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Abstract
Models of complex systems are widely used in the
physical and social sciences, and the concept of
layering, typically building upon graph-theoretic
structure, is a common feature. We describe an
intuitionistic substructural logic that gives an ac-
count of layering. As in other bunched systems, the
logic includes the usual intuitionistic connectives,
together with a non-commutative, non-associative
conjunction (used to capture layering) and its asso-
ciated implications. We give a soundness and com-
pleteness theorem for a labelled tableaux system
with respect to a Kripke semantics on graphs. To
demonstrate the utility of the logic, we show how
to represent systems and security examples, illu-
minating the relationship between services/policies
and the infrastructures/architectures to which they
are applied.

1 Introduction
Complex systems is the field of science that studies, on the
one hand, how it is that the behaviour of a system, be it natu-
ral or synthetic, derives from the behaviours of its constituent
parts and, on the other, how the system interacts with its en-
vironment. A commonly employed and highly effective con-
cept that helps to manage the difficulty in conceptualizing and
reasoning about complex systems is that of layering: the sys-
tem is considered to consist of a collection of interconnected
layers each of which has a distinct, identifiable role in the
system’s operations. Layers can be informational or physical
and both kinds may be present in a specific system.

Graphs provide a suitably abstract setting for a wide vari-
ety of modelling purposes, and layered graphs already form a
component of existing systems modelling approaches. For
example, both social networks [Bródka et al., 2011] and
transportation systems [Kurant and Thiran, 2006], have been
modelled by a form of layered graph in which multiple lay-
ers are given by relations over a single set of vertices. Else-
where layered graph models have been deployed to solve
problems related to telecommunications networks [Gouveia
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et al., 2011] and to aid the design of P2P systems for busi-
nesses [Wang et al., 2009]. A bigraph [Milner, 2009] is
a form of layered graph that superimposes a spatial place
graph of locations and a link graph designating communi-
cation structure on a single set of vertices. Bigraphs provide
models of distributed systems and have been used to general-
ize process models like petri nets and the π-calculus. Similar
ideas have also been used to give layered models of biological
systems [Maus et al., 2011].

In the present work, we give a logical analysis of the
decomposition of such systems into layers, using concepts
similar to ones explored with bunched logics; that is, log-
ics that freely combine logical systems of different struc-
tural strengths. For example, the logic of bunched impli-
cations (BI) [O’Hearn and Pym, 1999; Pym et al., 2004;
Galmiche et al., 2005] combines intuitionistic propositional
logic [Bezhanishvili and de Jongh, 2006] with multiplicative
intuitionistic linear logic [Girard, 1987]. This results in mul-
tiple coexisting conjunctions and implications with different
logical properties. In particular, in BI we have both the stan-
dard conjunction ∧ and the multiplicative conjunction ∗.

This connective can be understood through an interpreta-
tion known as resource semantics. Consider a set of resources
Res (ranged over by r) that is equipped with an orderv and a
commutative and associative operation ◦ : Res2 → Res. We
think ofv as a way of comparing resources and ◦ as a way of
composing resources. The conjunction ∗ is then understood
with the semantic clause

r � ϕ ∗ ψ iff there exists r1, r2 s.t. r1 ◦ r2 v r, r1 � ϕ and r2 � ψ

which is read as ‘ϕ ∗ ψ holds of resource r iff it is possible
to decompose part of r into disjoint resources r1 and r2 such
that ϕ holds of r1 and ψ holds of r2’.

Building on this idea, we give a bunched logic suitable for
reasoning about the separation of directed graphs into lay-
ers. Because of the structural properties of this decomposi-
tion we must additionally drop commutativity and associativ-
ity from the multiplicative conjunction to correctly capture it.
Our work is related to a prior logic for layered graphs, LGL
[Collinson et al., 2014; Collinson et al., 2015], with the key
difference that our logic extends intuitionistic propositional
logic rather than classical. As a consequence, we are able to
prove completeness for layered graphs (rather than just for
more abstract algebras) with respect to a labelled tableaux
proof system, a result that (the classical) LGL lacks.



2 Layered Graphs
We first give a graph-theoretic account of the notion of lay-
ering that captures the concept as used in complex systems.
Informally, two layers in a directed graph are connected by
a specified set of edges, each element of which starts in the
upper layer and ends in the lower layer. Our definition con-
trasts with prior accounts in which the layering structure is
left implicit [Fiat et al., 1998; Papadimitriou and Yannakakis,
1991], and generalizes others which consider only a restricted
class of layered graphs [Paz, 2011].

We begin by fixing notation and terminology. Given a di-
rected graph, G, we refer to its vertex set by V (G). Its edge
set is given by a subset E(G) ⊆ V (G) × V (G), while its set
of subgraphs is denoted Sg(G), with H ⊆ G iff H ∈ Sg(G).

To introduce layers, we identify a distinguished set of edges
E ⊆ E(G). The reachability relation E on subgraphs of G
is then defined H  E K iff there exists u ∈ V (H) and
v ∈ V (K) such that (u, v) ∈ E . This generates a partial com-
position @E on subgraphs of G. Let ↓ denote definedness.
For subgraphs H and K, H @E K ↓ iff V (H) ∩ V (K) =
∅, H  E K and K 6 E H , with output given by the graph
union of the two subgraphs and the E-edges between them.
This composition is neither commutative nor (because of de-
finedness) associative.

Figure 1 shows subgraphs H and K for which H @E K is
defined, as well as the resulting composition. We say G is
a layered graph (with respect to E) if there exist H , K such
that H @E K ↓ and G = H @E K. If this holds, we say H is
layered over K and K is layered under H .

Figure 1: The graph composition H @E K

3 Intuitionistic Layered Graph Logic
Having established the mathematical structures we wish to
reason about, we now set up intuitionistic layered graph logic
(ILGL). Let Prop be a set of atomic propositions, ranged over
by p. The set Form of all propositional formulae is generated
by the following grammar:

ϕ ::= p |>|⊥|ϕ∧ϕ |ϕ∨ϕ |ϕ→ ϕ |ϕ I ϕ |ϕ−−Iϕ |ϕI−−ϕ
The familiar connectives are interpreted as in intuition-

istic propositional logic. The non-commutative and non-
associative conjunction I (intended to capture layering) and
its associated left and right implicationsI−− and−−I (cf. [Lam-
bek, 1993]) are governed by the proof rules of Figure 2. Intu-
itionistic negation is defined by ¬ϕ ::= ϕ→ ⊥.

ϕ ` ψ χ ` υ
(I)

ϕ I χ ` ψ I υ

ϕ ` ψ−−Iχ υ ` ψ
(−−I1)

ϕ I υ ` χ
ϕ I ψ ` χ

(−−I2)
ϕ ` ψ−−Iχ

ϕ ` ψI−−χ υ ` ψ
(I−−1)

υ I ϕ ` χ
ϕ I ψ ` χ

(I−−2)
ψ ` ϕI−−χ

Figure 2: Proof rules for the multiplicative fragment

ILGL is interpreted on directed graphs that have been sep-
arated into ordered layers. Formally, an ordered scaffold is a
structure X = (G, E , X,4) such that
• G is a directed graph;
• E is a distinguished set of edges;
• X is a subset of Sg(G) satisfying: if G = H @E K then
G ∈ X iff H,K ∈ X;
• 4 is an order on X that is reflexive and transitive.
We consider structures that are ordered so we can extend

Kripke’s ordered possible world semantics of intuitionistic
propositional logic [Kripke, 1965]. In Kripke’s semantics,
truth is persistent with respect to the order on possible worlds:
if ϕ is true at a possible world x and x 4 y then ϕ is true
at the world y. One can thus think of the intuitionistically
valid propositions as those whose truth persists with the in-
troduction of any new fact. In our setting, this means ILGL is
suitable for reasoning about properties of graphs that are, for
example, inherited from subgraphs, as well as modelling situ-
ations in which the components of the system carry a natural
order.

A layered graph modelM = (X ,V) is given by an ordered
scaffold X and a valuation V : Prop → P(X) satisfying
G ∈ V(p) and G 4 H implies H ∈ V(p). For a layered
graph modelM, the satisfaction relation �M⊆ X ×Form is
inductively defined in Fig 3. ϕ is valid for a layered graph
modelM if, for all G ∈ X , G �M ϕ. ϕ is valid if it is valid
for all layered graph modelsM.

G �M > always
G �M ⊥ never
G �M p iff G ∈ V(p)

G �M ϕ ∧ ψ iff G �M ϕ and G �M ψ
G �M ϕ ∨ ψ iff G �M ϕ or G �M ψ
G �M ϕ→ ψ iff for all G 4 H,H �M ϕ implies H �M ψ
G �M ϕ I ψ iff there exist H,K s.t. H @E K 4 G

and H �M ϕ and K �M ψ
G �M ϕ−−Iψ iff for all H,K : G 4 H, H @E K↓ and

H �M ϕ implies H @E K �M ψ
G �M ϕI−−ψ iff for all H,K : G 4 H, K @E H↓ and

H �M ϕ implies K @E H �M ψ

Figure 3: Satisfaction on layered graph models for ILGL

Consider the order given by G 4 G′ iff G′ ⊆ G. This



has a spatial interpretation: the further up the order, the more
specific the location. With this order, we can understand the
semantic clause for ϕ I ψ as ‘G is contained in a layered
graph H @E K such that H satisfies ϕ and K satisfies ψ’.
Similarly, the clause for ϕ−−Iψ states that ‘for all subgraphs
H of G, if K satisfies ϕ and is layered under H then the
layered graph H @E K satisfies ψ’. Finally, ϕI−−ψ is the
dual of the case for −−I, with K instead layered over H .

4 A Labelled Tableaux System for ILGL
Labelled tableaux systems [Fitting, 1972] are proof calculi
that have proved extremely useful in the study of bunched
logics. We give a labelled tableaux system for ILGL in the
style pioneered on tableaux systems for the bunched log-
ics BBI and DMBI [Larchey-Wendling, 2014; Courtault and
Galmiche, 2015] and in the spirit of previous work for BI
[Galmiche et al., 2005].

The proof system centres around expressions of the form
Sϕ : x, where S ∈ {T,F} is a sign (denoting true or false), ϕ
is a formula of ILGL, and x is a syntactic object called a label.
The set of all labels L is inductively generated from a set of
atomic labels (ci)i∈N and a concatenation operation. We call
expressions of the form Sϕ : x labelled formulae. We addi-
tionally define syntactic expressions x 4 y (where x and y are
labels) called constraints. Tableaux are then tree-structured
derivations with labelled formulae at each node and a set of
constraints associated with each branch.

The system is specified by a set of tableau expansion rules,
a selection of which are given in Figure 4. The premiss of
each rule gives a condition a branch must satisfy to allow the
rule to be applied to it. Here F refers to the labelled formu-
lae on the branch and C refers to the branch’s associated set
of constraints. The conclusion then shows how the tableau
is expanded after rule application: for a conclusion 〈X,Y 〉,
the branch is extended by the labelled formulae in X and the
constraints in Y are added to the branch’s constraint set. In
cases where there are multiple conclusions — for example,
〈F I〉— the branch splits.

Fϕ ∨ ψ : x ∈ F
〈F∨〉

〈{Fϕ : x,Fψ : x}, ∅〉

Fϕ→ ψ : x ∈ F
〈F→〉

〈{Tϕ : ci,Fψ : ci}, {x 4 ci}〉

Fϕ I ψ : x ∈ F and yz 4 x ∈ C
〈F I〉

〈{Fϕ : y}, ∅〉 | 〈{Fψ : z}, ∅〉

FϕI−−ψ : x ∈ F
〈FI−−〉

〈{Tϕ : cj ,Fψ : cjci}, {x 4 ci, cjci 4 cjci}〉

with ci and cj being fresh atomic labels

Figure 4: Some tableaux rules for ILGL

Tableaux for a formula ϕ are defined inductively. First,
the singleton tableau [Fϕ : c0] consisting of the single node
Fϕ : c0 is a tableau for ϕ. Given a tableau T for ϕ, if a

branch satisfies the condition of a proof rule 〈S◦〉, the tableau
T ′ that results from the application of 〈S◦〉 is a tableau for ϕ.
A branch of a tableau is considered inconsistent if one of a
set of predefined closure conditions is satisifed. For example,
if both Tϕ : x and Fϕ : x occur on the branch. We say
such a branch is closed. If all the branches of a tableau are
closed, we call it a closed tableau. A tableau proof of ϕ in
the labelled tableaux system is a finite closed tableau for ϕ.

This can most easily be understood through an example.
Figure 5 shows a tableau proof of the formula qI−−(q I (p→
(p ∨ q))). We begin by placing the formula at the root of the
tree, labelled with sign F and c0.

Figure 5: A tableau proof of qI−−(q I (p→ (p ∨ q)))

At
√

1, we can apply rule 〈FI−−〉 as I−− is the outermost
connective of the formula. This introduces the labelled for-
mulae Tq : c2, Fq I (p → (p ∨ q)) : c2c1 and adds the
constraints c0 4 c1, c2c1 4 c2c1 to the branch. We next
apply 〈F I〉 at

√
2. We are able to do so because we have

the constraint c2c1 4 c2c1 attached to the branch. This re-
sults in the branch splitting: on the left-hand side we have a
closed branch because Tq : c2 and Fq : c2 both occur; on
the right-hand side we have Fp → (p ∨ r) : c1. We can thus
apply 〈F →〉, adding the constraint c1 4 c3 and the labelled
formulae Tp : c3 and Fp ∨ r : c3. Lastly, we apply 〈F∨〉 at√

4, introducing Fp : c3. This closes the branch, and with it
the tableau, proving qI−−(q I (p→ (p ∨ q))).

The labelled tableaux system for ILGL satisifies a special
countermodel property: for all formulae ϕ ∈ Form, if no
tableau proof exists for ϕ, then there exists a tableau with a
branch that can be transformed into a layered graph model
M with a subgraph G with the property G 6�M ϕ. This is
achieved by carefully specifying the permitted set of labels
and the way new labels and constraints can be introduced by
the tableaux rules. We then exhaustively expand the singleton
tableau [Fϕ : c0] and obtain a branch in which the labels can
be transformed into a directed graph that underpins a layered
graph model. Satisfiablility in this model corresponds to the
signs of the labelled formulae on the branch: in particular, as



Fϕ : c0 occurs on the branch, the subgraph corresponding to
c0 does not satisfy ϕ. Provability in the tableaux system thus
captures validity for layered graph models.
Theorem 1 (Soundness & Completeness) For all formulae
ϕ ∈ Form: ϕ is valid iff there exists a tableau proof for ϕ.

5 Examples
We now give some illustrative examples to demonstrate how
ILGL can be used for complex systems modelling. To do so,
we assume two simple modifications to the set up of Section
3 in order to express basic notions of resource and dynamics.

First, the vertices of graphs are labelled with resources. We
denote such a labelling by R, with satisfaction given on a
graph together with a labelling, G[R]. This allows us to use
propositional formulae to denote the presence or absence of
resources on a subgraph.

Second, we assume a set of actions a for each model, each
with an associated modality 〈a〉. Actions modify the resource
labelling, with G[R] |=M 〈a〉ϕ iff for some well-formed
G[R′] such that G[R] a→ G[R′], G[R′] �M ϕ.

Throughout, we assume the scaffolds are ordered by the
following containment ordering on labelled graphs: G[R] 4
G′[R′] iff G′ ⊆ G and R ⊆ R′. Intuitively, moving up the
order gives a more precise location and a more complete as-
signment of resources.

5.1 A transportation network
Here we abstract a public transportation network into social
and infrastructure layers. For a meeting in the social layer to
be quorate, sufficient people (say 50) must attend. To achieve
this, there must be buses of sufficient capacity to transport 50
people, represented as resources, to the meeting hall, in the
infrastructure layer (see Figure 6 ) . The formula ϕquorum

denotes a quorate meeting, ϕx denotes that x number of peo-
ple are picked up at bus stops, and the arrival of buses of
capacity x in the infrastructure layer is denoted by the action
modality 〈 busx〉. These actions move x amount of people
from the bus stops to the meeting hall in the social layer. Let

r20 r30

Destination

Destination

Social layer 

Infrastructure layer

E E

Figure 6: A transportation network

ϕmeeting assert the existence of a meeting in the social layer,
G1. Then, if G2 denotes the graph of the infrastructure layer,
we have the formulae
G2[R] |=M 〈bus25〉〈bus35〉((ϕmeeting I ϕ50)−−Iϕquorum)
G2[R] |=M 〈bus40〉((ϕmeeting I ϕ40)−−I¬ϕquorum)

which assert that having two buses available with a total ca-
pacity of more than 50 will allow the meeting to proceed, but
that a single bus with capacity 40 will not.

5.2 A Security Barrier
This example (see Figure 7) is a situation highlighted by
Schneier [Schneier, 2005], wherein a security system is inef-
fective because of the existence of a side-channel that allows
a control to be circumvented.

E

E
Outside

Inside

Outside

Inside

Security  
layer

Routes 
layer 

Figure 7: Security barrier with side channel

The security policy, as represented in the security layer,
requires that a token be possessed in order to pass from the
outside to the inside; that is, 〈pass〉(ϕin → ϕtoken). However,
in the routes layer it is possible to perform an action 〈swerve〉
to drive around the gate. Let G1 denote the security layer and
G2 denote the routes layer. Then,

G1 @E G2 �M 〈pass〉(ϕin → ϕtoken)I〈swerve〉(ϕin ∧ ¬ϕtoken)

Thus we can express the mismatch between the security pol-
icy and the architecture to which it is intended to apply.

6 Conclusions & Further Work
We have specified a bunched logic, ILGL, for reasoning about
layered graphs. The logic is sound and complete with respect
to a labelled tableaux system that outputs layered graph coun-
termodels for invalid formulae. Through a naive extension
with labelled vertices and actions we have demonstrated how
the logic can underpin a systems modelling framework.

While layered graphs are a key component of models of
complex systems, other structure is also important. For ex-
ample, in modelling the structure and dynamics of distributed
systems it is necessary to capture the architecture of sys-
tem locations, their associated system resources, and the pro-
cesses that describe how the system delivers its services.
Thus the present work represents only a first step in estab-
lishing a logical account of complex systems modelling. A
second step would be to reformulate the Hennessy-Milner-
van Bentham-style logics of state for location-resource-
processes [Collinson and Pym, 2009; Collinson et al., 2012;
Anderson and Pym, 2016] to incorporate layering. This
would require a significantly more sophisticated notion of re-
source and dynamics than that given here.



References
[Anderson and Pym, 2016] G. Anderson and D. Pym. A cal-

culus and logic of bunched resources and processes. The-
oretical Computer Science, 614(63):63 – 96, 2016.

[Bezhanishvili and de Jongh, 2006] N. Bezhanishvili and
D. de Jongh. Intuitionistic logic. Technical Report PP-
2006-25, Institute for Logic, Language and Computation.
Universiteit van Amsterdam, 2006.
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