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Abstract. The world we inhabit is constantly increasing in complex-
ity and with this comes a need for new ways of understanding and
thinking that can manage this complexity. A key part of managing this
complexity involves constructing models of ecosystems of systems and
reasoning about their properties. One approach to modelling systems
has been based on a process-algebraic formulation of an abstract view
of distributed systems. Here, building on this view, we concentrate on
modelling ecosystems of systems by developing a rather general concept
of interface between systems. Interfaces between models describe how
they can be composed together to construct a model of an ecosystem.
By introducing the idea of local reasoning, building on work in program
analysis and verification, we develop tools for analysing the behaviour
and performance of ecosystem models in an efficient way.
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1 Introduction

The concept of a distributed system is a basic one in informatics, deriving from
core ideas in the theory of computer systems. Traditionally, this would mean a
collection of computing components which appear as a singular, coherent entity,
can communicate and have the same notion of time. In the context of ecosystems
of systems — now pervasive in our world — this serves as a starting point for a
consistent modelling theory explicitly considering heterogeneity. The argument
is as follows: to deal with the variety of existing systems and their increasing
complexity from a modelling perspective, a decomposition to a set of basic con-
cepts must be constructed; this set of concepts has to be general enough to allow
for modelling ecosystems, but at the same time be simple enough not to alter or
over-complicate the model meaning. We abstract this set of concepts from the
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notion of distributed system and construct what we call, by generalization, the
distributed systems metaphor.

For the practical purposes of simulation modelling — see, for example, [52]
for a survey of the overall ideas — the executions of models can be captured,
for instance, by the dynamics of the many forms of process algebra. Examples
include [34, 25, 13, 14, 12, 2, 11, 9, 24] and many more, including those, described
in various previous Simutools papers [14, 11, 9] that are intended to support
implementations of the ‘distributed systems metaphor’ — in which a system
is modelled in terms of its locations, resources, and processes, relative to its
environment — as described in [13, 14, 12, 2, 11, 9]. The history of this work can
be traced to Birtwistle’s ‘Demos: Discrete Event Modelling on Simula’ [7]. These
approaches can be implemented by tools such as those described in languages
such as Gnosis [14, 12] and Julia [6, 28]. In particular, the modelling approach
based on the ‘distributed systems metaphor’, is conveniently captured in Julia
using the ‘SysModels’ package that is available at [8]. A more abstract view may
be found in [20] (in these proceedings).

The distributed systems metaphor notwithstanding, there are very many —
far too numerous to discuss here — informal definitions of systems discussed
across many disciplines. However, following [20], we can identify a common core
of these definitions, all supported by the distributed systems metaphor and its
implementations, that will serve as a starting point for our work:

A system is something whose behaviour is reflected in the behaviour of
its components.

This definition is deceptively simple: it identifies, at least implicitly, not only be-
haviour and components, but also composition (necessarily, of components) and
so (again, necessarily) interfaces between components. This definition amounts
to an abstraction and generalization of the characterization of systems that is
provided by the distributed systems metaphor (e.g., [10, 9]).

In this paper, we work towards constructing a framework and discipline for
model engineering that will provide — in a scale-free form, applicable across the
scope of the distributed systems metaphor — the tools and approaches required
for building models of large, complicated ecosystems. We start from building
basic models using the distributed systems paradigm before introducing a gen-
eral concept of interface and discussing how such models can be composed using
these. Beyond the structural requirements for model composition, we also in-
troduce the idea of dynamic model checking, to verify that the behaviour of
composed models is correct with respect to the requirements of their interfaces.

To understand the role of dynamic model checking, it is perhaps helpful to
compare with the idea of run-time verification from computer science. The main
difference between runtime verification and the approach presented in this paper
can be observed by understanding the nature of the object of inquiry: the former
interacts with a system, whereas the latter interacts with a system representa-
tion. Runtime verification is a procedure applied at the level of a software system,
usually based on a different set of abstractions than those used in the system’s
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design and development. In other words, it is an external procedure that is used
for monitoring properties of system states directly. Although they have similar
goals, dynamic model checking, as a procedure, operates at a different concep-
tual layer, serving as a verification tool for model properties that have already
been abstracted or inferred from a system. Thus, in run-time verification, the ab-
straction is implicit and mainly focused on the definition of properties, whereas
in dynamic model checking, the abstraction and inference processes used for de-
signing and constructing the model and the definition of model properties are
underlined by the same explicit distributed systems metaphor. The benefits are
twofold: firstly, conceptual consistency across model design, construction, and
verification is required to limit possible errors in translating the model proper-
ties to system properties; secondly, this implies a higher degree of generality for
dynamic model checking.

In Section 2, we discuss our use of distributed systems as a metaphor for
ecosystems of systems. We discuss how to model distributed systems at the level
of abstraction of the metaphor, including giving a presentation that is adapted
to the needs of implementation, and explain how to associate a rich logical lan-
guage with such models. In Section 3, we explain how to model the compositional
structure of ecosystem models using a rather general notion of interface for the
implementation-adapted presentation version of models together some logical
specification of required properties and policies. Then, in Section 4, we explain
how our theory of composition and local reasoning can be used to support rea-
soning about the behaviour of composite models. Particularly, we show that our
notion of locality includes meaning explicitly and is not solely grounded on model
state: to reason about the property of a sub-model locally implies using only the
relevant and meaningful information, even if the model state contains more than
that. In Section 5, we explain how to establish a theory of local reasoning (in the
sense of Separation Logic [27, 46]) for our interface-mediated theory of composi-
tion and discuss how it supports a substitution operation for models. Appendices
A and B sketch the underlying process-theoretic and logical theory.

Related work, including [51, 50, 16, 17] among others, also addresses the con-
cept of interface, but lacks the close structural integration with logic and does
not address the ideas around local reasoning. Milner’s work on bigraphs consid-
ers interfaces in an abstract setting (e.g., [37]), and has been related to logical
work (e.g., [15]), but again local reasoning is not considered. We give a more
complete account of related work on interfaces in Appendix C, which explains
how our very general, yet ecosystem-motivated, notion of interface captures a
wide range of the notions of interface that are in the literature on systems and
modelling.

2 The Distributed Systems Metaphor

We use the distributed systems metaphor to describe ecosystems. We begin, in
this section, with how the metaphor describes individual systems. Our modelling
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approach for ecosystems is then component-based. Ecosystems are thought of
as systems of systems, or systems with different components, which interact,
collaborate, inter-operate to achieve coherent goals.

In moving from modelling systems to ecosystems of systems, it is therefore
necessary to define interfaces that enable interactions between component sys-
tems. Such interfaces will be the focus of this paper and are developed and
analysed in subsequent sections.

For now, beginning with the motivation of capturing individual systems,
there are three key ingredients upon which we draw:
- Location. Distributed systems naturally have a concept of location and dis-

tinct locations may be connected to one another. This is the system’s underly-
ing structure or architecture. In the setting of computer systems, components
are present at different locations and connected by a network. In the more
general view, locations can be physical (e.g., a room, a container), logical
(e.g., an address in computer memory), or abstract (e.g., the location where
a semaphore exists).

- Resource. Resources exist at locations and are manipulated by processes as
they execute. Examples of resources include units of data (and information),
physical entities, and other derived notions.

- Process. Processes execute and manipulate resources — such as consuming,
creating, and moving them between locations — as they execute and deliver
the required system behaviour.

These concepts can be used to build a representation of a system’s structure and
operation, but there is one more concept required: the environment in which the
system operates.

- Environment. Environments capture the world outside of, and its interaction
with, the system of interest.

Throughout this paper we illustrate its ideas and approach with a recurring
example of supply chains — classically, the sequence of processes involved in
the production and distribution of a commodity, but now also encompassing
information supply — with our basic conception of the structure of supply chains
being essentially that of [22]. In this view, can be seen to be a quite generic notion
of system. The supply chain example will be used in more detail in subsequent
sections. For now, we focus on more generic issues.

Figure 1 illustrates the general set-up that we seek to analyse. Here the idea is
that two supply chains, the input chain and the output chain, are connected by an
interface. From one point of view, each of the input and output chains is itself an
ecosystem of component systems, respectively Cis and Djs. From another, each
of the input and output ecosystems can be seen as a single distributed system.
Either way, the range of architectures of supply chains — encompassing forms
of serial and parallel composition — can be described in the ways given in [22].
This illustrates that the distinction between what constitutes the component
systems and what constitutes is a design decision that should be driven by an
understanding of the purpose of the system.
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Fig. 1. A composition of supply chains

From the ecosystem perspective, each of the component systems (i.e., the
Cs and Ds) resides at a location. These locations are connected by the routes
along which the commodities supplied to and from the components are moved.
Of particular importance in this view is the role of the interface, which may
in general itself be modelled as system in the same way as the components. In
order for the input and output ecosystems to be composed, two key conditions
must be satisfied: first, each of the input and output ecosystems must have
an appropriate architecture of locations — that is, their graphs must ‘match’
with the interface mode at Cout and Din — and their modification functions
(that is, the signatures of the models) must be consistent; second, there must be
satisfaction of a range of logically expressible properties — for example, that,
at a given point in the execution, sufficient quantities of a given resource are
available at a specified location or that all of a given collection of supplying
components have completed their required supply tasks.

Checking the properties of large complex systems for compatibility is, in
general, an expensive, perhaps intractable, task. In this paper, as described in
subsequent sections, we propose a theory and implementation of local reasoning
in which we check, dynamically, the properties that are required to ensure that
composition through given interfaces works as intended. In practice, this will
capture most of the possible sources of error and, in particular, support check-
ing that the substitution of one component for another preserves the required
functionality of the ecosystem.
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2.1 The Mathematics of Modelling Distributed Systems

The formal mathematical framework that captures the distributed systems meta-
phor for modelling systems is presented in Appendices A and B. In Appendix
A, we given a calculus of processes in which location-resource-process states co-
evolve as actions occur. This is written as L,R,E a−→ L′, R′, E′, which the action
a evolves the state L,R,E — read as the process state E evolving at location
L relative to resources R at location L — to a new state L′, R′, E′. The three
components are defined separately. The pure process part is essentially Milner’s
SCCS [32], the resource part is based on the semantics of BI [42, 44], the logic
that underpins Separation Logic [27, 46], and locations and their connections are
captured by directed graphs.

These components naturally fit together in the presence of a ‘modification
function’ from locations, resources, and (basic) actions to locations and resources
that describes the basic signature of the model. Moreover, all of these structures
are in a sense primitive: Milner’s SCCS is perhaps the most primitive process
algebra that is complete for describing recursively enumerable graphs and em-
ploys a synchronous concurrent product, from which, under modest assumptions,
asynchronous products can be recovered (but not vice versa) [32, 18]. This latter
property is convenient in the modelling context: semantically, we can consider
a model to be given by collections of locations and resources together with a
modification function that specifies the actions that are available to construct
processes [13, 12, 2].

Associated with the calculus of processes is a substructural logic, described
in Appendix B, that has natural interpretation as a logic of resources (and also
locations) in the sense of BI [42, 44] and Separation Logic [27, 46]. Properties ϕ
of states L,R,E are described by a semantic judgement of the form L,R,E |= ϕ
and natural notions of process equivalence and logical equivalence coincide (see
Appendix B). These correspondences lead to a natural and conceptually simple
modelling framework.

In the basic presentation of the mathematical set-up, we can suppress the
concept of location, though not of course in the implemented models described
in Section 2.2. Technically, locations are handled in essentially the same way as
resources, and suppressing them simplifies the presentation of the basic theory.
The framework we sketch in Appendices A and B has been developed in detail
in [13, 12, 10, 2].

2.2 Implementing Models of Distributed Systems

As we have discussed, an ecosystem is thought of as a system of systems that
brings together a collection of systems in order to achieve and overall goal.
The composite supply chain, as in Figure 1, Each constituent system may have
its own policies, objectives, and resources while coordinating within the whole
ecosystem and adapting to accomplish the overall goals.

The description of models sketched above, in Section 2, lies at a wholly
semantic level and is not formulated with the needs of implementation foremost.
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Our implementations — in Julia [28] and building on an earlier bespoke tool
called Gnosis [14, 12], using the SysModels package [48] — are based on the
more specific formulation of basic models, building on the ideas presented in
[10], which we now sketch and which are the basis of our implementation work.

A basic model is intended to capture the simplest convenient representation
of a model of a single system using the distributed systems metaphor. Each
basic model encapsulates the primitives we have discussed above — locations,
resources, processes, and environment. In Section 3, we give an account of in-
teraction between models through a notion of interface formulated at a similar
level of abstraction.

Basic Model. A basic model is a representation of a single system that corre-
sponds to the semantic definition discussed above, but which specifies locations
as directed graphs, with vertices labelled by resources, and which identifies the
actions and processes that are available.

Formally, a basic model is a tuple M = ⟨G(V[R], E),A⟩, where G(V[R], E)
is a directed graph with vertices V, labelled with resources R, and edges E ,
and A is a set of actions specified by a modification function µ — given by
µ : (a,V,R) 7→ (V ′,R′), the action a evolves the process E to E′, R to R′, and
V to V ′ — as defined in Appendix A.

It is this specification that is used as the basis of the Julia implementation.
Locations are specified as objects with links to other location objects — forming
a (directed) graph. These locations can contain resources, which are specified
using Julia types. Processes are implemented as Julia functions, which provides
a natural way of expressing sequences of actions (such as moving resources, or
waiting for some duration, and so on).

A scheduler coordinates the execution of these processes. Models are executed
on a single thread, but in a way that simulates parallel execution of processes.
Events — parts of processes to be executed — are stored in a queue, ordered
by time; the scheduler dequeues the first event and executes it. For example,
a process that is currently executing at time t can pause its execution for 30
seconds. It gets paused and added to the queue to resume execution at time
t+30, and the scheduler begins executing the next item from the queue. In [14,
12], the scheduler for Gnosis is given a semantics in terms of the calculus of
locations, resources, and processes discussed above. The scheduler implemented
in Julia could be given a very similar semantics.

The implementation also handles contention for resources. Processes must
claim resources before they use them, and can release them after. Only one
process can claim a particular resource at a time. If a desired resource is not
available (because it has already been claimed, or because it is not present) a
process will wait until the resources become available, so forming an implicit
queue for resources.

The implementation of these concepts provides a useful tool for building
executable models of systems. In the next sections, we explore how the concepts
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and implementation can be augmented to capture interactions between systems,
which forms the basis for modelling ecosystems.

3 Interfaces and Composition

To begin thinking about how systems interact, we first need a concept that cap-
tures where and how these interactions happen. In this section, we introduce the
basic interface and then extend our definition of basic model with this concept.

It is helpful to first revisit the concept of environment. Systems do not exist
in isolation; they interact with the world — other systems — around them.
However, we do not always want to explicitly model all of these adjacent systems.
Instead, we use the concept of an environment, which models external events that
have an effect on the system. When these events occur, associated actions inside
a model are executed.

In the distributed systems paradigm, model-model interaction can happen in
two ways. First, akin to environment-model interaction, one model can initiate
an action in another model. Second, models might share locations and interact
by manipulating resources in these shared locations. The combination of both
of these is also possible: one model may move a resource into a shared location
and initiate an action, for example.

Basic Interfaces. A basic interface, which describes the locations and actions
involved in such interactions, is defined as follows: I = ⟨G(VI [RI ], EI),AI⟩, where
G(VI [RI ], EI) is a directed graph with vertices VI , labelled with resources RI ,
and edges EI , and AI is a set of actions specified by a modification function.

Model. The locations and actions in a basic interface lack purpose unless asso-
ciated with a model. A model is given by a tuple M = ⟨G(V[R], E),A, I⟩, where
⟨G(V[R], E),A⟩ is a basic model, and I is a set of basic interfaces such that
G(VI [RI ], EI) is sub-labelled graph of G(V[R], E) (that is, it is a subgraph and
all the resources labelling each vertex in the interface also label the same vertex
in the model) and AI ⊆ A.

Environment. We can now (informally) define an environment of a model. It
associates to some or all of the actions in a model’s basic interfaces a probability
distribution. In an implementation of this framework, actions that are associated
with probability distributions are initiated by sampling the distribution.

Composition of Models. A model as defined above can have multiple basic
interfaces, each defining parts of the model — locations and actions — through
which it can interact with other models. The composition operation joins two
models using a specified basic interface from each one.

Let M1 = ⟨G(V1[R1], E1),A1, I1⟩ and M2 = ⟨G(V2[R2], E2),A2, I2⟩ be two
models whose sets of actions have consistent modification functions (i.e., that
agree on actions present in both). Consider two basic interfaces

I1 = ⟨G(VI1 [RI1 ], EI1),AI1⟩ and I2 = ⟨G(VI2 [RI2 ], EI2),AI2⟩
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and suppose that at least one of VI1∩VI2 ̸= ∅ and AI1∩AI2 ̸= ∅. The composition
M1 ◦I1,I2 M2, where I1 ∈ I1 and I2 ∈ I2, is defined pleasingly simply as follows:

M1 ◦I1,I2 M2 = ⟨G(V1 ⊕ V2[R1 ⊕R2], E1 ⊕ E2),A1 ⊕A2, I1 ⊕ I2⟩

where V1 ⊕ V2 = V1 ∪ V2, E1 ⊕ E2 = E1 ∪ E2, A1 ⊕ A2 = A1 ∪ A2, I1 ∪ I2, and
for each v ∈ V1 ⊕ V2,

v[R1 ⊕R2] =


v[R1] = if v ∈ V1 ∧ v /∈ V2

v[R2] = if v ∈ V2 ∧ v /∈ V1

v[R1 ∪R2]= otherwise

In this definition, it might be expected that the interfaces used to form a com-
position would not be available for further compositions, so that we should then
have I1 ∪ I2\{I1, I2} above. However, such a requirement is not needed and
its absence provides a more general and practically more realistic model of the
concept of interface. The requirement that at least one of VI1 ∩ VI2 ̸= ∅ and
AI1 ∩AI2 ̸= ∅ ensures that we are actually achieving composition. If both inter-
sections are empty, then the two models are necessarily executing independently
of each other.

The following basic properties are easy to establish:

Proposition 1 (Composition Soundness). If M1 and M2 are models as
above, then so is M1 ◦I1,I2 M2.

Proposition 2 (Commutativity). If M1 and M2 are models as above, then
M1 ◦I1,I2 M2 =M2 ◦I2,I1 M1.

Proposition 3 (Associativity). Consider the compositions (M ◦I1,I2 N)◦I3,I4
P and M ◦J1.J2 (N ◦J3,J4 P ) of models M , N , and P using interfaces Iis and
Jjs, for 1 ≤ i, j ≤ 4. Then

(M ◦I1,I2 N) ◦I3,I4 P =M ◦J1.J2
(N ◦J3,J4

P )

provided, for 1 ≤ k ≤ 4, Ik = Jk.

When two models are composed using their basic interfaces it follows, by
construction, that their basic architectures fit together. This, however, is not
enough for their composition necessarily to function as intended. Each model
has a collection of functions that it is intended to be able to perform and a
collection of properties that can be expected of it and, whenever it is composed
with another model, it is necessary to specify which of these must be preserved.

The simplest away to achieve this is to associate with each model a logical for-
mula, using the logical language of Appendix B, that expresses the functionality
and properties that must be preserved.

With this last step, we at last have a viable notion of interface. This notion
substantially generalizes and makes cleaner that given in [10].
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Supplier 1

Supplier 2

Supplier 3

Manufacturer Distributor

max batch size = n1 min batch size = n3

truck capacity = n2

Fig. 2. Composition of Supply Chains: Structure and Logical Conditions

Interface Model. An interface model is a pair I = ⟨M,ϕ⟩, where M is a model,
and ϕ is a set of formulae (in the language of logic described in Appendix B) that
describe properties of the model that must be preserved under composition. We
identify a set of formulae with the conjunction (∧) of its elements as necessary.
We refer to these formulae as interface formulae.

Note that the notion of an interface model strictly generalizes that of a model:
simply take the interface model ⟨M, {⊤}⟩, which places no constraint on M .

When two interface models are composed, it is necessary that their basic
structure (that is, their basic actions do the same things at the same places)
and the properties that they each require to be preserved under composition
be consistent. These requirements are captured by the notion of admissibility,
which requires that their modification functions (signatures) and their interface
formulae be consistent.
Admissibility. Let ⟨M1, ϕ1⟩ and ⟨M2, ϕ2⟩ be interface models such that M1 and
M2 have consistent modification functions (i.e., that agree on actions present in
both). Let M1 ◦M2 denote a composition of M1 and M2 using some choice of
interfaces. Then the composition of ⟨M1, ϕ1⟩ and ⟨M2, ϕ2⟩, denoted ⟨M1, ϕ1⟩ ◦
⟨M2, ϕ2⟩ := ⟨M1 ◦M2, ϕ1 ∧ ϕ2⟩, is admissible if ϕ1 ∧ ϕ2 ̸⊃ ⊥.

A simple example of this is illustrated in Figure 2 in which the composition
of the suppliers, the manufacturer, and the distributor is supported bu inter-
faces that match the architecture and in which the necessary conditions are all
consistent.

Proposition 4 (Composition Soundness). If ⟨M1, ϕ1⟩ and ⟨M2, ϕ2⟩ are in-
terface models, then so is their composition ⟨M1, ϕ1⟩ ◦ ⟨M2, ϕ2⟩.

Proposition 5 (Commutativity and Associativity). Commutativity of com-
position of interface model follows as for models. Associativity of composition of
interface models ⟨M1, ϕ1⟩, ⟨M2, ϕ2⟩, and ⟨M3, ϕ3⟩ holds as for models provided
also ϕ1 ∧ ϕ2 ∧ ϕ3 ̸⊃ ⊥.

The notion of composition established in this section determines the condi-
tions under which, in a model of an ecosystem, one component model may be
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replaced by another of the same component system. The concept of substitution
is developed in Section 5.

4 Dynamic Model Checking

We have built up a picture of how ecosystem models can be constructed, build-
ing on the concepts of basic model and basic interface to define composition of
models, finishing with the definition of interface models, which associate log-
ical formulae with models. These formulae express the required functionality
and properties of models that must must be preserved, particularly when mod-
els are composed. This is important for a variety of purposes. For example,
it allows the modeller to ensure: that model behaviour matches the real-world
behaviour of the system being modelled; that the composition of models is cor-
rect and matches specification and behaves as intended; and, that changes in
model parameters or substitution of models still satisfy requirements. We pro-
pose dynamic model checking as a method of verifying these formulae during
the execution of implemented models. This is different from the usual notion of
model checking (e.g., [3, 21]): dynamic model checking verifies a model during
the circumstances of a particular execution of a model, rather than under all
possible circumstances; it is localized in space and time — it checks properties
only in a small region of the model, at the interfaces, at specific times during
execution.

If there are stochastic elements in the model, the results of dynamic model
checking may change depending on what happens during the execution of a
model. Repeated executions of the model are required to reach a desired level of
confidence that model is correct with respect to the specified formulae.

To implement dynamic model checking using the Julia SysModels package
[28, 48], we need a way to express resources, locations, process execution, and
formulae, together with the ability to evaluate formulae as the model executes.
This follows the pattern introduced in Section 2.2:
– resources residing at locations are represented in the code of an implemented

model as a vector of resource objects, declared as Julia types, inside a location
object, with links to other objects;

– process evolution, through occurrences of sequences of actions, is represented
using Julia functions;

– then interface formulae are represented as Julia functions that return booleans,
based on the state of processes and the presence of resources in locations.
We illustrate this using the simple supply-chain example shown in Figure 2.

In this scenario, a number of suppliers supply goods to a manufacturer, which
transforms them into finished goods and transfers them to a distributor. For this
example, we consider two properties that we want to verify using dynamic model
checking. The first is the failure rate of the goods from the suppliers, and the
second is the compatibility between the manufacturer’s and distributor’s batch
sizes and the capacity of the trucks that is used to move the finished goods
between them.
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The manufacturer requires a failure rate of less than 5% from the suppliers.
We can express this in the logical language described in Appendix B as ϕ =
(Fail(Supplier n) ≤ 5%), for each Supplier 1, 2, 3. This needs to be translated
into a statement in the Julia language to work with the implementation:

state(proc_goods, ‘receiving’) &&
length(at(loc_input, r-> r isa FaultyGood)) /
length(at(loc_input, r-> r isa InputGood))
< 0.05

Formulae are implemented as functions that return true/false; they check
the state of processes using the state function and can inspect resources at
locations using at. Processes use a pair of functions set_state and reset_-
state to declare when they enter and leave a particular state — essentially
giving a label to an action or sequence of actions for reference by formulae. The
at function can specify a filter, used to select only certain types of resource or
resources with specific properties from a location.

This example is checking whether the proc_goods process is in a particular
state (‘receiving’) and whether the ratio of faulty goods to correct goods in
location loc_input is less than 5%, using at to select FaultyGood resources
and then all InputGood resources. The length function is built into Julia and
returns the size of the vector.

For efficiency, formulae are only evaluated when relevant locations or pro-
cess states are updated. Here, formulae are evaluated only when resources are
added or removed at loc_input, or when the state of the process is updated to
‘receiving’. We can write formulae to check that batch sizes are correct,

state(distrib_proc, ‘receiving’) &&
length(at(loc_distributor, r->r isa FinishedGood)) >=
distrib_min_size

and also that truck capacity is not exceeded,

state(truck_proc, ‘collecting’) &&
length(at(loc_output, r->r isa FinishedGood)) <=
truck_max_size

These formulae are associated with an interface model in the code. The first
formula above is associated with the manufacturer model, the second with the
distributor model, and the final with the trucking model. All the models are
composed to form one model.

Although the scenario, models, and formulae in this example are fairly trivial,
they demonstrate how all of the concepts we have discussed in this paper come
together to enable the construction and the checking of composition in ecosys-
tem models. Because models are built using resource, location, and process, the
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relatively simple state and at used in the construction of formulae can be used
to build up complex expressions about the state of a model. Future work will
increase the expressiveness of the implemented logic; for example, referring to a
history of states.

5 Model Management: Substitution and Local Reasoning

In this section, we discuss how substitution and local reasoning, two tools which
support the management of the modelling process, are enabled with the approach
presented above. The practice of modelling is active: as models of ecosystems are
developed, it is natural that the function and specification of their component
models may evolve. If one component model is replaced withe another, we must
ensure that the resulting model still satisfies the requirements for it to interact
with the other models in the ecosystem.

For example, consider the supply chain depicted in Figure 2. Suppose Supplier
2 ceases to trade and must be replaced by a different supplier. We can substitute a
model of the new supplier. The conditions for the Manufacturer remain the same,
and we can verify that the modified supply chain, including the new supplier,
continues to satisfy the structural requirements, as specified by the modification
function, and the logical condition on the fail rate.

It can be seen that the formulation of the concepts of interface and dynamic
model checking presented here support this requirement for substitution. Indeed,
dynamic model checking can be seen as delivering a form of local reasoning, as
has been very successfully employed in program analysis and verification [27, 46,
30], but at the level of general ecosystem models.

6 Conclusion: Towards Model Engineering

In this paper, we have presented an approach to modelling ecosystems based
on concepts from distributed systems. We have developed the notion of a basic
model, expanded it with basic interfaces to define a model, and and subsequently
to an interface model, which has associated formulae that characterize the re-
quirements of composition. We have then described how these formulae can be
evaluated as a model executes, in order to verify properties of the model, through
dynamic model checking.

This approach enables the composition of models in such a way that proper-
ties essential for the composition to function properly can be verified locally at
the interfaces between components, while avoiding the need to verify the correct-
ness of components while doing so. This supports more robust construction of
large ecosystem models at limited computational cost. It also provides support
for useful modelling tools such as substitution and principles of local reasoning
that go beyond the basic requirements of composition. We view this work as
early progress towards a rigorous discipline of model engineering.
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A A Calculus of Locations, Resources, and Processes

Our starting points are Milner’s synchronous calculus of communicating systems,
SCCS [33] — perhaps the most basic of process calculi, the collection of which
includes also CCS [32], CSP [25], Meije [18], and their derivatives, as well as the
π-calculus [36], bigraphs [39] and their derivatives — and the resource semantics
of bunched logic [42, 45, 19, 44].

Our presentation here follows Chapter 2 of [12]. We start with the following:

- A monoid of actions, Act, with a composition ab of elements a and b and
unit 1;

- The following grammar of process terms, E, where a ∈ Act and X denotes
a process variable:

E ::= 0 | a | a : E |
∑
i∈I

Ei | E × E | X | fixiX.E | (νR).E | . . .

Most of the cases here, such as 0, action, action prefix, sum, concurrent product,
and recursion, will seem quite familiar. The last one, however, which we call
hiding, is available because we integrate the notions of resource and process. Its
meaning is discussed below; it replaces and generalizes restriction. The expression
fixiX.E, where E is a tuple of processes, means (fixX.E)i, the ith component
of the tuple (fixX.E) over an indexing set I. The unsubscripted form fixX.E
stands for the family over i of fixiX.E s. As Milner ([33], for example) explains,
the case in which the indexing set has just one element is sufficient for finite
processes.

Mathematically, the notion of resource — which covers examples such as
space, memory, and money — is based on (ordered, partial, commutative) monoids
(e.g., the non-negative integers with zero, addition, and less-than-or-equals): each
type of resource is based on a basic set of resource elements, resource elements
can be combined, and resource elements can be compared. Although, for brevity,
we describe the set-up here for resource-process states, R,E, everything we de-
scribe here can be set up for location-resource-process pairs, L,R,E, though
there are some delicate issues that are beyond the scope of this short paper; see
[13, 12, 2].

Formally, we consider pre-ordered, partial commutative monoids of resources,
(R, ◦, e,⊑), where R is the carrier set of resource elements, ◦ is a partial monoid
composition, with unit e, and ⊑ is a pre-order on R. The basic idea is that
resources, R, and processes, E, co-evolve, R,E a−→ R′, E′, according to the
specification of a partial ‘modification function’, µ : (a,R) 7→ R′, that determines
how an action a evolves R to R’ and E to E′.

Modification functions can be seen as the signature of model, specifying the
basic evolutions of states via basic actions from which the overall evolution of
a model is constructed. In the presence of locations, L, modifications have the
form µ : (a, L,R) 7→ (L′, R′), a evolves E to E′, R to R′, and L to L′.
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The base case of the operational semantics, presented in Plotkin’s SOS style
[43], is given by Action prefix and Concurrent composition, ×, exploits the
monoid composition, ◦, on resources,

R, a : E
a−→ R′, E′

µ(a,R) = R′ Action

R,E
a−→ R′, E′ S, F

b−→ S′, F ′

R ◦ S,E × F
ab−→ R′ ◦ S′, E′ × F ′

Concurrent

This (rather general [33, 18]) notion of composition at the level of process does
not explain the engineering concept of the composition of models, with its req-
uisite notions of interface and substitution, that we discuss in the sequel.

A modification function is required to satisfy some basic coherence condi-
tions (in certain circumstances, additional structure may be required [2]): for
all actions a and b and all resources R and S, and where ≃ is Kleene equality:
µ(1, R) = R, where 1 is the unit action, and if µ(a,R), µ(b, S), and R ◦ S are
defined, then µ(ab,R ◦ S) ≃ µ(a,R) ◦ µ(b, S).

Sums, Recursion, and Hiding are formulated in familiar ways:

R,Ei
a−→ R′, E′

R,
∑

i∈I Ei
a−→ R′, E′

Sum
R,Ei[fixX.E/X]

a−→ R′, E′

R, fixiX.E
a−→ R′, E′

Recursion

R ◦ S,E a−→ R′ ◦ S′, E′

R, (νS)E
(νS)a−→ R′, (νS′)E′

Hiding

In Recursion, I is an indexing set and Ei is the ith component of a tuple of
processes, and substitution is capture-avoiding. In Hiding, the resource S be-
comes bound to the process E. This construction replaces, and generalizes, the
restriction operation of calculi such as SCCS.

The notion of equality between location-resource processes is given by the
idea of bisimulation (see [33, 35], for example. Specifically, bisimulation equiva-
lence can be defined as follows: two process states S and T are bisimilar, written
S ≈ T , if ≈ is the largest relation on process states that is closed under the
following conditions:

- if S a−→ S ′, then there is an evolution T a−→ T ′ such that S ′ ≈ T ′

- if T a−→ T ′, then there is an evolution S a−→ S ′ such that S ′ ≈ T ′.

For this notion of (strong) bisimulation, two bisimilar processes have the
same set of traces/behaviours. Again, this definition of bisimulation can readily
be adapted to states L,R,E, though, again, there are some delicate issues that
are beyond the scope of this paper; see [13, 12, 2].
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B A Modal Logic

Here we follow Chapter 3 of [12]. Process calculi such as SCCS, CCS, and others
come along with associated modal logics [23, 35, 47, 53]. Similarly, the calculus
sketched here has associated modal logic [13, 12, 2]. The basic logical judgement
is of the form R,E |= ϕ, read as ‘relative to the available resources R, the process
E has property ϕ’. For our purposes, we work with the following language:

ϕ := p | ¬ϕ | ⊤ | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ⊃ ϕ | ⟨a⟩ϕ | [a]ϕ
| I | ϕ ∗ ϕ | ϕ−−∗ ϕ | ⟨a⟩νϕ | [a]νϕ

Building on the ideas of the bunched logic BI (e.g., [42, 45, 19, 44]), which is the
basis of Separation Logic [27, 46], this logic has, the usual classical connectives, ⊤,
∧, →, ⊥, ∨ that are defined, in the usual way, by semantic clauses of a satisfaction
relation, where V is an interpretation of propositional letters, beginning

R,E |= p iff (R,E) ∈ V(p)

and proceeding as

R,E |= ϕ ∧ ψ iff R,E |= ϕ R,E |= ψ

and so on. Note that an intuitionistic version is also possible. The logic also has
a separating conjunction, ∗, with unit I, defined by

R,E |= ϕ ∗ ψ iff there are S, T and F , G s.t. S ◦ T ⊑ R, F ×G ≈ E,
and S, F |= ϕ and T,E |= ψ

where ≈ is bisimulation as sketched above, together with a corresponding sepa-
rating implication, −−∗. Note that the truth condition for ∗ — called a ‘separating
conjunction’, since its conjuncts use separate resources — requires the combina-
tion of resources from the truth conditions for its component formulae.

The relationship between truth and action is captured by the clauses of the
satisfaction relation for the (additive) modalities, given essentially as follows
(recall that R′ = µ(a,R)):

R,E |= ⟨a⟩ϕ iff there exists E′ s.t. R,E a−→ R′, E′ and R′, E′ |= ϕ

R,E |= [a]ϕ iff for all E′ s.t. R,E a−→ R′, E′, R′, E′ |= ϕ

Similarly, in addition to the usual quantifiers and modalities, this logic has the
separating modalities, ⟨a⟩νϕ and [a]νϕ, as developed in [13, 12, 2].

Predicate versions of this logic — of the kind required for this paper — are
also available, allowing quantification over both actions and terms. The details
require some care, and will reported elsewhere, but the basic idea is that quan-
tification over action variables taking values in Act and term variables taking
values in a specified domain D, as part in general of a model M defined in a
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standard way, is understand as for states S as

S |=M,ρ ∃α.ϕ iff there exists a ∈ Act such that S |=M,ρ[α:=a] ϕ
S |=M,ρ ∀α.ϕ iff for all a ∈ Act, S |=M,ρ[α:=a] ϕ
S |=M,ρ ∃z.ϕ iff there exists d ∈ D such that S |=M,ρ[z:=d] ϕ
S |=M,ρ ∀z.ϕ iff for all d ∈ D, S |=M,ρ[z:=d] ϕ

where ρ assigns values in Act and D and |=M,ρ denotes satisfaction in a model
M in the usual way. We elide the detail of the connection to the implemented
models discussed in this paper.

The basic connection between the process calculus and the logic is given by a
form of van Benthem-Hennessy-Milner theorem that relates process equivalence,
as given by bisimulation, and logical equivalence (e.g., [23, 35, 47, 13, 53, 12, 2]).
Essentially — though some care must be taken [12, 2], either restricting the logic
or employing a slightly different semantics — for image-finite processes E and
F and any R,

R,E ≈ R,F iff R,E ≡MBI R,F

Specifically, this holds for the basic monoidal theory of resources, as described
above, only for some (large) fragments of the logic [13, 12], but, with a slightly
different theory of resource — essentially, using two monoidal operations — as
described in [2], it holds for the full logic with states R,E and S, F (and hence
L,R,E and M,S, F ). This generalization is slightly mis-stated in [9].

Logics based on the language of MBI have proved valuable in program anal-
ysis — see the Infer tool [30] — partly by virtue of their deployment of local
reasoning, based on the connective ∗.

C Definitions of Interfaces in the Literature

In this appendix we briefly discuss how interface concepts from the systems and
modelling literature relate to our ideas on interface presented in this paper.

Interface automata The first formal interface theory was proposed by de
Alfaro and Henzinger in [1]. There, an interface theory comprises an interface
algebra together with a component algebra to differentiate the interface spec-
ifications from component implementations. An interface is represented by an
input/output automaton, which is an automaton whose transitions are labelled
with input or output actions. The main requirement in this setting is that connec-
tion is properly accomplished in the sense that for every output one interacting
component produces, the other component is ready to receive it.

This approach corresponds to the case when the models have only basic
interfaces. Our interface models extend this type of interaction, allowing for
some possible transformations of the model outputs before being received by
another model.
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Modal I/O Automata for Interface A modal transition system (MTS) [29]
associates with each state transition, a classification/modality — may or must —
expressing transition behaviours that (i) necessarily occur (must modality), (ii)
possibly occur (may modality), and (iii) not possibly occur (absence of a transi-
tion). Modal I/O Automata for Interface is an approach that uses combinations
of Interface Automata (IA) and Modal Transition Systems (MTS), through the
labelling of may and must modalities with input/output features.

The modal I/O Automaton model can be thought of as a particular case
of our interface model in which we express the may and must modalities using
appropriate logical formulae.

Relational Interfaces The theory of relational interfaces [49] specifies inter-
faces as relations between inputs and outputs. This interface theory includes
explicit notions of environments and the compatibility of the interface with the
environment.

Relational interfaces can be thought of as a particular case of our interface
models in which there is no internal structure, and the logical formulae model
the relationships between inputs and outputs.

Contract theories Contract theories [31, 4, 5] are specializations of interface
models in the sense that they obey to the concept of separation of concerns. They
separate the assumption specification from the guarantees specification. The first
use of the concept of contract [31] specifies preconditions and postconditions as
state predicates for the methods of a class, and invariants for the class itself.
The precondition expresses requirements that any operation has to satisfy if it
is to be correct; the postcondition expresses properties that are ensured after
the execution of the operation. In [4], the notion of a contract for a component
is built as a pair of assertions, which express its assumptions and promises.
The assertions talk about the entire component behaviour. Then, a contract
is an assertion on the component behaviors (the promise) subject to certain
assumptions.

The contract model can be seen as a special example of our interface model
with no internal structure where the contract (assume-guarantee) assertions are
special logical formulae about the ecosystem components.

Interfaces in Concurrent Kleene Algebra Concurrent Kleene algebra (CKA)
[26] has been defined as an algebraic framework to reason about concurrent
programs. CKA basic ingredients are events, which are occurrences of certain
primitive actions. A set of events is called a trace and represents a program or
a specification. A trace defines a graph with events as nodes and arrows corre-
sponding to dependences like causal or temporal succession and the like. The
basic idea of the interface model [41] is to consider subgraphs, called graphlets,
of that overall graph as events of their own. The sets of incoming and outgoing
arrows of a graphlet constitute its input/output interface.



22 M. Bujorianu et al.

In this case, the interface model defined as a graphlet can be directly related
to our model of basic interface. Note that, in our approach, we consider not
only the incoming and outgoing arrows, but also the internal structure of the
subgraph that models the basic interface.

Bigraphs Bigraphs [40, 37, 38] represent a formalism designed for modelling
agents, their spatial arrangement, and their inter-connections. The formalism
for describing a bigraph can be done either as a graph or an algebraic form. A
bigraph is modelled as the superposition of a graph (the link graph) and a set
of trees (the place graph). In the graphical description, the nodes encode agents
or other entities. The spatial configuration is described by node nesting. The
vertices have associated controls that form a signature. As well, the nodes have
an arity (i.e., the number of ports for a given node to which link-graph edges
may connect). A bigraph may have associated with it one or more regions (or
roots) which describe adjacent parts of the system. In the bigraph structure, we
have also sites. Nodes, sites and roots are the places of a bigraph.

Formally, a bigraph is defined as:

F = (V,E, ctrl, prnt, link) : ⟨k,X⟩ → ⟨m,Y ⟩

thought of as a superposition of a place graph FP = (V, ctrl, prnt) : k → m and
a link graph FL = (V,E, ctrl, link) : X → Y

A bigraph has two faces: an outer and an inner interface. Each of these
interfaces is a pair containing a face for the place graph and a face for the link
graph. For a place graph, a face is a natural number. In this framework we
treat a natural number as the set of numbers that are strictly smaller; that is,
n = {0, 1, . . . , n− 1}.

For a link graph, a face is set of labels — that is, those attached to the
unconnected edges. A bigraph can have inner names and outer names, which
define the bigraph interfaces.

A bigraph is able to interact with its external environment through its in-
terfaces. When the interfaces of two bigraphs are matching, we can define their
composition.

Because a bigraph is built as the superposition of two graphs (link graph and
place graph), the corresponding interfaces can also be thought of as a superpo-
sition of the interfaces associated with the component graphs. Even though the
component graph interfaces are different objects, the essence of their definition
is the same: input/output variables. Therefore, we can link these interfaces with
our basic interfaces.
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