AC2: Definition 14(AC2m) asserts that there is an interface-cut λ, a witness
set W , and an intervention θ such that keeping W fixed as in f0 while changing
at least one coordinate in C⋆\W (effected via θ) forces ¬(ψE ∧ χC⋆(f0)) along
all post-intervention continuations. In the unfolded SCM, we W ′ := {V 0

c | c ∈
W} to their f0-values, fix X to some x′ ̸= x and taking the modified model
Mθ

unf(n,Π). The conclusion is ¬φn
E under [X ← x′,W ′ ← w∗] in Mθ

unf(n,Π).
AC3: Minimality of C⋆ in Definition 14 transfers to minimality of X because

X is just the time-0 copy of C⋆. If a proper X ′ ⊂ X sufficed in the SCM, its
projection onto components would contradict AC3 for C⋆. □

Remark 3. The use of Mθ
unf(n,Π) in AC2 corresponds to HP’s contingency

on a modified model when mechanisms are changed. For policy-labelled θ, the
modification is exactly the replacement IΠ → IΠθ ; for mechanistic θ, it rewrites
the affected Ic in the equations. Both are admitted in our semantics and align
with the ‘model change + counterfactual’ reading in HP. □

Corollary 1. If, for a given policy profile Π, the one-step dependency graph
c→ Inf(c) is acyclic and each IΠc is total, then there exists a (non-time-indexed)
SCM with endogenous variables {Vc}c∈C and equations Vc = IΠc (Vc, (Vd)d∈Inf(c))
that matches the unique fixed point reached from f0 (under any schedule). In this
case, Theorem 1 holds with X = {Vc | c ∈ C⋆} and φE =

∧
c∈CE

pc=fn(c). □

6 Application: LLM-RAG workflows

Retrieval-augmented generation (RAG) couples a retriever that, given a query q,
returns a small set of evidence items, with a generator, a Large Language Model,
(LLM) that produces the final text conditioned on a context assembled from
those items [18,29]. The architectural specifics (whether retrieval, re-ranking,
or tools are neural, neuro-symbolic, or heuristic) do not matter here: our frame-
work is implementation-agnostic. Operationally, retrieval and re-ranking produce
a context that is handed off to the generator. The generator reads this context
and emits a draft which is then filtered by a guard module. Tools may be invoked
and their effects folded back into the context. Policies over these modules are

Local Causal Reasoning in Multiagent Systems 11

supplied by agents (for example, an orchestrator for retrieval, re-ranking, and
tool calls). This picture aligns with DSPy, a declarative framework that com-
piles structured modules into effective prompts and weights across base models,
inference schemes, and learning algorithms [26].

In this view, LLM workflows are text transformation graphs: imperative com-
putational graphs where LLMs are invoked through declarative, parametrized
modules [26]. Our formal treatment complements this systematic development
by giving a semantics for mechanism and policy edits, and connects these to
Halpern-Pearl style causal claims. There is longstanding Information Retrieval
work using counterfactual reasoning for evaluation and learning-to-rank [25], and
recent strands inject explicit causal structure into retrieval and conditioning [37].

In parallel, a growing line connects formal verification with Halpern-Pearl
actual causation to explain why properties hold or fail and to attribute responsi-
bility within system models [6]. We lift this perspective to modular RAG work-
flows by making interfaces and mechanism edits first-class. This aligns with
emerging assurance guidance: the NIST AI Risk Management Framework em-
phasizes lifecycle validation across context and outputs [31]; the UK Financial
Conduct Authority advocates technology-agnostic oversight oriented to firms’
systems and processes [16]. Cloud-operations guidance such as AWS’s MLOps
white-paper treats reliability and governance as end-to-end workflow properties
with auditable, reproducible edits and controls [2].

In particular, we model a (stylized) RAG software-workflow (with tools and
guards) as an augmented system M̂ = (C,B, I, F,∆I , Γ, cut, J·K) with agents
as in Section 3. The goal is to reason modularly about edits to mechanisms
and policies while preserving invariants across named interfaces. In particular,
inputs/outputs are not components in our framework; but are represented as
behaviours of interface components. Thus the context passed from retrieval to
generation is the behaviour of a dedicated component CtxOut, and decoder re-
quests to tools are behaviours of Dec.

The component set is C = {Tok,Retr,Rank,CtxOut,Dec,Guard,Tool,Mem,
PortCtx,PortDecReq}:

1. Tok (tokenizer): parses the user input into tokens, and is the source of re-
trieval queries.

2. Retr (retriever): fetches candidate documents given Tok (and possibly Mem).
3. Rank (ranker/re-ranker): orders Retr’s candidates.
4. CtxOut (context builder): composes the prompt(context) from Rank (and

Mem) for the LLM instance.
5. Dec (decoder): produces model outputs conditioned on the interface context

and tool state.
6. Guard (guardrail): vets drafts produced by Dec and either blocks or permits

responses.
7. Tool (tool executor): It executes external tool calls (search, code, DataBase

connector, etc.).

12 P. Chakraborty, T. Caulfield, and D. Pym

8. Mem (memory cache): It stores and retrieves auxiliary state (e.g., past in-
teractions, embeddings) influencing Retr and observed by Dec.

9. PortCtx (context port): It holds the hand-off value written by a designated
intervention (e.g., θpushCtx) summarizing CtxOut. It is influenced by no other
component.

10. PortDecReq (tool-request port): This component is toggled by a designated
intervention (e.g., θcallTool) to signal tool invocation. It is influenced by no
other component.

The Model Context Protocol (MCP) [4] is an open standard that lets in-
stances of LLM agents connect in a standardized, two-way, client-server way to
external tools and data sources enabling them to discover and to invoke external
tools and pull context. In practice, CtxOut, PortCtx, and PortDecReq correspond
directly to the hand-off points defined by MCP. CtxOut implements client-side
assembly from MCP prompts, writing PortCtx is the commit of the constructed
model input to the decoder, and toggling PortDecReq mirrors MCP tool invo-
cations. We model each component with only finitely many behaviours, and
dependencies are expressed through influence contexts:

B(Tok) = {ok, err} B(Retr) = {none, rel, spur}
B(Rank) = {good, bad} B(CtxOut) = {short, long, noctx}
B(Dec) = {safe, unsafe, abort} B(Guard) = {pass, block}
B(Tool) = {off, on, fail} B(Mem) = {hit,miss}

B(PortCtx) = {short, long, noctx} B(PortDecReq) = {off, on}

Inf(Tok) = ∅ Inf(Retr) = {Tok,Mem} Inf(Rank) = {Retr}
Inf(CtxOut) = {Rank,Mem} Inf(PortCtx) = ∅ Inf(Dec) = {PortCtx}
Inf(Guard) = {Dec} Inf(PortDecReq) = ∅
Inf(Mem) = {Retr} Inf(Tool) = {PortDecReq}

We set Inf(Tok) = ∅ because Tok is the RAG workflow’s exogenous source: it
updates from user input, not from any modelled component. LetA = {Orch,Safety}
be a set denoting agents: orchestrator and safety owner. A relation Ctrl ⊆
A × C with Ctrl(Orch) = {Retr,Rank,CtxOut,Dec,Tool} and Ctrl(Safety) =
{Guard} specifies which agent controls which components. A policy profile Π =
(πOrch, πSafety) parametrizes the local rules (cf. Section 3). Thus each compo-
nent c consumes only (f(d))d∈Inf(c) (e.g., Dec sees only PortCtx; Tool sees only
PortDecReq). We use interventions θ[PortCtx] and θ[PortDecReq] for port writes.
We use two admissible interface cuts (Cretr

1 , Iretr, Cgen
2) and (Ctool

1 , Itool, Crest
2)

(cf. Definition 6) with

Itool = {PortDecReq} Cretr
1 = {Tok,Retr,Rank,Mem,CtxOut}

Iretr = {PortCtx} Cgen
2 = {Dec,Guard,Tool,PortDecReq}

Ctool
1 = {Tool} Crest

2 = {Tok,Retr,Rank,Mem,CtxOut,PortCtx,Dec,
Guard}

Admissibility holds since Inf(c) ⊆ Cretr
1 ∪ Iretr for c ∈ Cretr

1 \ Iretr, and similarly
for Cgen

2 . Similarly, Inf(c) ⊆ Ctool
1 ∪ Itool for c ∈ Ctool

1 \ Itool, and so for Crest
2

Also, Inf(PortCtx) = ∅ ⊆ Iretr

Local Causal Reasoning in Multiagent Systems 13

Representative queries. Atomic propositions are of the form pX=σ (‘X ex-
hibits behaviour σ’). Let bad ≡ (pDec=unsafe ∧ pGuard=pass).

1. Guarded recovery. Assume the policy-labelled edit θpolicySaf rewrites only
Guard and enforces IθpolicySafGuard (f) = block whenever f(Dec) = unsafe. Then
(M̂, f,Π) |= ⟨θpolicySaf⟩□¬bad Moreover, if the schedule re-evaluates Guard

on every step that can change Dec, then the guarantee strengthens to (M̂, f,
Π) |= ⟨θpolicySaf⟩□+¬bad

2. Let λ = λretr-gen with interface PortCtx and write φC1
for any C1-local prop-

erty over {Tok,Retr,Rank,Mem,CtxOut} and ψC2
for any C2-local property

over {Dec,Guard,Tool,PortDecReq}. If θ rewrites only Retr (hence only C1)
and preserves the cut, then (M̂, f,Π) |= φC1

∗λ ψC2
implies (M̂, f,Π) |=

⟨θ⟩ (φ′
C1
∗λ ♢⋆θψC2) for some C1-local φ′

C1
. In particular, C1-facts are pre-

served and C2-facts can be re-established after applying θ.
3. Actual-cause. Let f ⇝ f ′ denote a non-empty path (one or more steps)

under the current policy profile Π. Let the effect be ψE := pDec=unsafe ∧
pGuard=pass (decoder unsafe and guard passes at f ′). We test C⋆ = {Retr,Rank}
as the candidate cause-set and use W = {PortCtx} as the witness held fixed
at the retrieval-generation interface λretr-gen. ψE holds at f ′ and the compo-
nents in C⋆ are unchanged along f ⇝ f ′. For an admissible intervention θ
that alters some element of C⋆ \W (e.g. θtop-k(k) or θtok-swap) while preserv-
ing λretr-gen, ⟨θ⟩

(
χW (f) ∗λretr-gen δC⋆\W (f)

)
if ⟨θ⟩□+¬

(
ψE ∧ χC⋆(f)

)
. No

proper subset of C⋆ satisfies the above conditions.

7 Metatheory: Soundness and Completeness

We state and prove the formal results. Under some finiteness conditions (Defini-
tion 15) our completeness result (Theorem 2) ensures logical equivalence implies
a cut-preserving bisimulation under intervention (cf. [5,8] for related definitions).

Definition 15 (Image-finiteness). An augmented model M̂ is image-finite if
every f ∈ F has finitely many ∆I-successors. We say Θ and Λ are operationally
finite for M̂ if: (i) only finitely many interventions θ ∈ Θ have M̂θ well-defined
and pairwise distinct; (ii) only finitely many λ ∈ Λ are admissible. □

Definition 16 (Bisimulation Relation). Let M̂i be interface-admitting aug-
mented models with configuration sets Fi and policy profiles Πi (i = 1, 2). A rela-
tion R between pointed states (M̂1, f1, Π1) and (M̂2, f2, Π2) is a cut-preserving
bisimulation under intervention if the following hold:

1. Atoms. For all atoms p ∈ P, (M̂1, f1, Π1) |= p iff (M̂2, f2, Π2) |= p.
2. (Back and Forth). If f1∆Π1

I1
y1, then there is y2 ∈ F2 with f2∆Π2

I2
y2 and

((M̂1, y1, Π1), (M̂2, y2, Π2)) ∈ R. Symmetrically for steps from f2.

14 P. Chakraborty, T. Caulfield, and D. Pym

3. Interventions. For every θ ∈ Θ, we write M̂i,θ := JθK(M̂i) and Πi,θ for the
updated profile (Definition 9). If there exists y1 with f1 (∆

Π1,θ

I1
)+ y1 in M̂1,θ,

then there exists a y2 with f2 (∆
Π2,θ

I2
)+ y2 in M̂2,θ and ((M̂1,θ, y1, Π1,θ),

(M̂2,θ, y2, Π2,θ)) ∈ R. Symmetrically from f2.

4. Indexed separation. If λ ∈ Λ is admissible at (M̂1, f1, Π1) with cut1(λ) =

(C1
1 , I

1, C1
2), then there exists λ′ ∈ Λ admissible at (M̂2, f2, Π2) with cut2(λ

′)

= (C2
1 , I

2, C2
2) such that: (M̂1↾C1

j
, f1 ↾C1

j
, Π1)R(M̂2↾C2

j
, f2 ↾C2

j
, Π2) where

j = 1, 2. The symmetric condition holds exchanging 1 and 2.

We write (M̂1, f1, Π1)R(M̂2, f2, Π2). □

Remark 4. A cut-preserving bisimulation relation is called only intervention pre-
serving when condition 4 in Definition 16 does not hold.

Theorem 2 (Completeness). Let (M̂1, f1, Π1) and (M̂2, f2, Π2) be interface-
admitting, image-finite pointed models. Assume that for all φ ∈ L(⟨Θ⟩, ∗Λ),
(M̂1, f1, Π1) |= φ implies (M̂2, f2, Π2) |= φ and (M̂2, f2, Π2) |= φ implies
(M̂1, f1, Π1) |= φ. Then there is a relation R s.t. (M̂1, f1, Π1)R(M̂2, f2, Π2)
and R is a intervention-preserving bisimulation. □

Proof. Let Th(x) := { φ ∈ L(⟨Θ⟩, ∗Λ) | (M̂, f,Π) |= φ }, and let R :={ (
(M̂1, f1, Π1), (M̂2, f2, Π2)

) ∣∣ Th(M̂1, f1, Π1) = Th(M̂2, f2, Π2)
}
. We verify

the bisimulation clauses of Definition 16.

Atoms. If (M̂1, f1, Π1)R (M̂2, f2, Π2), then for every p ∈ P, p ∈ Th(M̂1, f1, Π1)

implies p ∈ Th(M̂2, f2, Π2), and conversely; hence both satisfy the same atoms.

Steps (forth/back). Fix (M̂1, f1, Π1)R (M̂2, f2, Π2). By image-finiteness, the
successor set Succi(fi) := {g | fi∆Πi

Ii
g} is finite. Let {χ1

j}j∈J be a finite char-
acteristic family for Succ1(f1), i.e., for each g ∈ Succ1(f1) there is a unique
j with (M̂1, g,Π1) |= χ1

j , and distinct successors satisfy distinct χ1
j . Then

(M̂1, f1, Π1) |= ♢
(∨

j∈J χ
1
j

)
if (M̂2, f2, Π2) |= ♢

(∨
j∈J χ

1
j

)
, so there exists

g2 with f2∆
Π2

I2
g2 and (M̂2, g2, Π2) |= χ1

j∗ for some j∗ ∈ J . By construction
of characteristic families, there is g1 ∈ Succ1(f1) with (M̂1, g1, Π1) |= χ1

j∗ and
Th(M̂1, g1, Π1) = Th(M̂2, g2, Π2); hence (M̂1, g1, Π1)R (M̂2, g2, Π2). The back
direction is symmetric, using a characteristic family for Succ2(f2).

Interventions. Fix θ ∈ Θ. Write M̂i,θ := JθK(M̂i) and Πi,θ for the updated
profile (Definition 9). At (M̂i, fi, Πi), by operational finiteness of Θ and image-
finiteness, the set of reachable post-intervention points

Ri(θ) := { g | fi (∆
Πi,θ

Ii
)+ g in M̂i,θ }

admits a finite characteristic family {ψi
k}k∈Ki

that distinguishes its members.
Assume (M̂1, f1, Π1) |= ⟨θ⟩ψ1

k for some k. Then ⟨θ⟩ψ1
k ∈ Th(M̂1, f1, Π1) =

Local Causal Reasoning in Multiagent Systems 15

Th(M̂2, f2, Π2), so (M̂2, f2, Π2) |= ⟨θ⟩ψ1
k. Hence there exists g2 ∈ R2(θ) with

(M̂2,θ, g2, Π2,θ) |= ψ1
k. By characteristic completeness of the family for R1(θ),

there is some g1 ∈ R1(θ) with (M̂1,θ, g1, Π1,θ) |= ψ1
k and Th(M̂1,θ, g1, Π1,θ) =

Th(M̂2,θ, g2, Π2,θ). Therefore (M̂1,θ, g1, Π1,θ)R (M̂2,θ, g2, Π2,θ). The back di-
rection is symmetric.

Interface-cuts. By operational finiteness of Λ, at each pointed state only finitely
many cut labels are admissible. Suppose λ is admissible at the pointed augmented
model (M̂1, f1, Π1) with λ = (C1

1 , I
1, C1

2). Let {αp} be a finite characteristic
family for the restricted pointed model (M̂1↾C1

1
, f1 ↾C1

1
, Π1), and {βq} a finite

characteristic family for (M̂1↾C1
2
, f1 ↾C1

2
, Π1). Consider the (finite) set of indexed

separation formulas Sλ := {αp ∗λ βq
∣∣ p, q}. For every σ ∈ Sλ we have σ ∈

Th(M̂1, f1, Π1) implies σ ∈ Th(M̂2, f2, Π2), and conversely. Therefore,

(a) There exists some λ′ = (C2
1 , I

2, C2
2) admissible at (M̂2, f2, Π2) such that

each αp ∗λ βq is true at (M̂2, f2, Π2) witnessed by the corresponding re-
strictions to C2

1 and C2
2 . This gives cut existence (forth).

(b) Moreover, by the way αp and βq characterize the local theories, we have

(M̂1↾C1
j
, f1 ↾C1

j
, Π1) R (M̂2↾C2

j
, f2 ↾C2

j
, Π2), j ∈ {1, 2},

i.e., local forth/back links on both sides of the interface.

The symmetric argument (starting from an interface-cut at (M̂2, f2, Π2)) yields
the back condition.

We have shown that R satisfies atoms, step-forth (or back), intervention-
forth (or back), and the cut-preserving clause with local links. Therefore R

is a cut-preserving bisimulation under intervention relating (M̂1, f1, Π1) and
(M̂2, f2, Π2), as required. □

Soundness is established for the restricted language L(⟨Θ⟩) without the in-
dexed separating connective ∗λ (cf. [3], which solves a similar problem):

Theorem 3 (Soundness). If two image-finite pointed models (M̂1, f1, Π1) and
(M̂2, f2, Π2) are intervention-preserving bisimilar, then, for all φ ∈ L(⟨Θ⟩),
(M̂1, f1, Π1) |= φ iff (M̂2, f2, Π2) |= φ. □

Proof. By structural induction on φ.

1. Atoms and Boolean formulae: Immediate from Definition 16 and the induc-
tion hypothesis.

2. ♢ and □: Suppose (M̂1, f1, Π1) |= ♢ψ. Then there exists f ′1 with f1, ∆Π1

I1
, f ′1

and (M̂1, f
′
1, Π1) |= ψ. By the step forth clause in Definition 16, there is f ′2

with f2, ∆Π2

I2
, f ′2 and (M̂1, f

′
1, Π1)R(M̂2, f

′
2, Π2). By the induction hypothe-

sis, (M̂2, f
′
2, Π2) |= ψ, hence (M̂2, f2, Π2) |= ♢ψ. The converse follows from

the back clause, and the □ case is analogous.

16 P. Chakraborty, T. Caulfield, and D. Pym

3. ⟨θ⟩: Suppose (M̂1, f1, Π1) |= ⟨θ⟩ψ. Then there is f ′1 with f1(∆
Π1,θ

Iθ
1

)f ′1 and

(M̂1θ, f
′
1, Π1,θ) |= ψ, where (M̂1θ, Π1,θ) = JθK(M̂1, Π1). By the interven-

tion clause of the bisimulation, the intervened structure (M̂2θ, Π2,θ) =

JθK(M̂2, Π2) exists and (M̂1θ, f1, Π1,θ) Rθ (M̂2θ, f2, Π2,θ), with Rθ a bisim-
ulation between the intervened models. By the forth clause there exists f ′2
with f2(∆

Π2,θ

Iθ
2

)f ′2 and (M̂1θ, f
′
1, Π1,θ)Rθ(M̂2θ, f

′
2, Π2,θ). By the induction

hypothesis (applied in the intervened models), (M̂2θ, f
′
2, Π2,θ) |= ψ. There-

fore (M̂2, f2, Π2) |= ⟨θ⟩ψ. The converse implication is symmetric and uses
the back clause. □

8 Conclusion

The language L(⟨Θ⟩, ∗Λ) combines a single intervention modality ⟨θ⟩ with in-
dexed separating conjunction ∗λ, enabling modular reasoning across interfaces,
and agent policies are captured as interventions. We have defined actual cau-
sation directly in this logic and established alignment with the Halpern-Pearl
account of actual causation via a time-unfolding construction. We have also
established a soundness and completeness property in the form of a Hennessy-
Milner-van Benthem-Bergstra ‘bisimulation invariance’, under the necessary fini-
teness assumptions [7].

Our present account has two main limitations: we assume fixed interfaces,
and our reasoning is qualitative. These constraints suggest concrete extensions.
Drawing on quantitative model checking [12], probabilities on system configura-
tion transitions can be placed.

Enriching the logic with quantitative modalities so that optimization claims,
such as ‘the minimum accumulated cost of changing mechanisms ensuring φ is
c’, where costs range over budgets, compute quotas, and permission/approval
requirements, in line with emerging governance standards [24]. Interfaces and
influence contexts may be allowed to evolve, capturing how mechanisms and
dependencies are re-learned or reconfigured as systems adapt. This connects to
work on causal structure learning and dynamic causal discovery [14,34].

Taken together, and expressible within our single language for configura-
tion transitions, interventions, and modular decompositions, these extensions
point toward a unified, certifiable logic of causal design, supporting probabilistic
guarantees, cost-aware mechanism change, and adaptive boundaries for evolving
multiagent systems.

Acknowledgements

Chakraborty is supported by a studentship from UCL’s EPSRC-funded Centre
for Doctoral Training in Cybersecurity (EP/S022503/1).

Local Causal Reasoning in Multiagent Systems 17

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM p. 672–713 (2002). https://doi.org/10.1145/585265.585270

2. Amazon Web Services: MLOps: Continuous Delivery for Machine
Learning on AWS (2020), https://d1.awsstatic.com/whitepapers/
mlops-continuous-delivery-machine-learning-on-aws.pdf

3. Anderson, G., Pym, D.: A calculus and logic of bunched resources and processes.
Theor. Comput. Sci. 614(C), 63–96 (2016). https://doi.org/10.1016/j.tcs.
2015.11.035

4. Anthropic: Model Context Protocol, https://modelcontextprotocol.io/
specification/2025-06-18

5. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. J. Log.
Computat. 28(2), 269–303 (2017). https://doi.org/10.1093/logcom/exx034

6. Baier, Christel et al. : From verification to causality-based explications. In: LIPIcs
198: 48th Int. Colloq. Automata, Languages, and Programming (ICALP 2021). pp.
1:1–1:20 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.1

7. van Benthem, J., Bergstra, J.: Logic of transition systems. J. Log. Lang. Inf. 3(4),
247–283 (1994). https://doi.org/10.1007/bf01160018

8. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. CUP (2001)
9. Bujorianu, M., Caulfield, T., Ilau, M.C., Pym, D.: Interfaces in ecosystems: Con-

cepts, form, and implement. In: Simulation Tools and Techniques. pp. 27–47.
Springer (2025)

10. Caulfield, T., Ilau, M.C., Pym, D.: Engineering Ecosystem Models: Semantics and
Pragmatics. In: Simulation Tools and Techniques. pp. 236–258. Springer (2022)

11. Chakraborty, P., Caulfield, T., Pym, D.: Causality and decision-making: A logical
framework for systems and security modelling (2025), https://arxiv.org/abs/
2508.01758

12. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: Prism-games: A
model checker for stochastic multi-player games. In: Proceedings of the 19th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems. p. 185–191 (2013). https://doi.org/10.1007/978-3-642-36742-7_13

13. Dubslaff, C.e.a.: Causality in configurable software systems. In: Proceedings of the
44th International Conference on Software Engineering. pp. 325–337. Association
for Computing Machinery (2022). https://doi.org/10.1145/3510003.3510200

14. Eberhardt, F.: Introduction to the Epistemology of Causation. Philosophy Com-
pass pp. 913–925 (2009). https://doi.org/10.1111/j.1747-9991.2009.00243.x

15. Everitt, T., Carey, R., Langlois, E.D., Ortega, P.A., Legg, S.: Agent incentives: A
causal perspective. Proceedings of the AAAI Conference on Artificial Intelligence
35(13), 11487–11495 (May 2021). https://doi.org/10.1609/aaai.v35i13.17368

16. Financial Conduct Authority, United Kingdom: Artificial Intelligence (AI) update
(2024), https://www.fca.org.uk/publication/corporate/ai-update.pdf

17. Galmiche, D., Lang, T., Pym, D.: Minimalistic System Modelling: Behaviours,
Interfaces, and Local Reasoning. In: Proc 16th EAI SIMUtools, Springer, 2024
(2024), https://doi.org/10.48550/arXiv.2401.16109, Accessed 9 June 2025

18. Gao, Y. et al.: Retrieval-augmented generation for large language models: A survey
(2024), https://arxiv.org/abs/2312.10997

19. Geiger, A., Lu, H., Icard, T., Potts, C.: Causal abstractions of neural networks. In:
Proc. 35th Int. Conf. on Neural Information Processing Systems (2021)

https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://d1.awsstatic.com/whitepapers/mlops-continuous-delivery-machine-learning-on-aws.pdf
https://d1.awsstatic.com/whitepapers/mlops-continuous-delivery-machine-learning-on-aws.pdf
https://doi.org/10.1016/j.tcs.2015.11.035
https://doi.org/10.1016/j.tcs.2015.11.035
https://doi.org/10.1016/j.tcs.2015.11.035
https://doi.org/10.1016/j.tcs.2015.11.035
https://modelcontextprotocol.io/specification/2025-06-18
https://modelcontextprotocol.io/specification/2025-06-18
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.1007/bf01160018
https://doi.org/10.1007/bf01160018
https://arxiv.org/abs/2508.01758
https://arxiv.org/abs/2508.01758
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1007/978-3-642-36742-7_13
https://doi.org/10.1145/3510003.3510200
https://doi.org/10.1145/3510003.3510200
https://doi.org/10.1111/j.1747-9991.2009.00243.x
https://doi.org/10.1111/j.1747-9991.2009.00243.x
https://doi.org/10.1609/aaai.v35i13.17368
https://doi.org/10.1609/aaai.v35i13.17368
https://www.fca.org.uk/publication/corporate/ai-update.pdf
https://doi.org/10.48550/arXiv.2401.16109
https://arxiv.org/abs/2312.10997

18 P. Chakraborty, T. Caulfield, and D. Pym

20. Halpern, J.Y.: Actual Causality. The MIT Press (2016). https://doi.org/10.
7551/mitpress/10809.001.0001

21. Halpern, J.Y., Pearl, J.: Causes and Explanations: A Structural-Model Approach.
Part I: Causes. Brit. J. Phil. Sci. 56(4), 843–887 (2005)

22. Hammond, L., Fox, J., Everitt, T., Carey, R., Abate, A., Wooldridge, M.: Reasoning
about causality in games. Artificial Intelligence 320, 103919 (2023). https://doi.
org/https://doi.org/10.1016/j.artint.2023.103919

23. Howard, R.A., Matheson, J.E.: Influence diagrams. Decision Analysis 2(3), 127–143
(2005). https://doi.org/10.1287/deca.1050.0020

24. International Organization for Standardization: ISO/IEC 42001:2023 — informa-
tion technology — artificial intelligence management systems. https://www.iso.
org/standard/81230.html (2023)

25. Joachims, T., Swaminathan, A.: Counterfactual evaluation and learning for search,
recommendation and ad placement. In: Proc. 39th Int. ACM SIGIR Conf. on Re-
search and Development in Information Retrieval. pp. 1199–1201 (2016). https:
//doi.org/10.1145/2911451.2914803

26. Khattab, O. et al.: DSPy: Compiling Declarative Language Model Calls into Self-
Improving Pipelines (2023), https://arxiv.org/abs/2310.03714

27. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving
games. Games and Economic Behavior 45(1), 181–221 (2003). https://doi.org/
doi.org/10.1016/S0899-8256(02)00544-4

28. Krishna, R., Iqbal, M.S., Javidian, M.A., Ray, B., Jamshidi, P.: CADET: De-
bugging and Fixing Misconfigurations using Counterfactual Reasoning (2021),
https://arxiv.org/abs/2010.06061

29. Lewis, Patrick et al.: Retrieval-augmented generation for knowledge-intensive nlp
tasks. In: Proc. 34th Int. Conf. on Neural Information Processing Systems (2020)

30. Machamer, P., Darden, L., Craver, C.F.: Thinking About Mechanisms. Philosophy
of Science 67(1), 1–25 (2000). https://doi.org/10.1086/392759

31. National Institute of Standards and Technology, U.S. Department of Commerce:
Artificial intelligence risk management framework (2024), https://nvlpubs.nist.
gov/nistpubs/ai/nist.ai.100-1.pdf

32. O’Hearn, P.W., Pym, D.J.: The Logic of Bunched Implications. Bulletin of Sym-
bolic Logic 5(2), 215–244 (1999). https://doi.org/10.2307/421090

33. Pearl, J.: Causality: Models, Reasoning and Inference. CUP, 2nd edn. (2009)
34. Schölkopf, B., Locatello, F., Bauer, S., Ke, N.R., Kalchbrenner, N., Goyal, A.,

Bengio, Y.: Toward Causal Representation Learning. Proceedings of the IEEE
109(5), 612–634 (2021)

35. Shachter, R.D.: Evaluating influence diagrams. Operations Research 34(6), 871–
882 (1986). https://doi.org/10.1287/opre.34.6.871

36. Simon, H.A., Barnard, C.I.: Administrative Behavior: A study of Decision-making
Processes in Administrative Organization. Macmillan Co. (1947)

37. Wang, N., Han, X., Singh, J., Ma, J., Chaudhary, V.: CausalRAG: Integrating
causal graphs into retrieval-augmented generation. In: Findings of the Association
for Computational Linguistics: ACL 2025. pp. 22680–22693 (2025). https://doi.
org/10.18653/v1/2025.findings-acl.1165

38. Woodward, J.: What is a Mechanism? A Counterfactual Account. Philosophy of
Science 69(S3), 366–377 (2002). https://doi.org/10.1086/341859

https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/https://doi.org/10.1016/j.artint.2023.103919
https://doi.org/https://doi.org/10.1016/j.artint.2023.103919
https://doi.org/https://doi.org/10.1016/j.artint.2023.103919
https://doi.org/https://doi.org/10.1016/j.artint.2023.103919
https://doi.org/10.1287/deca.1050.0020
https://doi.org/10.1287/deca.1050.0020
https://www.iso.org/standard/81230.html
https://www.iso.org/standard/81230.html
https://doi.org/10.1145/2911451.2914803
https://doi.org/10.1145/2911451.2914803
https://doi.org/10.1145/2911451.2914803
https://doi.org/10.1145/2911451.2914803
https://arxiv.org/abs/2310.03714
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://arxiv.org/abs/2010.06061
https://doi.org/10.1086/392759
https://doi.org/10.1086/392759
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
https://nvlpubs.nist.gov/nistpubs/ai/nist.ai.100-1.pdf
https://doi.org/10.2307/421090
https://doi.org/10.2307/421090
https://doi.org/10.1287/opre.34.6.871
https://doi.org/10.1287/opre.34.6.871
https://doi.org/10.18653/v1/2025.findings-acl.1165
https://doi.org/10.18653/v1/2025.findings-acl.1165
https://doi.org/10.18653/v1/2025.findings-acl.1165
https://doi.org/10.18653/v1/2025.findings-acl.1165
https://doi.org/10.1086/341859
https://doi.org/10.1086/341859

	Local Causal Reasoning in Multiagent Systems (Extended Abstract)

