
doi: DOI HERE

Advance Access Publication Date: Day Month Year

Paper

PAPER

Modelling and simulating organizational ransomware
recovery: structure, methodology, and decisions

Marius-Constantin Ilau,1 Adrian Baldwin,2 Tristan Caulfield,1 ⇤ and David Pym1,3,4

1Department of Computer Science, UCL, Gower St., London, WC1E 6BT, England, U.K., 2HP Security Lab, HP Inc., 1 Redcli↵e St.,

Bristol, BS1 6NP, England, U.K., 3Institute of Philosophy, University of London, Malet St., WC1E 6HU, England, U.K. and 4Department

of Philosophy, UCL, Gower St., London, WC1E 6BT, England, U.K.
⇤Corresponding author: t.caulfield@ucl.ac.uk

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

The problem of maintaining organizational resilience in the face of ransomware attacks has become an important issue

for organizations. Organizational networks and IT infrastructure have become increasingly complex, and it is often

unclear how decisions about technology, policy and recovery strategy will impact resilience. In this context, the paper

focuses on two primary objectives. First, to o↵er security decision-makers a way of better understanding the impact of

deploying di↵erent recovery solutions at organizational level by means of simulation modelling and comparative analysis

of solutions. Second, to illustrate the suitability and benefits of using semantically justified, compositional system models

together with a rigorously defined co-design model-construction methodology, in a complex scenario. Our choice of

organizational recovery as modelling target is motivated through both form and complexity, allowing for illustrating the

model conceptualization and construction methodology in a su�ciently rich context. We conceptualize the ransomware

behaviour, organizational structure, IT infrastructure and recovery choices and behaviour based on literature surveys

and expert knowledge. Then, construct a modular, simulation model representing a generic target organization using our

co-design approach. We execute the model over 9000 di↵erent parameter configurations, totalling an amount of 450000

iterations. We analyse the results, both in three specific scenarios deemed organizationally relevant and at the general

level — through sensitivity analysis — and, exemplify possible ways in which the model can help inform decision-makers

about their possible recovery choices.

Key words: distributed systems, ransomware, recovery, organizations, modelling methodology, simulation,

compositionality, interfaces

Introduction

System modelling can allow decision-makers to explore choices when deploying or adapting di↵erent solutions. In this paper, we

illustrate our mathematically rigorous, semantically justified, compositional system modelling approach, together with an associated

co-design-based model-construction methodology, and show that it is su�ciently rich to aid decision-makers with practical security

problems. Our system models are grounded in an abstraction of distributed systems and are handled mathematically using basic

ideas from abstract algebra and process algebra. Our co-design methodology builds on the classical mathematical modelling cycle in

order to incorporate explicit interaction, in a ‘translation zone’, between modellers and other stakeholders. Throughout the paper,

we use an example of organizational recovery to demonstrate the modelling approach and methodology and show the insights it

brings to aid decision-makers. We choose the example of organizational recovery as it is a timely and significant challenge with a

form, complexity, and scale that conveniently lends itself to illustrate both the conceptual components of our modelling approach

and the methodology of constructing models.

This process of organizational recovery can be defined as the totality of actions an organization can undertake to restore

its functions after a traumatic event. From an information security perspective, this can be specified as the ability to restore the

integrity and availability of data and services. Organizational recovery represents the main facilitator of organizational resilience. As

described by Gibson & Tarrant in (59) and formalized by Ioannidis et al. in (74), organizational resilience should be conceptualized

as an ability to adapt to changing organizational circumstances. From a security perspective these changes arise from di↵ering IT

usage patterns, the changing landscape of malware attacks as well as failures in IT processes. A wider view would include other

phenomena like natural disasters, poor financial and human resource management or the inability to comply with new legislative

initiatives.

© The Author 2023. Published by Oxford University Press. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

1

email:email-id.com

2 Author Name et al.

In this paper, we focus on studying endpoint device recovery mechanisms that enable recovery after failures and attacks. As

might be expected, multiple approaches to recovery exist and we give an overview of some of these in Section 2.2. The decision

problem here is what mix of mechanisms and supporting IT processes needs to be put in place to have robust and timely recovery

strategy. The e↵ectiveness of these approaches depends on the nature of the attack, spread, size, required recovery time, cost of

deployment, existing policies, organizational structure, and employee knowledge and behaviour. Our modelling approach leads to

the construction of simulation models allowing di↵erent choices and outcomes, such as time to recover, to be explored.

We motivate the organizational recovery problem by exploring ransomware attacks. As shown in Richardson & North (123),

O’Kane et al. (111) and Oz et al. (112), ransomware on its own represents a constantly evolving threat with serious implications for

organizations today. Furthermore, threat assessment reports from government and law enforcement agencies such as (51), (53) or

(62) conclude that ransomware is one of the most relevant threats for organizations; Tweneboah et al. (130) gives a more nuanced

position on the variations across di↵erent industries. In their empirical ransomware research study, Connolly et al. (141) show

that out of 55 di↵erent ransomware attacks on organizations of di↵erent sizes and industries, 21% have managed to fully disrupt

business continuity for two weeks or more and in 19% of the cases, organizational recovery took several months if at all. Ransomware

provides a rich attack space as it is distributed through a wide range of mechanisms and from a modelling methodology perspective,

we show how a varied ransomware attack space can be abstracted and captured in di↵erent attack models that can be composed

into our overall organization.

We employ a simulation modelling approach (29) underlined by a distributed systems metaphor and co-design construction

methodology (30; 25; 10) in an attempt to better understand the impact of di↵erent combinations of recovery mechanisms on

di↵erent types of organizations. Furthermore, we show how our methodology can be used to understand the implications of

organizational recovery choices: we illustrate how a model can be constructed, fitted to an organizational structure and produce

useful insights. We, therefore, demonstrate the modelling approach using the recovery problem as a large-scale and critical problem

area.

In addition to di↵erent preferences, di↵erent organizations will have di↵erent requirements, structure, and architectures. The

number of employees, their travel patterns, the size and number of o�ces, the devices used, the value of the information on di↵erent

devices, and the network structure will all vary between organizations. We use a compositional modelling approach to provide the

flexibility required to create models that can be adapted to capture all these di↵erences between organizations. We discuss how

the model and modelling approach allows us to adapt the parameters of the model to fit di↵erent these di↵erent organizational

characteristics. We then show how decision makers can try di↵erent recovery and IT process resourcing choices through the model

to explore how the choices e↵ect key operational criteria such as speed to recover. In doing so we demonstrate the practicality and

the usefulness of the approach for strategic decision making.

In Section 2, we describe the nature of modern ransomware starting from four di↵erent behavioral traits manifested in the wild

and construct a conceptual setting for the organizational environment and types of recovery techniques. Section 3 is concerned with

the underlying elements of the modelling approach, namely the distributed systems metaphor, including theoretical considerations,

their interpretation in Julia and a pragmatic discussion on the stochastic nature of the process. In Section 4 we focus on the

actual methodology used for the construction and interpretation of the model content and architecture. In Section 5, we present

the recovery model and then Section 6 focuses on the construction of scenarios that illustrate possible real-life situations, the

parameter selection for such scenarios and addressing validation concerns. Particularly, subsection 6.2 is concerned with the overall

model results, interpretation and sensitivity analysis. Subsection 6.6 illustrates possible uses of the model as a tool for supporting

security decision-making.

It is our belief that such an approach, based on a rigorous mathematical foundation, can be used to help organizations understand

the problem and the consequences of di↵erent recovery choices, and help them make better decisions about this challenging problem.

Background

Ransomware

Ransomware, as the name suggests, represents a subdivision of malware that is primarily being used to obtain benefits from a target

by limiting the target’s access and control over information and/or essential operational infrastructure. Such benefits can vary,

from traditional cyber-crime motivators like economic revenue (often in the form of cryptocurrencies given the complexity involved

in tracing and identifying beneficiaries of such transactions (86)) to more obscure ones, such as gaining competitive advantage

economically, politically or militarily by crippling the operational capabilities of the target.

Since ransomware observed in the wild is constantly evolving, we attempt to identify a subset of characteristics that can enable

thinking and reasoning about ransomware at a more general level. This represents an initial stage in the conceptualization of the

phenomenon and environments under study, as explained in (28), and will further influence both representation and parameter

selection procedures at the level of the simulation model presented in Section 4.

Nature of the Problem
As previously stated, ransomware can be viewed as the instantiation of a coercive action with visible e↵ects at the level of

information systems. As described by Schelling (124) and Pape (113), a coercive action compels a party to act involuntarily

through means of either threats or force. Most ransomware adheres to this definition because once a target system is infected,

either its operability is drastically reduced via actions such as overlaying various windows over visual interfaces, disabling I/O

devices or simply interrupting the operating system booting process by displaying a notification, or, the information on the system

is directly encrypted to a certain extent. Although targeting di↵erent assets, these two di↵erent types of ransomware which are

sometimes called locker and crypto-locker essentially fall into the category of coercive actions, because their disseminators (83)

Modelling and simulating organizational recovery 3

(21) expect to obtain benefits from their victims by the use of force. Information located on systems a↵ected by these types of

ransomware can usually be restored by either removing the processes causing the reduced operability (by using an anti-malware tool

or reinstalling the operating system), using a decryption key, exploiting certain implementation vulnerabilities in the ransomware

code or simply paying the ransom while accepting the risk of back-doors. However, in the case of crypto-lockers, recovering the

information can be non-trivial, particularly in the case of ransomware based on hybrid encryption with large keys.

Ransomware can employ di↵erent approaches to maximize its e↵ectiveness. For example, the Reveton ransomware interrupts

the boot process and displays warnings that appear to be from government agencies, to try and increase the likelihood of ransom

payment (96). As shown in (85) and (102), even though Reveton was not based on hybrid encryption, its financial impact was as

high as $50,000 a day or $400,000 per month during its peak period around 2012-2014. Reveton used several di↵erent distribution

methods: exploit kits such as BlackHole (129) or Cool (70) that used the CVE-2012-1723 Java vulnerability, but distribution

through phishing or application downloads on mobile devices (52) was also possible. Furthermore, Reveton was occasionally

deployed alongside other malware, such as the Citadel (96) or Zeus (136) trojans that harvested credentials, monitored web tra�c,

altered HTML code displayed in browser and introduced the infected device into botnets.

Based on strategies to increase the coercive force of the attack, a third category of ransomware can be specified: leakware.

Generally, malware in this category does not a↵ect the operability of its target systems. The primary goal of such attacks is to

obtain sensitive information — common targets include intellectual propriety, third-party information or information that might

be deemed as embarrassing — and then threaten the victim with publication in case the attacker’s demands are not met. In more

abstract terms, this strain of ransomware a↵ects the degree of control that a user has over information, shifting the primary focus of

the coercive action from usability or ability to use systems to restraining the possible spread of sensitive data. However, compared

to lockers, ransomware in this category are harder to detect because they do not perform operations that reduce the operational

capacity of the target. Although they might present automatic spreading capabilities, the actual data exfiltration operation might

be performed manually, similarly to the Grozio Chirurgija (65) cosmetic surgery data breach.

Nevertheless, pure leakware attacks did not reach the popularity of lockers, mostly because the extortion tactic they employ can

also be used in composition with the forceful coercion of lockers for a greater impact on the victims. This type of double extortion

approach can be seen in newer ransomware strains such as Maze(79), Conti(131) or DarkSide(107) which have been the cause of a

series of targeted attacks in the near past: the Maze infection of Allied Universal(3) in 2019, the Conti attacks on JVCKenwood

(2) 2019 and Ireland’s Health Service (105) (71) in 2021 or the Darkside attack on the US Colonial Pipeline (5) (68) in 2021, with

the interesting aspect that in the Colonial Pipeline incident, the Darkside group attempted a triple extortion tactic by threatening

with additional denial-of-service attacks in case the ransom was not paid.

Last but not least, a fourth category of ransomware has become more and more prevalent in recent years: destructive

ransomware. When compared to the other three categories, this type of malware no longer focuses on obtaining benefits from

victims via coercive actions. Destructive ransomware directly inflicts irreparable damage to an information system by deleting,

overwriting or encrypting both user and system files and memory regions. Therefore, instead of coercing victims, disseminators of

this malware type usually conceptualize the loss sustained by the victim as an actual gain and are driven by political motivations,

so a direct way of recovering the information is usually not integrated in the malware design process. The Shamoon (45) (23)

infection of Saudi Arabia and Qatar’s national oil companies in 2012 can be seen as a relevant example of this type of attack.

To accentuate the political motivations, similar types of malware have been attributed to the current Russian invasion of Ukraine

(95) (36), but only a single variant — Hermetic Wiper (63) — was distributed using worm-like spread capabilities.

Furthermore, we describe two additional mechanisms for disseminating ransomware: via human operation and ransomware-as-

a-service. As illustrated in Microsoft’s latest security best practices report (43) from June 2022, human-operated ransomware

represents ‘an active attack by cybercriminals that infiltrate an organization’s on-premises or cloud IT infrastructure, elevate their

privileges, and deploy ransomware to critical data.’ and directly focuses organizations rather than singular devices. These types of

attacks behave as shown in the Mitre ATT&CK (7) matrix model. For an example of threat conceptualisation using this approach,

see Xiong et. al. (138) Nonetheless, the 2021 attack on the information technology infrastructure company Kaseya (33; 54) by the

REvil group can be considered an example of human-operated ransomware: the malicious actor managed to leverage a vulnerability

in the proprietary remote monitoring and management software for the VSA Cloud and SaaS servers — which shows reconnaissance

has been performed — and disseminated a ransomware payload to both Kaseya and a subset of its clients. The impact of the incident

varies across sources, with REvil claiming to have encrypted more than one million systems (33) and Kaseya declaring between

800 and 1500 businesses as being a↵ected (120).

However, the latest years have not only brought specialization e↵orts in terms of more targeted and sophisticated strains of

ransomware, but also an increase in the accessibility of deployment for non-technical users. As described in (49) ransomware-as-a-

service represents a specialization of the software-as-a-service model: skilled malware writers produce high-quality samples which

are then employed by less skilled attackers either via a one-time payment or subscription method to be deployed against certain

targets, and everything is done via easy to used web interfaces which sometimes even have user reviews, scoring systems and catchy

marketing phrases. For extended reviews, see Keijzer (78), Alwashali et al. (4) or Meland et al. (89) for en economic perspective.

To grasp the current degree of evolution, Karapapas et al. (76) even describe a proof-of-concept ransomware-as-a-service model

based on IPFS file system and Ethereum blockchain. Nevertheless, from a behavioural perspective, the actual ransomware strains

used via ransomware-as-a-service do not di↵er from other strains. In the future, we expect this model of operation to continue

developing and provide users with even more dangerous types that might employ direct handler operation or zero-day exploits.

Although ransomware in the above categories is being used to achieve di↵erent objectives, the technological means of achievement

are similar and have undergone formalization and generalization attempts over time. For example, Young & Yung describe

ransomware in their seminal 1996 article as a ‘cryptovirology attack’ (140) in which cryptographic approaches are used o↵ensively

to ‘mount extortion based attacks that cause loss of access to information, loss of confidentiality, and information leakage, tasks

4 Author Name et al.

which cryptography typically prevents’ (140). Their attack follows a hybrid encryption scheme and resembles the formalization of

a digital envelope.

Modelling ransomware does not require understanding only the inner workings of the ransomware code. For example, the

identification of a victim could be an automated process of scanning IP ranges, or it might involve a carefully planned reconnaissance

procedure. Once identified, the victim could be infected through a series of means: phishing, spear-phishing, physical social

engineering to provide access or introduce malicious hardware components into the system, file downloads, Trojans and others.

Furthermore, after the initial infection, additional worm-like network spreading (73) might occur via misconfigured network shares

— with or without the need for zero day exploits such as EternalBlue (18) — automated phishing based on gathered information

from the already infected devices or direct credential harvesting and dropping if escalation of privileges is successful (32) (31).

For a complete list of ransomware strains that contributed to the above behavioral classification, see Appendix A, Table 1. Given

the evolution of ransomware and the development of modern strains such as Maze or Conti which combine characteristics from

multiple categories to increase the coercion on users, a similar compositional capability at the level of modelled malware behavior

is required and will be presented in Section 4.

Recovery

As described at the start of Section 1, the goal of organizational recovery is to bring an organization into a business-as-usual state

after a traumatic event. In the context of this paper, this traumatic event is represented by a ransomware outbreak, although

the model we present could be used with other parameter configurations to simulate other types of events, such as a flooding

denial-of-service attack, for example.

For a better understanding of the possible recovery mechanism choices, we firstly draw attention to a few important aspects

about the nature of the threat. Modern ransomware strains are harder to fully erase at an organizational level because of a series of

spreading and persistence mechanisms: as seen in Section 2.1, ransomware such as WannaCry, NotPetya or BadRabbit extend the

class of crypto-lockers with powerful worm-like spreading mechanisms constructed on top of zero day exploits, greatly increasing

their dissemination speed. However, this evolution cannot be considered as a statistical indicator of a higher severity attack on its

own yet: as shown in Connolly et al. (141), the hypothessis that ‘the crypto-ransomware propagation class influences the impact

severity of a ransomware attack’ is rejected in their study with the comments that a combination of factors such as the nature of

business, availability of resources to recover data or pay the ransom, the type of systems a↵ected and level of preparedness should be

further analysed. An insight we consider relevant in their study is that the overall severity of ‘generation two crypto-ransomware’,

which maps onto our crypto-locker category without worm like spreading achieved a score of 0.32, whereas the ‘generation three

crypto-ransomware’ which manifests worm-like spreading only achieved 0.23. We argue that this should not be interpreted as

spreading factor not being relevant to the severity of the infection, but rather that the security posture and type of organization

play a more important role than purely the technical advancements of the ransomware. Furthermore, one of the most severe attack

they identified was a worm-based crypto-locker that targeted a large public organization — GovSecA as named in the study — and

managed to encrypt close to 100 servers. At the time of their study, the organization still had not fully completed their recovery

processes, almost 8 months later. The example, does not give details about why this recovery period was so significant, but we allow

ourselves to speculate that reinfection played a big part. For more information about reinfection, including a stochastic epidemics

model that simulates parts of the behavior of Viking.gt malware on Norwegian Bank, see Hole (69).

Nevertheless, it is not only the spreading speed that has evolved over time, but also the persistence mechanisms employed —

with techniques such as modifying registry keys, altering run once keys, the bootexecute key, boot helper objects, keys used by the

WinLogon process, startup keys, launch additional services to facilitate reinfection in the case of recovery, maintain a command

and control structure or avoid detection methods during data exfiltration or altering the DLL search order mechanism itself as

being only a handful of approaches. For additional information and platform specific approaches, see (61; 134; 20). In addition

to these purely persistence oriented mechanisms, modern ransomware has also exhibited a series of destructive elements such as

overwriting the MBR (125) in the case of NotPetya and Shamoon, which make backups and re-imaging of devices mandatory to

ensure business as usual can be re-established. The details of the process and how organizations often end up paying ransoms

rather than rebuilding their systems are described in (133).

However, it is not just ransomware that spreads over networks that necessitates recovery at scale. Malware families, such as

Emotet (35), also have mechanisms to spread rapidly through email. Spreading patterns have evolved to include WiFi (14), and can

make it hard to clean corporate systems without taking everything o✏ine. Some malware can be cleaned by Anti-Virus systems,

but it can be hard to guarantee and trust that systems are clean; hence, easing the re-imaging process can become an essential part

of a company’s response to malware and attacks. For example, the SANS incident-responder’s handbook recommends re-imaging

of systems’ hard drives to ensure malware is eradicated (84), with recent surveys showing incident response processes often leading

to re-imaging (22).

Companies are becoming aware that they must start planning for both large-scale and smaller-scale outages in order to get

their and systems sta↵ back up and functioning as soon as possible (50). There are, of course, various products and approaches to

backup, re-imaging and restoration. However, there are a lack of tools to help IT decision-makers decide on the most appropriate

strategy and assess whether they have the necessary tools and infrastructure in place. This is the problem that we look at within

this paper: we demonstrate how modelling and simulation can be used to aid the decision-makers in the choices they make. A

good example of an executive level document which details the Microsoft strategic and operational approach against ransomware

can be found in (43) and focuses at least on secure backup, privileged access plan, data protection plan and security posture and

governance, all provided with clear accountability paths and KPIs.

There are several approaches that organizations might employ in order to maintain the operation and re-imaging of client

systems. Underlying these approaches there are three basic choices:

Modelling and simulating organizational recovery 5

Full System Backups
Some companies will have backup systems that keep a full system backup of each client. Restoration will then happen by reinstalling

this full backup. The backup vendor would support this restoration process with a typical reinstall process involving the download of

a Windows PE agent along with the full system backup, placing this onto a bootable USB stick, and then, through the BIOS menus,

booting into this cut-down version of Windows, which will reinstall from the full backup — for an extensive survey of classical

recovery methods, see Chervenak et al. (34). For an updated version, including information regarding cooperative approaches, see

Killijian et al. (80). Taking full backups is becoming less common, particularly in the hardware sense, as it means keeping copies

of many standard system files and there are advantages to re-imaging to a clean up-to-date OS image.

Re-imaging to a Corporate Image
A more common scenario is for companies to have a standard corporate image along with a data backup strategy. For example,

a company will often create a Windows image containing corporate management tools — such as a management agent for a

system such as Microsoft’s Endpoint Configuration Manager — and its security software, both AV and EDR systems, such that

when a client image installation happens the system is secure and manageable (122). Microsoft provide a management deployment

toolkit (93) that describes and supports this overall deployment process. The management tools will then typically help install

other applications as required. Such images will be updated regularly — quarterly or half yearly, say — to include the latest version

of Windows, patches, and software.

Data backup may be through backup software to an enterprise server or the cloud, although companies are increasingly using

synchronized cloud-based storage such as OneDrive, where data is stored on the cloud with local copies cached on the endpoint.

From a recovery perspective, as a user decides they need to re-image a system they get hold of a bootable image on a USB stick

(or occasionally a DVD) and boot into this to re-image the system. In an o�ce environment, where there is IT support, the IT

engineers will maintain a set of current OS images on bootable media. In smaller o�ces, or where there are home workers, the OS

image can be downloaded and there will be instructions for the user to create the bootable media and reinstall. Such instructions

can be complex for a typical user and require access to a USB stick that can be wiped and reformatted. If a user is at home they

would need a functioning computer to use to download the image.

IT support labs will also often have a PXE boot set-up to make re-imaging easier (92). They have an image hosted on a local

server and use PXE boot to point the system to that image to install. This can ease the problem of setting up larger numbers of

client systems, although it requires sta↵ and infrastructure.

Modern Management
There is an increasing move towards the use of modern management systems (Uniform Endpoint Management), such as Microsoft’s

InTune System (91). This approach allows the use of a standard Windows image, such as that initially placed on the computer,

rather than a specially maintained corporate image. During the install process, the management infrastructure will push critical

security patches, AV signatures, Windows domain policies (Group policy objects), and necessary software. This produces a similar

e↵ect to having a corporate image, but removes the need to maintain custom images.

Typically, after a new image has been installed, an out-of-the-box experience (OOBE) process runs, the user will be lead through

configuration screens, and will login using their corporate email. The login directs the system to a cloud-based management server,

so that the enterprise configurations can be found and installed, and the computer added to the enterprise domain. This process

can be simplified further using Microsoft’s AutoPilot (94), where a computer is preregistered as belonging to a company, and user

interactions and configurations can be simplified and reduced.

The re-imaging process still requires that the user can get hold of a clean Windows install image. However, the company does

not need to maintain and host its own Windows image. Instead, a user can download the latest OS copy from either the PC

manufacturer or from Microsoft. Companies using these mechanism will typically use cloud-synced storage, discussed above, to

provide data resilience and, as the system is re-imaged and added to the corporate domain, data will gradually be synced back to

the client.

Re-imaging Mechanisms
Re-imaging will typically involve booting from an ISO image and installing this onto a drive, or via a reduced version of Windows,

such as WinRE or WinPE, which can install Windows from WIM files. Windows itself also includes a number of repair processes (90)

— for example, allowing rollbacks to previous snapshots using Shadow Volume Copy. However, malware such as ransomware often

disables volume shadow copy and delete snapshots, so making recovery and the retrieval of older files hard. Incident responders

often recommend a clean install to ensure malware is eradicated.

Re-imaging processes require a boot into a system rather than the normal OS. The boot process is controlled by the BIOS,

which will have a defined boot order and set of devices that can be used to boot the system. Many systems will boot from an

attached USB device or PXE boot before the main disk, making re-imaging easy — but with no controls. Early in the boot cycle,

users can get into the BIOS menu and boot to an alternative device. Some enterprises will lock down the BIOS with passwords and

ensure the system boots only from the internal disk and, in this case, re-imaging will require an IT support engineer who knows

the BIOS password.

HP has built a bare metal recovery system (HP ‘Sure Recover’ (72)) into the BIOS in order to simplify the re-imaging process.

The Endpoint Security Controller (EpSC) holds a configuration containing the location of image-servers, which may be either HP’s

servers for standard Windows images or other servers specified by the enterprise. The configuration also contains public keys of

the authority allowed to sign the Windows image to be installed and, in this way, an enterprise can guarantee the image being

installed has integrity and has been approved. Recovery can be triggered by the user at boot time through the BIOS recovery

6 Author Name et al.

option or it can trigger automatically when the system fails to boot — such as with NotPetya. When triggered, the BIOS gets this

configuration information and uses it to download a recovery agent, which then downloads the full OS image and re-images the

system. Both recovery agents and the full image are signed and the signature is validated as part of the recovery process ensuring

authenticity of the recovered image. The process simplifies recovery for the user as they no longer need to be able to find where to

obtain the OS image and do not need an available USB stick. From the enterprise perspective, it allows the enterprise to lock the

BIOS without support engineers doing rebuilds, as well as guaranteeing that the image installed is correct.

An additional option is available, HP ‘Sure Recover’ Embedded, which adds additional storage onto the endpoint device that

is used to keep a local up to date copy of the recovery image. It reduces network download times and means recovery can happen

when no network is available, or when networking is limited or metered.

Enterprise Recovery Choices
The descriptions above show that there is a wide range of choices available to the enterprise as it looks to implement an image

management and recovery strategy; for example:

- Maintain a corporate image or use a standard image. There is a choice as to how often the image is updated. After recovery,

patches will need installing and updating images more often will reduce the need and time taken for post re-image patching.

However, this option requires additional resources to manage the actual image, in the sense that its actual content might

require frequent updates. When a company maintains its own OS images, they must maintain servers to support the download

of images. Download speeds may depend on the location of these servers, or how they are distributed over the world, the

location of users, and the network bandwidth available in an o�ce or to a home or travelling user. The volume of tra�c to

these servers will depend on the recovery scenario — in terms of the numbers of users likely to be recovering at a given time

and on the state of the underlying infrastructure.

- How much IT support is needed and how much in each o�ce? Many companies are looking to reduce IT costs, and this often

creates pressure to centralize help-desks and remove support from o�ces. However, a lack of local support and locally kept

OS images can delay recovery times for multiple reasons: some users might require physical support in starting the recovery

procedure and some might simply needed to be guided remotely, but a bottleneck in the actual support stream can lead to a

reduced stream of recovery even if the infrastructure is extremely capable. At the same time, the enterprise will need to plan

for remote workers either working from home or as they travel; such support needs have increased dramatically with Covid 19,

for example, since the actual work location of employees is less geographically bound to an o�ce.

- Control over the re-imaging process can bring various choices with which the enterprise may wish to lock down its client

platforms, but this adds a considerable burden in recovery.

- There are many di↵erent data backup strategies, from the use of cloud synced drives through to full system backups. Each will

have an impact on the ease of recovery and potential user data loss.

- The di↵erent re-imaging techniques, such as using a USB stick or PXE boot, in comparison to having recovery mechanisms

such as HP ‘Sure Recover’ built into the system — whether with an image stored locally or downloaded.

Modelling and simulating organizational recovery 7

Model A Model B Model D

Model C

Composition of
Interfaces

Interface

Location

Environment

Process

Fig. 1. Interfaces, Composition, and Substitution

P

Q

M1 M2I1 I2

J1 J2M1 M2

N

N

I1 � J1

<latexit sha1_base64="cuQMiHCZg3SBRexwu/RNXsmzICk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRQuuu4EZdVbAPaEOYTCft0MkkzEyEGvolblwo4tZPceffOG2z0NYDA4dz7uWeOUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLme+91HKhWLxYOeJtSL8EiwkBGsjeTb5VvfRQOsplGC7gz17YpTdRZA68TNSQVytHz7azCMSRpRoQnHSvVdJ9FehqVmhNNZaZAqmmAywSPaN1TgiCovWwSfoXOjDFEYS/OERgv190aGI2WiBWYywnqsVr25+J/XT3XY8DImklRTQZaHwpQjHaN5C2jIJCWaTw3BRDKTFZExlpho01XJlOCufnmddC6rbq16dV+rNBt5HUU4hTO4ABfq0IQbaEEbCKTwDK/wZj1ZL9a79bEcLVj5zgn8gfX5A8f1kdw=</latexit>

I2 � J2

<latexit sha1_base64="tuvrWu1suTwE5jXbiAGy5UC7a00=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyUpBeuu4EZdVbAPaEOYTCft0MkkzEyEGvolblwo4tZPceffOG2z0NYDA4dz7uWeOUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLme+91HKhWLxYOeJtSL8EiwkBGsjeTb5Vu/hgZYTaME3Rnq2xWn6iyA1ombkwrkaPn212AYkzSiQhOOleq7TqK9DEvNCKez0iBVNMFkgke0b6jAEVVetgg+Q+dGGaIwluYJjRbq740MR8pEC8xkhPVYrXpz8T+vn+qw4WVMJKmmgiwPhSlHOkbzFtCQSUo0nxqCiWQmKyJjLDHRpquSKcFd/fI66dSqbr16dV+vNBt5HUU4hTO4ABcuoQk30II2EEjhGV7hzXqyXqx362M5WrDynRP4A+vzB8sKkd4=</latexit>

Fig. 2. Interfaces and Substitution

Background on Modelling Methodology

This section describes the modelling methodology we have developed and employ in this work. We first describe how concepts

from distributed systems are used as the fundamental components of models. We then give an overview of how these concepts can

be represented mathematically, giving a rigorous foundation. Finally, we use a brief example to demonstrate how models can be

written and executed using a library we have developed for the Julia programming language.

The growth of interconnected networked systems led to the development of the concept and theory of distributed systems in

computer science. This paradigm views systems as collections of components, in di↵erent locations, that work together to perform

some task and communicate by sending information or messages over network connections.

This view is obviously very specific to its focus on computer systems, but its concepts can be taken more generally to provide a

useful metaphor for understanding all types of systems — and ecosystems. There are three key components upon which we draw.

- Location — Distributed systems naturally have a concept of di↵erent locations, which are connected to each other. In the

CS view, components are present at di↵erent locations and connected by a network. In the more general view, locations can

be physical (e.g., a room, a container), logical (e.g., an address in computer memory), or abstract (e.g., the location where a

semaphore exists).

- Resource — Resources exist at locations and can move between them according to the locations’ connections. In the general

view, they can represent units data (and information), physical entities (including people), and derived ideas.

- Process — Processes execute and manipulate resources as they do so.

These concepts can be used to build a representation of a system’s structure and operation, but there is one more concept required:

the environment in which the system operates.

- Environment — Environments capture the world outside of the system of interest and how the two interact.

This generalization provides concepts that can be used to model essentially any type of system, from physical to logical, or

systems that incorporate both. We note also that these concepts are scale-free — they can be used at any level of abstraction or

representation. However, we have not actually defined what it means to build a model using this distributed systems approach.

This, too, is very flexible. Models can be largely conceptual, and use the ideas of location, resource, and process as a means

to help think about the structure and behaviour of a system. Or distributed systems models can be mathematical, as we will

show in the next section. Finally, this metaphor can be used to build executable models, in the spirit of Birtwistle’s Demos (15),

where a programmatic description of the system (in terms of locations, resources, and processes) is run to simulate the behaviour

of the system (17; 27; 26; 38). An early implementation of these ideas, Gnosis (38), has been used in significant commercial

applications (9; 12; 13) derived from an industry-based research project (66).

The ability to compose models is important for modelling larger systems and ecosystems. During the modelling process, these

systems can be decomposed into smaller parts, which can be modelled separately and then recombined, and which helps manage

complexity.

To understand what composition look like in the distributed systems approach, we start by looking at the concept of interfaces.

These define, for a model, the locations, resources, and processes involved in a composition. For a composition of two models to

be valid, the interfaces in both models must match. Figure 1 depicts three models which compose together. When models with

interfaces are not composed, the environment generates the events expected by the interface; when composed, the environment is

replaced by a model. Also shown is an example of substitution: Model C can be substituted for Model B as the interfaces of the two

models match; this allows a modeller to refine or increase detail in parts of a larger model.

Interfaces and composition seem to support the concept of local reasoning naturally. Obtaining such an account of reasoning

requires a mathematical conception of the distributed systems metaphor on top of which interfaces and composition can be defined.

Milner (100; 101) considers the concept of interface from the point of view of a quite abstract graphical theory of processes. Our

notion is more directly grounded in the concept of a distributed system, but we conjecture that the approaches can be understood

comparatively. Our approach is more directly concerned with the logical concept of local reasoning.

8 Author Name et al.

Mathematical Theory

We begin by giving a formal framework for capturing the distributed systems metaphor that we are proposing as a basis for a

semantically and logically well founded framework for modelling ecosystems of systems in the absence of locations. The basic theory

of processes and their associated logics is technically essentially determined by the interaction between processes and resources,

with locations playing a significant conceptual rôle only when the model-engineering concepts of interface, substitution, and local

reasoning are considered, which we do in the following paragraphs. The results presented in this section for states R, E extend to

states L, R, E (38).

Processes and Resources
Our starting points are Milner’s synchronous calculus of communicating systems, SCCS (98) — perhaps the most basic of process

calculi, the collection of which includes also CCS (97), CSP (67), Meije (126), and their derivatives, as well as the ⇡-calculus (99),

bigraphs (100) and their derivatives — and the resource semantics of bunched logic (110; 119; 57; 117). The key components for

our purposes are the following:

- A monoid of actions, Act, with a composition ab of elements a and b and unit 1;

- The following grammar of process terms, E, where a 2 Act and X denotes a process variable:

E ::= 0 | a | a : E |
X

i2I

Ei | E ⇥ E | . . .

Most of the cases here, such as 0, action, action prefix, sum, concurrent product, and recursion, will seem quite familiar.

Mathematically, this notion of resource — which covers examples such as space, memory, and money — is based on (ordered,

partial, commutative) monoids (e.g., the non-negative integers with zero, addition, and less-than-or-equals):

- each type of resource is based on a basic set of resource elements,

- resource elements can be combined, and

- resource elements can be compared.

Formally, we consider pre-ordered, partial commutative monoids of resources, (R, �, e,v), where R is the carrier set of resource

elements, � is a partial monoid composition, with unit e, and v is a pre-order on R. The basic idea is that resources, R, and

processes, E, co-evolve,

R, E
a�! R0, E0,

according to the specification of a partial ‘modification function’, µ : (a, R) 7! R0, that determines how an action a evolves E to

E0 and R to R0.

The base case of the operational semantics, presented in Plotkin’s SOS style (116), is given by action prefix and concurrent

composition, ⇥, exploits the monoid composition, �, on resources:

R, a : E
a�! R0, E0

µ(a, R) = R0 R, E
a�! R0, E0 S, F

b�! S0, F 0

R � S, E ⇥ F
ab�! R0 � S0, E0 ⇥ F 0

.

This (rather general (98; 126)) notion of composition at the level of process does not explain the engineering concept of the

composition of models, with its requisite notions of interface and substitution, that we discuss in the sequel.

Sums, which represented choices, recursion, and other combinators are defined in similar ways (6; 37; 38; 40).

A modification function is required to satisfy some basic coherence conditions (in certain circumstances, additional structure

may be required (6)): for all actions a and b and all resources R and S, and where ' is Kleene equality,

- µ(1, R) = R, where 1 is the unit action, and

- if µ(a, R), µ(b, S), and R � S are defined, then

µ(ab, R � S) ' µ(a, R) � µ(b, S).

This function specifies the signature of the model: the idea is to specify the modification function for the basic or atomic actions

of the model, with more complex actions being generated by the coherent composition defined above (38; 6).

Given this set up, equality of processes is given by bisimulation, as defined in (39; 38; 6), which is written as L, R, E ⇠ L0, R0, E0.

A Modal Logic
Along with a process algebra specify in this way, we can define a modal logic of its states, with a judgment of the form

L, R, E |= �

which is read as ‘the property � holds of the state L, R, E’. (Here we assume the states are ‘closed’ with respect to bisimulation;

see (39; 38; 6) for the details of this, which we elide here.) As above, locations L can be suppressed in the development of this idea.

Modelling and simulating organizational recovery 9

This logical judgement supports the definition of the usual classical connectives, such as

L, R, E |= �1 ^ �2 i↵ L, R, E |= �1 and L, R, E |= �2

L, R, E |= �1 _ �2 i↵ L, R, E |= �1 or L, R, E |= �2

L, R, E |= � ! i↵ L, R, E |= �1 implies L, R, E |= �2

and also the usual action modalities, which connect the logical assertions to the evolution of states, as

L, R, E |= hai� i↵ for all a such that L, R, E
a�! L0, R0, E0,

L0, R0, E0 |= �

It also supports multiplicative connectives of the kind found in bunched logic (see, for example, (118)). Assume that there is

also a monoidal operation • on locations. Then we get

L, R, E |= �1 ⇤ �2 i↵ there are states Li, Ri, Ei, for i = 1, 2, such that

L = L1 • L2, R = R1 � R2, and E ⇠ E1 ⇥ E2

L1, R1, E1 |= �1 and L2, R2, E2 |= �2

L, R, E |= ���⇤ i↵ for all L0, R0, E0 such that L0, R0, E0 |= �,

L • L0, R � R0, E ⇥ E0 |=

The multiplicative connectives support the idea of reasoning about ‘separated’ parts of the model — in the sense of Separation

Logic (121) — and local reasoning, which is directly relevant to our notion of interfaces between models. This idea is discussed

below.

Finally, we remark that the connection between the location-resource-process states and the modal logic is described by theorems

that establish, subject to a degree of care, the correspondence of bisimulation equivalence and logical equivalence: roughly speaking,

two states S and T are bisimulation equivalent just in case they satisfy the same logical formulae. These results are elided here,

with details being available in (39; 38; 6), with a slight mis-statement in (29).

Interfaces and Local Reasoning
We have discussed, as illustrated in Figures 1 and 2, how our models are composed using interfaces (27; 28; 29; 10).

The multiplicative conjunction, ⇤, provides the basis for an account of local reasoning about the composition of models through

interfaces. Consider again Figure 1. We can identify here a local reasoning principle, or frame rule (75; 109; 139; 108; 117). We

begin by setting up some notation for the states of the various component models depicted in Figure 3. The details of this set up

may be found in (26). Here, we denote the composition of two models M1 and M2, via interfaces I1 and I2, respectively, as

M1 I1
|I2

M2

Then, we can make the following assumptions:

- let the model M = M1I1
|I2

M2 have state S;

- let the component models (of the composition of interest) Mi have states Si, respectively;

- let the submodels Ni have states Ui, respectively; and

- let the interfaces Ii have states Ii, respectively.

Now we assume the following, writing � for composition of states, for i = 1, 2:

- Si ⇠ Ui � Ii, S
a�! T , and Ii

a�! Ji

- a#Ni\Ii; that is, that the action a is ‘separated from’ (denoted #) that part of the model Ni that is not coincident with the

interface Ii (denoted Ni\Ii) in that the execution of a does not a↵ect Ni.

Now, suppose that Ui |= �i, for i = 1, 2, and Ji |= i. for i = 1, 2. Then we have the following frame rule:

J1 |= 1 J2 |= 2

T |= (�1 ⇤ 1) ⇤ (2 ⇤ �2)

- S a�! T and Ii
a�! Ji

- a#Ni\Ii

This rule is sound with respect to bisimulation equivalence.

Interpretation in Julia

As we have briefly touched upon at the beginning of this section, the basic concepts that form the distributed systems metaphor

have been used to construct executable frameworks for practical model construction. The earliest implementation attempted was

Dahl & Nygaard’s Simula (42), which was an Algol simulation framework that mainly focused on the notion of processes. Further

implementations such as Birtwistle’s Demos (15; 16) or Gnosis (38) focused on extending the conceptual tool-set to notions such

as resources or locations. In the context of this paper, we employ an implementation in the Julia language: the Julia SysModels

package (17) is an improved, more modern implementation of these ideas that includes new capabilities such as composition of

models.

10 Author Name et al.

…

M1 I1 I2

M = M1 I1| I2 M2

<latexit sha1_base64="NOCX6yWpdcX/CJFcKcUc4xsqe00=">AAACHnicbVDLSsNAFJ34rPFVdelmtAgupCShoi6Eghu7KFSwD2hCmEyn7dCZJMxMhBLyJW78FTcuFBFc6d84abvQ1jsMHM45l3vvCWJGpbKsb2NpeWV1bb2wYW5ube/sFvf2WzJKBCZNHLFIdAIkCaMhaSqqGOnEgiAeMNIORje53n4gQtIovFfjmHgcDULapxgpTfnFc9M06/Aa1n0bukMZI0xSm/MMppmf1nw7c4/047Tnp+5ZzXcy7XRMv1iyytak4CKwZ6AEZtXwi59uL8IJJ6HCDEnZta1YeSkSimJGMtNNJNGzR2hAuhqGiBPppZPzMniimR7sR0L/UMEJ+7sjRVzKMQ+0kyM1lPNaTv6ndRPVv/RSGsaJIiGeDuonDKoI5lnBHhUEKzbWAGFB9a4QD5FAWOlE8xDs+ZMXQcsp25Xy1V2lVHVmcRTAITgGp8AGF6AKbkEDNAEGj+AZvII348l4Md6Nj6l1yZj1HIA/ZXz9AIfknwo=</latexit>

M2N1 N2

Fig. 3. Local Reasoning and the Frame Property

Stop A Road Stop B

Inside Bus

Process: Move Bus

Process: Load Passenger
Pro

ce
ss:

 Unloa
d Pa

sse
nger

Fig. 4. Example model: passenger travelling on a bus. Squares represent location and the rectangles depict the processes moving resources between the

locations.

The Julia Implementation

The SysModels package provides the constructs needed to build models — locations, resources, and processes — as well as the

ability to execute them. We will use a simple example to demonstrate how models are written and executed, showing how the basic

components are combined to form a representation of a system.

In this example, a bus moves between two stops and a passenger waits for the bus to arrive, boards the bus, and gets o↵ the

bus when it arrives at the next stop. Figure 4 depicts this scenario. The first thing we define in our model is the location structure:

us ing SysModels

loc s topA = Locat ion (” Stop A”)

loc s topB = Locat ion (” Stop B”)

l o c r oad = Locat ion (”Road”)

l o c bu s = Locat ion (” In s i d e Bus”)

l i n k (loc stopA , l o c r oad)

l i n k (loc stopB , l o c r oad)

l i n k (loc stopA , l o c bu s)

l i n k (loc stopB , l o c bu s)

Here, we have defined the four locations in this model: two bus stops, a road between them, and a location representing the

inside of the bus. We then use link to define how these locations are connected, which determines how resources may be moved

from one location to another.

After this, we need to define the resources that are used in the model. In this case, there are two: a passenger resource and a

bus resource, which are defined using Julia structs. We also use distrib to set the starting locations of each of these resources:

s t r u c t Passenger <: Resource

end

s t r u c t Bus <: Resource

end

pax = Passenger ()

bus = Bus ()

d i s t r i b (pax , loc s topA)

Modelling and simulating organizational recovery 11

d i s t r i b (bus , l o c r oad)

Next we define the processes in this model. We start with the process responsible for moving the bus:

func t i on move bus (proc : : Process)

@claim (proc , (l oc road , bus))

move(proc , bus , l oc road , loc s topA)

r e l e a s e (proc , loc stopA , bus)

hold (proc , 2minutes)

@claim (proc , (loc stopA , bus))

move(proc , bus , loc stopA , l o c r oad)

hold (proc , 5minutes)

move(proc , bus , l oc road , l oc s topB)

r e l e a s e (proc , loc stopB , bus)

end

Processes are written as Julia functions. The SysModels package provides functions for controlling processes and manipulating

resources:

- @claim — before a process can manipulate (move, remove) a resource, it must claim it. If the requested resources are not present,

the process waits until they are; if multiple processes are trying to claim the same resource, they implicitly queue for it.

- move — after a process has claimed a resource, it can be moved from one location to another.

- release — when a process has finished with a resource, it releases it. Other processes may then claim it.

- hold — this pauses the process for a specified amount of simulation time.

In the code above, the process first claims the bus resource at the road location, before moving it to stop A and then releasing

it. It waits 2 minutes, claims it again, moves the bus to the road, waits 5 minutes, moves the bus to stop B, and finally releases it.

The processes for loading and unloading the passenger are written in the same way:

func t i on l oad pas s enge r (proc : : Process)

@claim (proc , (loc stopA , pax) && (loc stopA , bus))

move(proc , pax , loc stopA , l o c bu s)

r e l e a s e (proc , loc bus , pax)

r e l e a s e (proc , loc stopA , bus)

end

func t i on un load passenger (proc : : Process)

@claim (proc , (loc stopB , bus) && (loc bus , bus))

move(proc , pax , loc bus , l oc s topB)

r e l e a s e (proc , loc stopB , pax)

r e l e a s e (proc , loc stopB , bus)

end

Here, the load process waits until it has claimed both the passenger and bus resources. It then moves the passenger to the Inside

Bus location, and then releases both resources. Similarly, the unload process waits until it has claimed both resources, and then

moves the passenger to Stop B. Claiming the passenger resource means the processes can move that resource into or out of the

bus; claiming the bus resource causes the processes to wait until the bus resource—moved by the bus process above—arrives at

the correct location.

Finally, we have to set up the model and run it:

model = Model ()

proc bus = Process (”Move Bus” , move bus)

proc l oad = Process (”Load Passenger ” , l oad pas s enge r)

proc unload = Process (” Unload Passenger ” , un load passenger)

add s ta r tup proc e s s (model , [proc bus , proc load , proc unload])

sim = Simulat ion (model)

SysModels . s t a r t (sim)

SysModels . run (sim , 2hours)

This creates the model object, creates the three processes, and sets them to start when the model begins executing. Then it creates

the simulation, which handles the execution of the model, and runs it for 2 hours of simulation time.

Although not used in this simple example, the Julia implementation supports composition of models. Models can define

interfaces, which specify the locations and actions involved in composition. Then, two models can be composed:

composed model = compose (model1 , in te r faceA , model2 , i n t e r f a c eB)

12 Author Name et al.

The compose function here returns a new model from the composition of model1 (using its interfaceA) and model2 (using its

interfaceB).

The ransomware recovery model presented later in this paper is naturally much larger and more complex than the example

given here. However, it is still constructed in a similar manner, using locations, resources, and processes to represent the di↵erent

elements of the systems being modelled, and composition to construct the whole model from smaller sub-models.

The Stochastic Environment

So far, we have not described how the stochastic environment, within which a model is situated, is represented and integrated with

the structural definition of models that is described in theory in Section 3.1 and implementation as above.

Our modelling set-up makes the choice not to incorporate stochastic definitions in to the definition of the process algebra and

its logic (as is done in, for example, PEPA (60)). Rather, the stochastic existence of actions is represented at the level of the

implementation. That is, suppose an action a is defined in a model as in Section 3.1. In an implementation of that model, a may

‘fire’ when a specified distribution for it is sampled, and the model executes according to the execution of a scheduler.

While this approach simplifies the definition of the semantics, as sketched in Section 3.1, it necessitates the giving of the an

interpretation of the scheduler in the underlying semantics. This is done, for Gnosis, in (37; 38). The analysis for the Julia packages

would be essentially the same.

Practicalities

We have only sketched how the stochastic aspects of our models integrate with the approach above at the theoretical level, since

the primary focus of this paper is not to repeat the description of a general modelling theory, but rather to experiment with such

a theory and modelling framework in a security context. Therefore, we now describe how the stochastic aspects of our models are

used in practice. This is closely related to the approach of Demos (15) and Tofts (46).

In elementary terms, executable models constructed using the above described approach behave like a structured Monte Carlo

simulation (48; 142). Stochastic processes are employed as means of dealing with uncertainty, but at the same time maintain the

generic aspect of the model. For example, in our specific security case, we are interested in the process of ransomware infecting

devices. This might be influenced by the security posture of the organization at the level of both employee training and awareness,

the technical defence mechanisms present, the ransomware strain involved including the entry point of the attack, the industry

in which the organization that owns the devices operates, etc. However, not all these aspects are modelled explicitly: from the

perspective of the ransomware and given our model goal, the relevant aspects are the infection probability, the attack duration and

the ransomware behaviour — in our case the spreading mechanism. By experimenting with numerous combinations of parameters

we get to unpack the conceptual complexity of the features: a very high infection probability, a small attack duration and a fast

spreading behaviour can be used to represent a worm-like ransomware that is using a zero-day exploit, while a high infection

probability longer attack duration and no spreading behaviour could mean a phishing attack on an organization with poor security

posture. This represents an implicit stochastic aspect of simulation models.

Furthermore, stochastic processes are being used explicitly to describe behaviour by the means of sampling from probability

distributions. This is generally being used in the case of complex or uncertain behaviors. For example, ransomware spreading

behaviour can be represented using two processes: one that chooses attack targets and another that determines the time of

attacking the targets. To describe a slow paced phishing attack that does not employ particular internal knowledge about the

organization, we can use a uniform distribution for choosing targets at a regular, constant incremented time. Combined with the

parameter describing infection probability, this already o↵ers us the ability to represent slow-paced phishing attacks, but also

fast-paced worm-like spreading ransomware in organizations with varying security postures.

Nevertheless, a lengthier discussion about parameter choices and what they represent at the model level will be presented

in Section 6, with the complete parameter list being shown in Tables 7 and 8, in Appendix D. On a final note, this approach is

computationally intensive. The experimental space, with a large number of parameter combinations, requires a lot of computational

resource—in this case, a computing cluster—to execute in a reasonable amount of time. This is important, particularly since the

number of model iterations and the size of the parameter space greatly influence the believability and representation power of the

model.

Modelling and simulating organizational recovery 13

The Modelling Process

In the previous section, we presented the theory and implementation that supports the construction of models, along with a simple

example to illustrate the approach. However, the process of modelling is more than just writing down the model: it is essential

to know what aspects of the system need to be captured, and whether or not a given model is a suitable representation of the

system of interest for its intended purpose. In this section, we look at the process of modelling as used in the construction of the

ransomware model.

Given the nature of the recovery problem under ransomware and the complexities of an organizational environment — which more

often than not lead to unexpected generative behaviour —, there is no surprise that a robust, modular and flexible methodology

is required to construct a meaningful model. Given the information security orientation, such a methodology should facilitate

rigorous reasoning about the design and behaviour of the modelled system. Because of this, our chosen approach is simulation

modelling, using a distributed systems metaphor as described in Section 3 and underlined by a co-design process which will be

described further. Traditionally, mathematical models have been constructed using a multi-stage iterative process named ‘the

classical mathematical modelling cycle‘ (88) (28). As it can be observed in Figure 5, this is comprised of six di↵erent stages:

- Constructing a conceptual representation of the phenomenon under study based on observing its domain. In our case, this

would mean determining the relevant aspects of ransomware, organizations and recovery mechanisms that provide us with

enough information about the recovery problem in this setting as to construct our model.

- Abstracting a candidate model based on the observations, using induction. The candidate model is based on the distributed

systems metaphor to provide modularity, customizability and the ability to reason locally about its components.

- Deducing the mathematical consequences of the model. Succinctly, this means interacting with the model to produce a list of

abstract properties or consequences relevant to the understanding of the system.

- Translating the mathematical consequences of the model by interpretation in the domain side. In our case, it follows that

abstract consequences of the candidate model should be reflected back to the domain side in an explicit form. For example,

a model consequence could describe the input parameter admin nr as being an influential component of the output variable

recovery time. By interpretation, this would be translated in the domain as the number of admins corresponding to a help-desk

in an o�ce being an important factor in determining the recovery time of devices in that o�ce.

- Validate the correspondence between the interpreted consequences in the domain side and the actual observed reality of the

domain. Continuing with our example, this would mean confronting the relationship between the number of admins and the

recovery time of devices with the observations about the domain in an attempt to either confirm or deny it.

- Update the conceptual representation of the phenomenon, based on the previous step.

These stages are repeated until a criterion of adequacy for the intended purpose of the model, often determined by the judgement

of the modellers, is passed and the model is considered to be a good enough representation of the system under study. For additional

information about this criterion in the system dynamics simulation literature, see Forrester (55). Nonetheless, the e�cacy of this

modelling process depends on certain key, usually unstated, assumptions about the modelling task:

- The structure and behaviour of the domain is clearly understood in conceptual or engineering terms. For example, the increase

of device recovery time given an increase in device recovery requests is a well known phenomenon attributed to the inability of

a network to transmit requests with the same speed after a certain congestion level has been reached. Such a phenomenon is a

good candidate for mathematical modelling, perhaps in the context of testing network upgrades or extensions.

- The data that can be collected about the domain is essentially unambiguously identified. For example, modelling an

organization’s employees productivity levels for the sake of improving them might prove an extremely complicated task for

mathematical modelling since, essentially, employees might be motivated by extremely subjective concerns and the interpretation

of those concerns might di↵er from person to person.

- The questions that the model is intended to address are identified independently of the detailed design choices required for

the construction of a model. For example, building a model for the purpose of optimizing the production time of hardware

components in a fully automated manufacturing environment is well suited for the traditional modelling methodology described

above. Contrarily, simulating the same system for the purpose of understanding its behaviour and only then deciding what can

be optimized would be more suited to a di↵erent approach.

However, such assumptions are not compatible with real-world complex systems simply because the underlying components of

those systems di↵er in their nature, providing the modeller with much richer challenges in terms of the design, construction and

interpretation. Firstly, in our case, the structure of a communication network and of ransomware are understood in engineering

terms, the structure of organizations can be considered as understood in conceptual terms, and yet, the employee behavior that

severely influences the infection rate of devices or the possible behaviour of new ransomware strains is not. Furthermore, information

14 Author Name et al.

observation candidate
model

model
consequences

domain
consequences

validation deduction

interpretation

inductionin out

domain side
mathematical

model side

Fig. 5. The classical mathematical modelling cycle (28)

on employee behaviour might either not be available, hard to interpret or bound to various interpretations. Lastly, and we will

expand on this particular point in the following paragraph, the separation between the questions the model should answer and the

domain influenced design choices might not be desirable.

As we can easily observe with only the above examples, the traditional mathematical modelling approach is suited for phenomena

that already have a significant theoretical understanding behind them, and that is particularly why the third assumption can be

considered as legitimate in such cases. However, if the domain is still an active area of research, we argue that the knowledge

about the domain and the questions the model can provide answers for are strongly related, and should be updated while iterating

through the modelling cycle. In a sense, the knowledge about the domain provides an array of possible questions that the model

could answer, but choosing a specific set of questions limits then the necessary information from the domain required for answering.

This observation has led us to a methodological development called the ‘Co-design modelling cycle’(28; 25), which can be observed

in Figure 6 and is based on the explicit concept of a ‘translation zone’ that mediates the dual evolution of domain knowledge and

model focus.

As defined in (25), ‘Model co-design is a process that engages modellers and system stakeholders cooperatively in the acts of

objective identification and model specification, design and construction with the aims of aligning model objectives with the needs

of the stakeholders, and designing a model that is feasible given the limits of data availability, which are discovered as parts of

the process.’. The essential di↵erence between our approach to co-design and participatory design (44) or participatory modelling

(132) is that the stakeholders and other expert knowledge participants do not provide expertise only at certain stages, but rather

contribute to the whole process — in our case, the stakeholders were involved in all the modelling stages, from providing relevant

information about the domain, to contributing to choosing the model structure, interpreting model results and even participating

in code debugging sessions. The insights provided by the stakeholders directly contribute to the model, making this method closer

to agile software development (1) than to participatory modelling. Similarly to the classical mathematical modelling cycle shown

in Fig 5, the co-design cycle from Fig 6 does not have explicit termination and accuracy criteria. In both cases, the criteria must be

determined case-by-case — and in the case of co-design, via co-creation in the translation zone —, but always respecting a few key

general considerations relative to which the notion of accuracy must be calibrated: remembering that ‘the map is not the territory’

(82); appropriate level of detail; timeliness; and cost-e↵ectiveness.

Modelling and simulating organizational recovery 15

observation and
candidate data

availability

candidate
model

model
consequences

domain
consequences

validation deduction

interpretation

induction

interpretation

in out

domain side model side

translation zone:
• objectives
• specification
methods:
• dialogue
• abduction

Fig. 6. Co-design in the translation zone (28)

The Recovery Model

Having described both the theoretical background in Section 3 and the methodological aspects above, it is now time to focus on the

actual model. Since the main goal of this model is to help organizations in deciding what allocation of recovery technologies best

suits them based on an understanding of the consequences involved, we concentrate on a partially-generic model that allows for

further customization of both the structure, because of the modularity provided by the underlying distributed systems metaphor,

and parameters.

Making use of the compositionality provided by the method, we construct our organizational recovery model as a composition

of four di↵erent sub-models: a device model, a network model, a server model and a malware model. The high-level architecture of

this composed model can be observed in Fig. 8.

The device model is the most complex one of the four, containing information regarding the physical locations associated

with the organization, abstract locations, types of devices and their associated recovery mechanisms, helpdesks’ configuration and

timings, employee movement patterns and expertise regarding recovery. A conceptual diagram of the processes present at the level

of the device model is presented in Figure 7.

- Resources — devices, blank usbs, usb images, os images, recovery agent, image requests, image responses, network data,

helpdesk admins

- Locations — work locations (home, o�ces, travel locations), network endpoint locations

- Processes — installation of images from usb, embedded, network-based or mixed, usb recovery, embedded recovery, network-

based recovery, mixed recovery, fetching image from server, fetching recovery agent from server, admin delay, device movement

- Interfaces — network endpoints

Following the distributed systems metaphor, we conceptualize devices as resources and both the work and abstract locations as

locations: work locations could include small or large o�ces, travel locations such as airports, co↵ee shops or the home; abstract

locations exist mostly in the form of endpoint locations, an abstraction for the network switches or routers that connect devices

to a network. As an implicit organizational policy, each large o�ce is considered as hosting a help desk with a variable size that

can help users perform a recovery process for their device if their level of expertise does not allow them to perform it on their own.

The helpdesk employees are conceptualized as resources associated with the helpdesk. Furthermore, the employees are not being

modelled explicitly, but rather as devices that move between locations and can perform work related activities or recover a device.

The actual recovery actions performed by the devices or helpdesk employees are modelled as processes.

For example, when a device moves to a location, it obtains use of a network endpoint so it can send and receive data on the

network by claiming one of these availability resources; when it leaves, it releases that availability resource so another device may

use that endpoint later. Each device in the model has its own process. This process is responsible for all the device’s behaviours,

from movement, to recovery, to sending and receiving data on the network. As part of the configuration of the model, each device

is set up with: a movement pattern (the sequence of physical locations to move to, and probability distributions determining the

length of time it stays in each one) and a method of recovery to use. Furthermore, separate processes determine whether or not a

16 Author Name et al.

Move to work location

Is there a network
endpoint available? Wait for one

Start

Claim network
endpoint

Yes

Wait for network
packets

No

Does a malware
package arrive Wait for one

No

Yes

Is helpdesk
assistance needed? What type?

Yes

Physical

Remote

Is the device in a
large office?

Is there an admin
available?

Yes
Claim admin

Yes

Wait for one

No

Admin travel time
delay

No

Admin work time
delay

What type of
recovery is used?

USB Network Network & Embedded
30% Embedded

No

Is there an USB with the
desired image available?

Recover from that
USB

Yes

Is there an
empty USB
 available?

No

Recovery Failed

No

Yes
Get recovery agent

from server

Get image from
server

Recover from the
downloaded image

Recover from the
local stored image

Further movement
happening?

Yes No

Fig. 7. Device Model Process Diagram. Rectangles show significant points in the behaviour of the process. Diamonds show where the process branches.

Modelling and simulating organizational recovery 17

specific device can recover on its own and if not, what type of helpdesk assistance it requires. With these parameters, the device

process executes. It moves the device resource from physical location to physical location according to the sequence, remaining in

each one for a certain amount of time. If a particular device should recover, action indicated by the arrival of an infection package

to the device, the device process initiates this.

As it was briefly explained in Section 2.2, in this paper, we look at four recovery methods.

- USB Recovery — A fresh OS is installed on devices from a USB stick. The device process tries to claim a USB stick resource

with the OS image on it; if none are available, it tries to claim a blank USB; if no USBs of either type are available, and none

become available, the recovery process fails. If a blank USB is obtained, the process must download the OS image by sending

a request and waiting for the response, and writing it to the USB. This destroys a blank USB resource and creates a new USB

stick resource with the image on it.

- Network Recovery — Devices request and receive an OS image over the network from an image server. The process starts

by creating a request to download the recovery agent and moving it to the network endpoint so it can be sent to the server

storage sub-model; it then waits for the response by claiming a response resource at the network endpoint. After receiving this,

the process creates a request for the OS image, moves it to the endpoint, and waits for the response. For clarity purposes, we

restate here that the network recovery process is behaviourally similar to, and uses the HP ‘Sure Recover’ (72) (Section 2.2.4)

with network re-imaging as a primary reference point. This di↵ers from PXE reimaging used in IT labs and for servers that

would work on a LAN and not be available wherever the user is located.

- Embedded Recovery — Devices have a built-in storage capability that is used to hold an OS image for recovery. To model

embedded recovery, the device process simply waits for the amount of time (as measured on real-world devices) it takes to

restore from the embedded storage. This is based on the HP ‘Sure Recover’ (72) with embedded storage.

- Mixed Recovery — Combines the embedded and network-based recoveries. An allocation strategy is required. For example,

devices in small o�ces could be allocated embedded recovery capabilities whereas those in big o�ces might rely on network

recovery.

The above points, supported by Figure 7, describe the recovery choices and underlying actions that have been modelled. However,

these do not encompass the stochastic, temporal nature of the model. Throughout all these steps in the process, there are time

delays modelling the length of time it takes to, for example, verify an image after download, copy an image to disk, or run the

installer. Additional delays are introduced if helpdesk assistance is required: helpdesks have a finite number of admins who can o↵er

assistance remotely or in person — therefore, devices end up queuing for the helpdesk resource — and, if in-person assistance is

needed, the admin might have to travel to a di↵erent location if the device in need is not located in the same large o�ce as the admin.

The network model serves as primary abstraction for the communication network of the organization. It is formed of a series

of abstract locations that represent network endpoints that a device can claim to connect to the network. A conceptual diagram

of the processes present at the level of the network model is presented in Figure 18. The components of the sub-model are shown

below:

- Resources — network data

- Locations — network endpoint locations, transit location

- Processes — transfer data

- Interfaces — network endpoints

Additionally, it includes a separate location representing data in transit. Structurally, all these locations are connected in the

form of a graph of network segments representing the actual network routes packages would be routed through. This sub-model has

one process, which claims resources that arrive at the endpoints, moves them to the transit location, and, after a delay suitable for

the size of the data and the speed of the network segments it would traverse, moves them to the destination endpoint and releases

them. If transfers are already ongoing when more resources are claimed or released, the process recalculates the time when the

transfers will finish based on how throttled the network segments are.

The server model is the simplest one, with its components below:

- Resources — network data, os images, recovery agent, image requests, image responses

- Locations — server network endpoint location, storage location

- Processes — process messages, move network data to the endpoint

- Interfaces — network endpoint

18 Author Name et al.

At a high level, it is comprised of a network endpoint and a storage abstract locations. The storage location contains clean

operating system images and the recovery agent necessary for the network based recovery. Behaviorally, a process awaits requests

from the devices on the network endpoint and then delivers the operating system image requested back to the network model. A

process diagram detailing the operations can be seen in Figure 20.

The malware model encapsulates the main aspects of the ransomware behavior. Structurally, it contains a single network

endpoint location and three di↵erent processes: one that determines ransomware targets, one producing the timings when the

infection packets are being injected into the network based on di↵erent probability distributions, and another one which determines

if the targeted device actually gets infected and formats and sends the actual malicious packets. The process diagram can be seen

in Figure 19.

- Resources — network data

- Locations — malware network endpoint location

- Processes — choose targets, determine timings, infect targets

- Interfaces — network endpoint

The combination of targeting, infection probability, timing distributions and duration of attack allows the modelling of

ransomware behaviour as described in Section 2.1. Concerning the first process, we note that both specific location targeting

and reinfection of devices is possible, even at the level of a single model iteration.

Composed Model

As highlighted in Section 3, the main abstraction that practically facilitates the abilities to compose, substitute or local reason

about the model using this approach is the interface. In the case of this model, the interfaces are defined at the network endpoints,

essentially allowing the flow of network packets from a device to the storage server and backwards or from the malware endpoint

to a device. The network model therefore becomes the glue that sticks the server model, device and malware models together.

The server model composes with the network model at an endpoint; the malware model composes with the network model at an

endpoint; the device model composes with the network model at many endpoints. After this, a request moved into the endpoint

by the device model will be sent over the network by the network model, received by the server model, and the response sent back

over the network model to the device model. However, such a request would only be transmitted if a malware packet was moved

into the network endpoint by the malware model, routed by it to reach the endpoint of an actual device and the infection would

be successful. The operation of an iteration of the composed recovery model would be comprised of the following steps:

Firstly, the four separated models would be initialized with their specific parameter set, which will be discussed in Section 6.

This would construct the organizational structure and recovery policies of the modelled organization, define the capacity of the

network, the available images for recovery, etc. At this moment, each model except the malware one has at least one process

awaiting for network packets — devices awaiting a ransomware packet or a response from the storage server, the network process

awaiting to route packets or the server awaiting requests — without knowing about the other models. The external processes that

would bring the packets at the interface level are considered environmental processes.

Secondly, once the parametrization of the isolated models is completed, the composition of the models can be performed if pairs

of interfaces exist at each model level. For example, in the case of the storage model composing with the network one, a similar

interface object must exist in both of them. In the case of the network and device model, the same number of interface objects

must exist in both. The composition of models actively transforms the environmental processes described above to internal model

ones: if at the previous stage, a device would await a malware packet from the environment, now it would await it from the network

model, but without knowing if other models were involved in the construction of the package along the way.

Thirdly, a simulation duration should be chosen, and then the execution of the model could commence. At the level of the

device model, this would start the movement in between locations and the waiting for packets. Regarding the malware module, the

complete list of devices and their distribution sampled timing of injection, including possible reinfections would be computed and

then added to the network to be routed. The arrival of one malicious packet at the level of a device would trigger the associated

recovery option on that device. Additional delays might happen here based on the user’s ability to recover on its own and the need

of helpdesk sta↵. Once the helpdesk interaction is determined an the timings applied, the actual recovery process between the

device and storage server can be performed. We note here that the arrival of a malicious packet at device level during the recovery

steps does not restart the recovery process: our conceptualization of both network and embedded enterprise recovery, as shown

in Section 2.2.5, implies that recovery in a modern environment should be atomic. Reinfections can only occur after the recovery

process has been successfully completed.

Methodological Observations

Having described the model architecture, construction and operation in previous sections, we now focus on describing the

implications of using the chosen methodological approach in our concrete setting. Starting with our conceptualization choice, we

note that organizational modelling has proven to be a complex task even without considering recovery. This is because organizations

themselves have been a di�cult candidate for abstraction and, thus, multiple conflicting interpretations exist. For a comprehensive

review of organizational metaphors, see (58). For a meta-classification of organizational metaphors, see (128). Nevertheless, we

Modelling and simulating organizational recovery 19

...

...

...

...

...

...

...

...

Network Model Device Model

Server Model

Desktops

Laptops

Large
Office

Network Endpoints
(Interfaces between models)

Desktops

Laptops

Small
Office

Desktops

Laptops

Small
Office

Laptops

Home

Laptops

Travel

Laptops move
between locations

Server transmits
OS Images when
requested

WiFi

WiFi

WiFi

WiFi

WiFi

LAN

LAN

LAN

Network segments
have different
bandwidth limits

Malware Model
Transmits malware
packets to devices
on the network

Fig. 8. Organizational Recovery Model

choose to think about organizations as being inherently compositional at the level of functionality, so we employ an interpretation

based on di↵erent sub-components such as organizational goals, people, processes and technology (106), which construct an

organizational boundary that e↵ectively determines the organization.

In practice, information about these sub-components, or what could be considered the formal side of the organization, is provided

by organizational structure and business processes documents, and further complemented with insights from stakeholders, expert

knowledge, actual employees that take part in the modelled operations or KPIs. The knowledge co-creation process undertaken by

these di↵erent parties — including modellers — in an attempt to construct a model representation that facilitates the achievement

of the model goal is described in Section 4 and (25) and represents the co-design process.

Furthermore, it is important to note that our model is a partially generic prototype. Using the classification by Weisberg (135),

we can view our model as ‘modelling a generalized target’. The distinction is significant, since we are not producing a model for

a precise client or company from an actual organizational structure, but rather attempt to derive a subset of elements relevant to

an organization from a recovery perspective and then construct a semi-generic prototype of model that can be parametrized on a

case by case basis. In Weisberg’s terms, the target of our model is the subset of features relevant to recovery and common to all

organizational instances at a certain level of abstraction, but of course limited by the project scope. Two criteria, necessarily but

not su�ciently enough to ensure correctness must be satisfied in this set-up: firstly, to ensure that ‘the relevant set of specific targets

actually share the relevant features, such that an intersection of their sets of features is an informative generalized target‘(135),

and secondly, that ‘a model can be constructed at the appropriate level of abstraction so that just those features can be modelled’

(135). A longer discussion regarding the meaning of simulation correctness is outside the scope of this paper.

At an abstract level, the first criterion is tackled by the co-design process and the second one by the distributed systems

metaphor and the theoretical considerations behind it. On one hand, the co-design process ensures us that the interaction of

modellers, stakeholders and other experts produces a more suitable model representation for the model goal, precisely because

the information about what constitutes relevant targets and features is not fully known by the modeller on its own and, multiple

iterations of the design and construction cycle lead to a co-constructed ontology and representation of phenomena. On the other

hand, the distributed systems metaphor can be used to construct models at essentially any level of abstraction that is decomposable

into its basic notions of process, resource, location, interface and environment. In addition to that, the phenomena that can introduce

20 Author Name et al.

Network DeviceServer

En
dp

oi
nt

 S
, N

En
dp

oi
nt

 N
 ,

D

request

response

request

response

Fig. 9. A Simplified Recovery Model

uncertainty or do not have a generally accepted scientific knowledge base yet constructed are treated stochastically, as shown in

Section 3.3.

In practice, we have chosen a high level of abstraction, focused on a small subset of relevant features and used the distributed

systems metaphor described in (29) as underlying structural element. In this case, an organization is seen as a collection of locations

where employees produce generic work over certain periods of time and can travel in between the locations. A communication

network connects the locations and its characteristics such as speed, bandwidth or throttling factor have an impact on the work

produced and timings for recovery. In other words, since the quality of work or its value for the company are highly subjective, we

maintain the model focus on time, in the hope of using the timings to perform financial analysis when an actual concrete target

is established and additional information is available. Furthermore, we justify our network based organizational conceptualization

with two arguments. Firstly, the works Burns & Stalker(24), Mintzberg (103), Crainer (41), Eccles & Crane (47), Gulati et

al. (64) or Baker (8) which are extremely relevant in the field of organizational theory all argue for di↵erent forms of network-

based organizations, with Baker even arguing that ‘the network form can be designed to handle product development tasks and

market environments that demand flexibility and adaptability’ (8). Secondly, given the focus on recovery and the fact that many

technologies that are recovery-related are network-based, direct modelling at the network level was a natural choice because it

o↵ered the ability to translate from model consequences to domain consequences without having to unpack additional layers of

conceptual complexity.

Moreover, the advantages of the methodology extend beyond the conceptualization of the system. The compositional approach

to the design of these models facilitates the ability to reason locally about the underlying components, providing two primary

advantages: modularity and the ability to focus the analysis on a singular model component without the need to reason about its

relationships with other components. The modularity aspect complements the generality of the distributed systems metaphor and

translates to scale-free modelling at any level of abstraction or representation.

To see how our approach to compositionality and local reasoning can be applied to such a setting, let’s consider (following (29))

a stripped down, somewhat abstracted, version of the composite organizational recovery model. Here, for simplicity, we assume that

composed models — Server–Network and Network–Device — have interfaces that are identical; that is, in terms of our definition

in Section 3.1, this amounts to the interfaces from each of the models that are used in a composition being identical in each model.

The simplified composite model is depicted in Figure 9 .

Now consider the composition of the device model and the network model. A device may request an image from the server by

sending a request from the endpoint interface for transmission over the network to the server. The server’s response, including the

image, is transmitted over the network and received at the Endpoint interface, which now holds the image for receipt by the device:

EndpointN,D
response�! Endpoint0N,D

The availability of the image that is appropriate for the device can be expressed by a logical assertion such as

Endpoint0N,D |= ImageX ^ DeviceX

where X denotes the required OS, so that ImageX denotes a proposition asserting that an X image is available and DeviceX
denotes that the device requires the X image.

Note that the separation condition, as defined above,

response # DeviceX\EndpointN,D

holds. Consequently, applying the frame rule, we can substitute a di↵erent device model, Device0X , provided

Endpoint0N,D0 |= ImageX ^ Device0X

can be verified.

This modularity of reasoning brings benefits similar to agile software design methods, such as reducing development time and

increase focus, since both the stakeholders and modeller have a common way of understanding how the model evolves and can

o↵er feedback or directions. Using an interpretation by Galison (56), the distributed systems metaphor can be considered to act

as a ‘pidgin language’ between stakeholders and modellers, and improves the quality of the co-created knowledge. Additionally,

given the security context, the ability to reason locally about sub-models at formal level increases the level of assurance the model

provides while at the same time reducing reasoning time.

Modelling and simulating organizational recovery 21

The Experimental Space

After focusing on the explicit architecture and model building steps in the previous section, it is now the time to explore the

experimental space that the model constructs and inherently operates in. Firstly, we describe the overall parameter space by taking

into account the range of possible parameter values, their meaning and relevance with respect to the modelled phenomenon and,

practical considerations related to the execution of the model over the parameter space. Secondly, we explain how meaningful

organizational scenarios based on specific parameter choices can be constructed, exemplify a few such scenarios and justify those

choices. Thirdly, we describe the validation procedures employed. Lastly, we present the results obtained from the execution of the

model and discuss how real world organization can employ them to support security decision-making.

Parameters & Scenarios

As previously explained in subsections 3.2 and 3.3, the presented organizational recovery model contains significant stochastic

aspects and can be considered as behaving closely to a Monte Carlo simulation. Given the nature of the recovery problem and

organizational environment, it is no surprise that such a simulation requires a relatively large number of parameters to describe

and conceptualize recovery at a reasonable level of detail,.

Tables 7 and 8, in Appendix D, contain information regarding parameter names, type, value and meaning. Building on the

stochastic aspects, the model employs two di↵erent types of parameters, fixed and variable. The fixed ones do not vary across

simulation iterations and have a singular value related to the target organisational posture, whereas the variable ones do and, can

either be represented as ranges of values or sets. Nevertheless, we firstly focus on the variable ones:

- device scenario — represents the recovery technique that devices will attempt to use in the case of being hit by ransomware.

As already discussed in Section 5, four types of recovery are available: USB recovery, full network recovery, embedded recovery

and a combination of 30% embedded recovery at the level of laptops and the rest network based.

- attack scenario — describes the part of ransomware behavior related to how the timings for the ransomware packages are

being calculated. In more detail, five di↵erent probability distributions can be chosen from, for the timings sampling procedure:

an uniform, exponential, F, uniform combined with exponential or uniform combined with the F distribution. By sampling

from these distribution, we obtain the actual model time of a possible device infection. The shapes of these distributions are

relevant in this context: the uniform distribution is used to represent attacks with a relatively stable infection rate — for

example phishing attacks distributed by email at a slow rate to maintain a lower chance of detection —, the exponential and

F distributions are used to describe the behaviour of fast spreading ransomware, with the main di↵erence between them being

that the F distribution increases slightly slower at the start and then decreases smoother — showing a more persistent attack

that is harder to remove from systems — and the two combined distributions being used to showcase attacks that start in an

uniform manner until they reach a certain infection threshold and then expand faster — such as email spam combined with

internal spread capabilities. These behaviour examples are consistent with those described in Section 2. Furthermore, we note

that the attack construction processes described at the level of the malware model in Section 5 are inherently compositional

and additional ransomware behaviour can be introduced in the model by composing already implemented behaviour both at

the level of a single malware model with multiple processes, or by composing multiple malware models at the level of the network.

- infection probability — is being used to decide if a device targeted by a ransomware package actually gets infected or not. The

value of this parameter can imply the simulated organization has a strong or weak security posture at the level of employee

training or deployed countermeasures, or that the ransomware infection mechanism is rather novel or well-known. To explore

the behaviour of the recovery techniques under attacks with varying success rates, we have chosen the following infection

probabilities: 10%, 30%, 50%, 70% and 95%.

- attack duration — represents the period of time that the ransomware attack takes to infect the targeted devices. We are using

values of two, four and eight hours to describe attacks of di↵erent intensity. The number of attack packets used in a two and an

eight hours attack is the same — given by the nr of samples parameter –, but distributing them during a smaller time period

is bound to have a higher impact on the network.

- admins nr — is used to determine the number of administrative sta↵ deployed in a single help-desk. A help-desk is placed at

the level of each big o�ce location. Varying this parameter can imply di↵erent organizational policies about the number of

available sta↵ that can help users perform the recovery procedures if they are lacking the adequate skills to do so.

- admins need — describes probability of a users’ need of help to perform the recovery operations. We use di↵erent values in

the range of [0.0, 1.0] in an attempt to illustrate varying skill levels at the level of employees. In case a user needs help, a time

delay on the overall recovery process is introduced. This time delay varies with the type of help the employee needs: physical

or remote. In the physical case, if the device is located in an o�ce that has a help-desk, an admin resource can be claimed if

available and the time delay specified by the parameter phisical admin time is applied. If the device does not have access to a

help-desk in its current location, an additional time delay specified by the admin movement time parameter is also applied to

account for the moving time of the admin. In the case of remote help being required, a single time delay is applied, specified

by the admin remote time parameter.

22 Author Name et al.

However, if the variable parameters are being used to describe variations in the behaviour of ransomware, recovery techniques,

organizational policies and sta↵ training levels, then the fixed ones contain information about more stable aspects such as: the

organizational structure, size of o�ces, number of devices, targets, movement patterns of devices, scaling factors for the time

distributions, network speed, etc.

- num iterations & proc num — these two parameters are related to the parallel execution of the model. num iterations

determines how many times a set of parameters should be executed and proc num shows how many di↵erent processes should

be used. For example, in a case of forty iterations and four processes, each process will be used to execute ten iterations of the

given parameter set.

- nr of samples — describes the actual number of ransomware packets used in the attack. In our simulation, we have opted for

an attack size of three hundred packets, which is a value high enough so that all the devices have a chance to be hit and even

reinfections occurring, but small enough so that the attack still resembles a ransomware infection and not a full scale, denial of

service flood, given the size of the organization.

- attack targets — contains the list of locations to be targeted by the ransomware packets. In the scenarios to be further presented,

we have chosen to target all the possible locations where devices can be placed in.

- physical admin time & admin movement time & admin remote time — represent the additional time delays to be used in

case an employee requires help with the recovery procedures. The values are being added over the actual timing of recovery, so

if a user requires five minutes of additional help remotely and the actual recovery time for that device is 60 minutes, the overall

recovery duration will be 65 minutes.

- os images — contains the list of operating systems image resources available on the storage server. In the case of USB recovery,

a windows10iso image is being used of 5GB. In the others, the devices first request a recovery agent of size 350Mb and then an

actual windows10wim file of size 4.7 GB.

- max o�ce devices & max home devices & max co↵ee devices & max travel devices — represent the maximum number of

devices that can be present in a type of location at any given time. For example, for a max home devices value of 30, no more

than 30 users can work from home at the same time.

- scale uni & scale dst — are scaling factors used to ensure that sampling from the attack timing distributions do not yield

results outside the desired limits given by the attack duration parameter. For example, this ensures that sampling from the F

distribution in the case of a two hours attack will not produce an attack timing of four hours.

- num o�ce desktops & num o�ce laptops & num small o�ce desktops &

num small o�ce laptops & num travel laptops — represent the actual number of devices to be found in each defined location

at the start of the simulation.

- speed — in Table 8, Appendix D, parameters starting from server speed and ending with travel link speed are being used to set

the downloadupload characteristics of the network, based on the type of network endpoint used. Naturally, wired connections

will be faster than wireless ones. Parameters containing ‘link’ in their description refer to the download or upload speeds present

at the level of network endpoints.

- o�ce1 usb images & o�ce2 usb images & small o�ce1 usb images

& small o�ce2 usb images & home usb images & co↵ee usb images &

travel usb images — represent the available images already present on USB sticks in a certain location. If a device is using

USB recovery and the location where the device is present does not contain USB sticks with that image pre-installed, additional

time delays for downloading the image and flashing an USB stick, if available, will be introduced in a similar fashion to the

network based recovery.

- o�ce1 usb blanks & o�ce2 usb blanks & small o�ce1 usb blanks

& small o�ce2 usb blanks & home usb blanks & co↵ee usb blanks &

travel usb blanks — are being used to set the number of available blank USBs for each location. In our scenario, these resources

are only being distributed to o�ces, implying a certain organizational policy.

- movement — in Table 8, Appendix E, parameters starting from travel movement and ending with small o�ce movement are

being used to define the movement patterns of devices across locations. For example, in the case of o�ce laptops, they can be

placed in between zero and three hours at home — in the case of working from home for a limited amount of time — in between

five and eight hours at the o�ce and in between twenty minutes and two hours in a co↵ee shop. The order and precise duration

of these movements is decided using Julia’s shu✏e function, which produces pseudo-random permutations of a given collection.

Modelling and simulating organizational recovery 23

As it can be clearly seen from the above, the available array of parameters allows an actual organization willing to use this

method to tailor its representation in detail and according to their own needs. This set-up allows the enterprise to compare di↵erent

recovery options and parameters in a range of conditions and then combine this with other information about recovery, such as a

security or financial analysis, to aid decision-making. When used in an actual real-world context, the parametrization of the model

must be performed using both KPIs and employee knowledge, according to the principles of co-design. Nevertheless, to explore

the descriptive power and usefulness of our model and method, we construct a basic enterprise scenario and detail the specific

parameter choices from the above that cloud be considered relevant from the perspective of an organization.

We conceptualize our target organization as medium-sized, having an organizational structure comprised of two large o�ces,

two small o�ces and additional adjacent locations such as a co↵ee shop, the home or travel locations such as airports,hotels, etc.

The large o�ces host 40 employees, the small ones 20 employees, with each being equally split in using either laptop or desktop as

work devices. A main di↵erence between employees using desktops and laptops is that the ones using desktops are bound to their

start location when working, whereas the laptop using ones are mobile and can move in between o�ces, the co↵ee shop, travel

locations or home. Furthermore, the locations di↵er at the level of network connection speeds: we assumed that larger o�ces have

better connections than smaller ones and that corporate locations such as the o�ces have better connections than general purpose

locations such as a co↵ee shop or the home. The actual data about the network speeds can be consulted in Appendix E.

In addition to the di↵erent connection speeds, locations di↵er at the level of the available support resources. Each large o�ce

contains a help desk which provides users with help to perform recovery procedures. Nonetheless, support is not necessarily bound

to large o�ces, since the administrative sta↵ can also move to other locations or provide users with advice remotely — as explained

in Section 5. In addition to that, we assume that large o�ces have access to USB sticks with pre-loaded operating system images,

the small o�ces have access to USB sticks, but without images and the other locations do not have access to USBs.

In this organizational setting, we look at four di↵erent recovery techniques: USB, network based, embedded and a mix of

network based and 30% embedded — as explained in Sections 5 & 6.1. It is worth noting that the model captures the active

elements of the di↵erent approaches but does not represent the security of the di↵erent approaches. Here, we should consider the

‘Sure Recover’-based mechanisms as secure in that they check the signature of the image, thus validating that the image is correct

and as intended by the enterprise — for example, with the chosen enterprise AV systems installed. USB-based recovery has no

validation of the image and either requires administrators who know BIOS admin passwords to initiate the installation or requires

the computer to be kept in an insecure state — allowing USB boot or boot with no BIOS password. Furthermore, we looked at five

di↵erent ransomware spread behaviours, by sampling attack timings from probabilistic distributions such as uniform, exponential,

F and, combinations between uniform and exponential and uniform and F. Justifications for choosing these distributions can be

found in Section 6.1, when describing the attack scenario parameter. In addition to the temporal aspect, we test the network under

di�cult conditions that can resemble a fast-spreading ransomware by varying the infection probability on a range of 15% to 95%,

attack duration between two, four or eight hours and, by setting the size of the attack, nr of samples, at three hundred packets.

In the following subsections, we present three di↵erent recovery scenarios in an attempt to illustrate how specific parameter

choices can lead to meaningful organisational scenarios.

Scenario 1: USB Recovery under uniform attack distribution

In the first recovery scenario we aim to determine the feasibility of using only USB recovery in the case of a temporally, uniformly

distributed attack of varying severity, but a short time period of two hours. This can be interpreted as an intensive spear phishing

attack that leads to ransomware being dropped on devices without an internal network spreading mechanism. Furthermore, we

assume that users have the knowledge of performing an USB recovery process, so only one in thirty might require help-desk

assistance, and that help-desks contain 10 administrative sta↵ each. Therefore, the employees have a good knowledge of performing

recovery and organizational policies ensures that the help-desks are well sta↵ed. However, we must take into account that large

o�ces have access to seven USBs pre-loaded with the right recovery image each, small o�ces have access to three empty USBs

each and, the other locations do not have access to USBs. This implies a security policy of only using security vetted USBs, which

are not available in travel locations.

Figure 10 shows the average recovery duration across locations, under a probability of infection of 30% and 95% respectively.

These violin plots show the summary statistics and distributions of timings for devices across all the simulation runs (87). This

variation in infection rate represents the level of preparedness the organization possesses in regard to phishing, both at the level

of employee training and active countermeasures such as spam filters. As it can easily be observed, the large o�ces have a similar

performance, regardless of the infection probability, with the highest values for desktops and laptops, close to 100 and 140 minutes

respectively. This is due to two reasons: the uniform attack is unbiased at the level of targeting, so the ransomware packets do not

flood a singular location and, the pre-loaded USBs do not require interaction with the network. Furthermore, we must note that

in the 30% probability of infection case, an average of 58 devices recovered, whereas in the 90% case, there were 129.

However, in the case of small o�ces, the situation changes. For a 30% infection probability, both laptops and desktops have

similar recovery timings of 186 and 176 minutes on the extreme end. Therefore, although they are using blank USBs which require

network downloads, the severity of the attack is not enough to produce a greater delay. Nevertheless, the di↵erence in number

of devices, need of network interaction and, to a smaller extent even the need of physical help-desk assistance lead to a 33%

recovery time increase in the case of laptops and a 76% increase in the case of desktops, on the extreme case. For the 95% infection

probability, the recovery timing for laptops reach 225 minutes, whereas desktops go up to as much as 251 minutes. Interestingly,

there is a small di↵erence in between the performances of the two small o�ces that we attribute to the movement of laptops in

between locations.

Therefore, this first scenario reveals some relevant facts for organizations that wish to employ USB based recovery. Firstly, even

with a well equipped help-desk and users that know how to flash an USB, pre-loading the USBs with recovery images leads to

24 Author Name et al.

an almost twice as faster recovery rate in the case of a 95% successful spear phishing attack without automatic network spread.

Secondly, under such conditions, a number of USBs representing almost a sixth of the number of devices (5.714) in the case of big

o�ces is enough to prevent a steep increase in the duration of recovery. Thirdly, alterations to the security policy about the vetting

of USBs must be made, because under the current one, all the devices in external locations — non-o�ces — failed the recovery

process.

(a) Probability of infection 30% (b) Probability of infection 95%

Fig. 10. USB Recovery under uniform attack distribution (Scenario 1)

Scenario 2: Network Recovery under F attack distribution

This recovery scenario depicts an organization with a weaker security posture than the above scenario, both at the level of user

training — one in ten employees requiring admin assistance to perform device recovery — and at the level of help-desk sta�ng

— each help-desk having 5 sta↵ members. This organization is being targeted by a more virulent ransomware strain, modelled

using the F distribution, but over a longer duration of four hours. This resembles the behaviour of a fast spreading ransomware,

as presented in Section 2.1, particularly because when initialized with the values 50 and 8 as degrees of freedom, the probability

density function of the F distribution increases steeply at the start and then decreases more gradually — in (77; 104; 137), the

authors describe propagation graphs for worm-like spreading malware using similar types of distributions.

Figure 11 shows the average recovery duration across locations, again, under a probability of infection of 30% and 95%

respectively. Compared with the previous scenario, we can observe di↵erences in recovery time at the levels of desktops and

laptops in both small and large o�ces. In the case of the 30% infection probability in large o�ces, the laptops recovery time varies

between 50 and 98 minutes — with a median of 51 minutes —, whereas the desktops recover between 21 and 48 minutes — with

a median of 23 minutes. In the case of 95% infection probability, laptops recover between 48 and 309 minutes — and a median of

71 minutes — and desktops between 23 and 300 minutes — with a median of 41 minutes. Furthermore, we must note that in the

30% probability of infection case, an average of 61 devices recovered, whereas in the 90% case, there were 141.

At the level of small o�ces, the increase in recovery time is steeper. For example, in the 30% case, laptops’ recovery time varies

between 54 and 385 minutes — with a median of 83 minutes — and, desktops’ recovery time varies between 43 and 415 minutes

— and a median of 125 minutes. In the 95% case, the laptops’ recovery time varies between 53 and 588 minutes — with a median

of 173 minutes — and the desktops recover between 23 and 557 minutes — with a median of 275 minutes. The median recovery

timings for laptops at home are 150 and 125 minutes for the 30% and 95% infection probability. For the travel location, they are

225 and 200 minutes and, for the co↵ee shop, 487 and 486 minutes, respectively. However, since the attack duration is only 4 hours

and the simulation time is 24 hours, a very small number of devices manage to both perform movement between locations and

finish the recovery process.

A few observations can be drawn. Firstly, the big o�ces are more resilient to this type of attack, given the easier access to

help-desks and the better link speed. The attack size of 300 network packets spread among 4 hours does not manage to produce a

severe impact at the level of big o�ces in the 30% infection case. The 95% case is more interesting, with the median of desktops

increasing with 56%, and the one for laptops with 71%.

Secondly, the desktops perform worse than laptops in the small o�ce locations. Although peculiar at first sight, this represents

an e↵ect of laptops being able to move between locations, combined with the 24 hours simulation time: the number of laptops in

small o�ces decreases because of movements, and those that are targeted early in the attack manage to complete the recovery, so

the overall recovery time of successful laptops decreases.

Thirdly, the extreme values are significantly higher for the small o�ces. For example, even though on average, in the 95% case,

a desktop manages to recover in around four and a half hours — which is less than the overall attack duration and means the

device can get reinfected — some could take even more than nine hours, which is the equivalent of more than an entire day of

Modelling and simulating organizational recovery 25

work. Because of this, organizations might seek alternative recovery processes, especially if a priority of recovery between employees

exists.

(a) Probability of infection 30% (b) Probability of infection 95%

Fig. 11. Network Recovery under F attack distribution (Scenario 2)

Scenario 3: Mixed Recovery under Exponential attack distribution

In this scenario, we maintain the same set of parameters for the organization — one in ten employees requiring admin assistance

to perform device recovery and, each help-desk having five sta↵ members — and the attack duration of four hours, but we change

the recovery method and the attack distribution. We use an exponential distribution, which has a higher potential of increasing

the network throttling because the distribution of ransomware packets is steep from the beginning, compared to the F distribution.

However, the mixed recovery method used means that 30% of the laptops use embedded recovery in all the locations except the

travel one. All the laptops in the travel location use embedded recovery.

Figure 12 shows the average recovery duration across locations, again, under a probability of infection of 30% and 95%

respectively. We must note that in the 30% probability of infection case, an average of 63 devices recovered, whereas in the

90% case, there were 150. In the case of big o�ces, we observe that laptops’ recovery time varies between 13 and 175 minutes —

with a median of 49 minutes — in the 30% case and 20 and 325 minutes — with a median of 53 minutes — in the 95% case. The

desktops’ recovery time varies between 15 and 135 minutes — with a median of 30 minutes — in the 30% case and, between 25

and 328 minutes — with a median of 51 minutes — in the 95% case.

Furthermore, analysing the performance of small o�ces yields the following results. The laptops’ recovery time varies between

13 and 265 minutes — with a median of 49 — for the 30% infection probability and 13 and 450 minutes — with a median of 54

— for the 95% infection probability. The desktops’ recovery time varies between 38 and 265 minutes — with a median of 108 —

for the 30% infection probability and, between 42 and 375 minutes — with a median of 210 — for the 95% infection probability.

In addition to that, we can easily observe that a significantly higher amount of laptops manage to complete the recovery process

in a non-o�ce environment. In the case of home, laptops manage to recover for both infection probability cases on average around

125 minutes. When considering the co↵ee shop, the median for laptop recovery is around 460 minutes for both infection probability

cases. In the travel location, considering that the laptops use only embedded recovery, the median recovery time is 13 minutes.

This allows us to draw some relevant observations about this type of recovery techniques allocation. Firstly, using embedded

recovery on 30% of the laptops has reduced the medians of device recovery in both in the 30% and 95% infection probability cases,

regardless of device type, when compared to the previous scenario. Particularly in the case of small o�ces under 95% infection

probability, the median of recovery time has decreased from 173 to 54 minutes in the case of laptops — a 68.78% decrease —

and from 275 to 210 minutes in the case of desktops — a 23.63% decrease. This reveals an interesting insight for organizations:

deploying a faster recovery method across a subset of all the devices in an organization can have a positive impact on all the devices

if the organization was mainly relying on network-based recovery previously. Of course, this is not a ‘silver-bullet’ type of solution,

because the extreme values for laptops and desktops are still 450 and 375 minutes in small o�ces, but the reduction at the level

of medians shows that this type of approach is viable. Secondly, recovery in remote locations becomes more feasible, since more

employees now have the chance to complete recovery before moving to another location — the co↵ee shop and home locations in

Fig 12 show this clearly when compared with the same locations in Fig 11, because although the medians are similar, the number

of points di↵ers greatly. At the level of the travel location, even the medians di↵er because embedded recovery is used on all the

laptops.

26 Author Name et al.

(a) Probability of infection 30% (b) Probability of infection 95%

Fig. 12. Mixed Recovery under Exponential attack distribution (Scenario 3)

Overall Behaviour and Model Sensitivity

The previous subsection was focused on providing detailed information about the model parameters and, exemplifying the model

utility by showing three scenarios that could be useful for organizational decision-making with respect to security; we now focus

on more general characteristics of the model.

Firstly, 9000 configurations of variable parameters — as explained in 6.1 and shown in Table 7 — have been used for the model

execution. Each configuration has been run 50 times, so in total, the model execution is comprised of 450000 di↵erent runs. Each

run employed both fixed and variable parameters as detailed in Section 6.1 and, elements such as when a ransomware packet is

being sent on the network, to what target or to which location a device might move are being sampled for stochastic variables that

represent the environment in which the model operates. The execution of the model was carried out in a distributed computing

environment, across multiple cluster nodes with an 8GB memory limit. The size of the produced model output files was 4.42GB.

PAWN Sensitivity Analysis: Method

Given the complexity of the phenomena under study and the stochastic nature of the modelling approach, we employ sensitivity

analysis in an attempt to better understand the relationships between input and output variables and increase confidence in the

overall model behaviour. We have chosen to use the PAWN sensitivity analysis method as described by Pianosi & Wagener (114),

(115) and further developed by Baroni & Francke (11) for a series of reasons: allowing both categorical and numerical data to

be used as input, o↵ering information about the relevance of input variables with respect to output variables and at the same

time describing the variability that changes in the input variables produces at the level of output, good performance with respect

to multi-modal data — especially because of the ransomware behaviour mechanism, but also given the composition of multiple

distributions.

In very brief terms, PAWN sensitivity analysis focuses on two metrics: the PAWN sensitivity index which describes the relevance

of an input variable with respect to an output variable and, the coe�cient of variation which is a measure of general variability

produced during the variation of the input parameters. The key aspect of the method is the usage of cumulative distribution

functions for output quantification instead of probability density functions or other traditional variance-based methods. The

PAWN sensitivity index of an input variable with respect to an output variable is computed as the statistical di↵erence between

the unconditional CDF of the output variable — obtained by varying the input factors at the same time — and the conditional

CDF of all the other input variables except the one under study. This measure is known as the Kolmogorov-Smirnov statistic (81)

(127), a well-established method for calculating the distance between multiple cumulative distribution functions. The coe�cient

of variation is calculated as the division of standard deviation by mean, over the previously computed indexes. In layman’s terms,

a high sensitivity index implies that the specific input variable has a high impact on the value of the output variable, whereas a

high value for the coe�cient of variation translates to the input variable producing high amounts of variation on the output, but

not necessarily producing severe output changes.

PAWN Sensitivity Analysis: Results

We employ the above described method to analyse the relationships between the six variable input parameters described in Section

6.1 and three output variables: the average recovery duration, total recovery duration and the average number of devices recovering.

The results are shown in Figure 13 below, and Figure 21, Figure 22, Figure 23, Table 2, Table 3 and Table 4 in Appendix C. The

reason for choosing this specific output variable configuration is twofold: firstly, these three output variables represent relevant

metrics for guiding organizational recovery on their own and, secondly, the behaviour shown with respect to the total recovery

duration acts as a useful verification checkpoint for both the average recovery duration and the average number of devices recovering.

Modelling and simulating organizational recovery 27

(a) Average recovery duration. (b) Average number of devices. (c) Total recovery duration.

Fig. 13. Sensitivity Analysis

Starting with Figure 21 and Table 2, we can observe that the recovery method, type of attack and users’ need for admins have the

biggest impact on the average device duration of recovery. The extremely influential, maximum sensitivity index value of 0.669556

for the recovery method can be attributed to the fully embedded recovery mechanism and, reveals the fact that deployment of such

a mechanism at the level of all devices in an organization can drastically reduce the impact of other factors on the average recovery

time. With respect to variation, the highest cv scores were obtained for the number of admins, infection probability and attack

duration. However, this shows a complete separation between the high-impact-producing input variables and the ones producing

low-scale variations, which has led us to further analyse the total recovery duration.

In Figure 22 and Table 3, we observe a di↵erent variable allocation with respect to the average number of devices recovering.

The infection probability, attack type and attack duration are the most influential and, the infection probability, attack duration

and recovery method produce the highest amount of variation. Although one might expect a higher sensitivity index value for the

recovery method, this is not the case since the individual simulation time of five days allows all infected devices to recover, in the

end. Thus, the impacts of the recovery method, number of admins and users’ need for admins are drastically reduced.

Now, since the total recovery duration time is dependent on both the recovery time of singular devices and on the actual number

of devices that manage to completely perform the recovery procedure, we would expect that the sensitivity analysis for the total

recovery duration time to maintain the trends from the analysis of average recovery duration and the total number of devices.

Figure 23 and Table 4 reveal the following: the most impactful variables were the recovery method, infection probability and attack

type and, the ones producing the most variation were the number of admins, infection probability and the users’ need for admins.

As it can easily be observed, the recovery method was the most influential input variable in 21, the infection probability in 22

and the attack type was the second most influential in both cases. The di↵erence between the index values of the recovery method

and infection probability was only 0.036667, so their impact can be regarded as similar. With respect to variation, the number of

admins and infection probability maintained their leading trends from Figure 21 and 22. Therefore, our expectation was confirmed,

since the sensitivity analysis of the total recovery duration did conserve the primary impact insights from above.

Although insightful about the general behaviour of the model, the sensitivity analysis above does not reveal enough information

about the types of relationships between the variables, because it simply does not take into account their structure, but only the

input/output changes. Consequently, we proceed to analyse Figure 24 to Figure 35 in an attempt to better understand how the

structure of the input variables a↵ects the value of the output ones.

- Infection Probability: Figure 14, 24 below and 25, 26 in Appendix C are focused on the impacts of the infection probability,

which was deemed the second most influential variable. A separation of classes of attacks based on the type of distribution used

is immediately visible, but most clearly in Figure 25. A similar observation can be done about the recovery techniques. Given

the stochastic aspects of the model, the produced output is surprisingly structured: for example, USB-only recovery under

exponential types of attacks has the worst performance across all the diagrams and the full embedded recovery has the best

performance regardless of the attack type. However, some additional insights can be gathered from the intermediary classes: in

Figure 24, we can observe that at around 0.5 infection probability, the performance of USB-only recovery under uniform and

uniform-exponential attack classes becomes better than the performance of network-only recovery under exponential types of

attacks. Since in the real world, uniform-exponential attacks happen more often than purely exponential ones — the uniform

part of the attack can be viewed as reconnaissance actions or an initial phishing campaign —, we can argue that for organizations

with a low-security posture, USB recovery could be a viable option, especially if the only other one is purely network based.

Furthermore, Figure 25 shows the benefits of a composite allocation of recovery techniques — 30% embedded recovery and

70% network-based: the distance between a full network approach and a composite one is clearly visible at the level of uniform

attacks, but the separation zone between the distributions increases even more at the level of exponential attacks. In other

words, the more virulent an attack is and the lower the security posture, the better will our composite approach behave when

compared to a fully network-based one.

- Attack Duration: Figure 15 below and 27, 28 and 29 in Appendix C are concerned with the attack duration. As expected,

since the total amount of network packets allocated to an attack is fixed, the more the attack takes, the less network throttling

manifests, so the relationship is inversely proportional. Furthermore, because the individual simulation time is five days, almost

all the devices manage to recover regardless of the attack type, which is exactly what can be observed in Figure 29. Interestingly,

28 Author Name et al.

(a) Average recovery duration. (b) Average number of devices. (c) Total recovery duration.

Fig. 14. Impact of Infection Probability on the total, average duration and the number of devices recovering.

in such a case, more devices manage to recover in the case of exponential attacks because they get infected earlier and the

throttling spread over five days is not influential enough, whereas, under an uniform attack, the last devices to get infected

might not manage to complete recovery.

(a) Average recovery duration. (b) Average number of devices. (c) Total recovery duration.

Fig. 15. Impact of Attack Duration on the total, average duration and the number of devices recovering.

- Need of Admins: Figures 30, 31 and 32 focus on the users’ need for admin help while performing the recovery procedures.

Particularly in figures 30 and 31, we can observe that the attack type and recovery technique generate similar separation classes

to Figures 24 and 25. This confirms the insights of the sensitivity analysis, which described the infection probability as a more

influential input variable than the need for admins, especially since in Figure 31, the highest values of the need parameter

lead to lower values of recovery time than in the case of infection probability. Similarly to Figure 29, Figure 32 depicts the

low influence the input variable has on the total number of devices managing to completely recover, which is an e↵ect of the

five-day simulation time.

(a) Average recovery duration.

(b) Average number of devices.

(c) Total recovery duration.

Fig. 16. Impact of Admins Need on the total, average duration and the number of devices recovering.

- Number of Admins: Last but not least, Figures 33, 34 and 35 target the number of admins allocated to each help-desk

location. As we can easily observe in Figures 33 and 34, given the model configuration, an optimal value for this parameter can

be found in the interval [2, 5]. The small recovery duration increase that can be observed in Figure 33 around the value of three

for the number of admins is a consequence of admin behaviour: if three admins are allocated to a help desk in a large o�ce and

then some other small o�ces are hit by ransomware, up to two admins could get moved there to assist with recovery procedures.

This can lead to a situation where more admins end up being present in small o�ces rather than large ones, which can in turn

increase the waiting time for users who require physical admin assistance. Furthermore, this particular result suggests a possible

Modelling and simulating organizational recovery 29

need for improvement in admin workflow policies: if the model under analysis would have been built for an actual organization,

this type of anomaly would reveal an extreme case where the admin policies would not work as previously expected.

(a) Average recovery duration. (b) Average number of devices. (c) Total recovery duration.

Fig. 17. Impact of Admin Number on the total, average duration and the number of devices recovering.

Verification & Validation

Given our intention of showing that the above-described model represents an instantiation of a modelling methodology able

to produce useful models for supporting security decision-making, we must now ensure that the model’s conceptual reality is

representative of the depicted scenarios. In the following lines, we describe a series of verification and validation procedures

employed to do so.

- Model conceptualization — As a particularly relevant aspect of the Co-design cycle described in Section 3, we ensured a

consensus was reached between a literature-only representation and expert knowledge. The ransomware, network, organization

and recovery methods behaviour were constructed based on an extensive literature review for ransomware — which in turn led

to a selection of features that included a targeting distribution, a timings distribution, infection probability and attack duration

—, a well-known conceptual representation in the organizational literature for the organization — the network organization —, a

simplified version of actual internet routing for the network and technical documentation for the recovery methods. Furthermore,

additional improvements were brought in by expert knowledge, until a state of considered model utility was reached. As described

in the Co-design methodology, this conceptualization was not fixed in an initial design phase but continued changing throughout

development.

- Antibugging — Workflow validity checks were introduced at the level of the code to check whether quantitative or structural

constraints were violated during execution. Examples could include the maximum number of users in a type of o�ce, the users’

movement patterns or the location they end up in, the minimum and maximum network speeds available or if ransomware

packets are being transmitted by the ransomware model after the given attack duration.

- Prototyping & Walkthrough Iterations — The model construction process started with basic, compositional models for the

devices, network, storage server and ransomware that were further developed and continuously validated by expert knowledge. To

ensure this was possible, multiple walkthrough iterations were carried out for both separated and composed models. Furthermore,

some runs made use of placeholders for an easier structural understanding, whereas others included stochastic input for the

assessment of behaviour.

- Real-World Data — The recovery timings for the USB recovery method and the network speed constraints were manually

gathered and then validated by expert knowledge — particularly the o�ce distribution changes — and comparison with UK

network speed statistics.

- Event Tracing — Based on the nature of the model, we were able to use a dual system of event tracing at the level of locations

and timings. This helped with debugging once unexpected behaviour was manifested, but at the same time simplified analysing

two di↵erent instances of the same model, in di↵erent stages of development. For example, a previous iteration of our recovery

model included only an uniform attack spread of a constant rate. The current one allows for much greater customization by

allowing di↵erent input distributions for spread and timings. Nevertheless, setting the right parameters for the current iteration

with respect to rate and speed leads to similar behaviour to the previous iteration, therefore conserving consistency,

- Sensitivity Analysis — Sensitivity analysis was, again, used with a dual purpose. First of all, it confirmed that the choice

of input parameters had an influence on the outputs — which was expected, but useful. Secondly, the general-level insights

produced by it were used as verification checks for the examples and the structural analysis of the features. For example, the

sensitivity analysis in Figure 23 reveals the infection probability as more influential to the total recovery duration than the

attack duration. Figures 25 and 28 confirm it at the level of the Y-axis scale.

30 Author Name et al.

Nevertheless, we end this sub-section on validation with the idea that especially in an organizational context, the verification

and validation procedures must be the result of an alignment between modellers, experts and stakeholders. For sure, traditional

approaches such as antibugging and structured walkthroughs are still useful for ensuring the agreed-upon model conceptualization

is implemented and the actual model iteration is understood. However, we must take into account that the organizational modelling

goal is not only to produce an accurate representation of a phenomenon — accurate to what criteria could be a legitimate question

— but an accurate representation useful for a practical outcome. This is precisely why stakeholders have an increased presence

during model design and development through co-design: on one hand, they can introduce additional environment-specific insights

that can act as conceptual optimizations for the model — the scope of an organizational model is smaller than the one of a purely

scientific one — and on the other hand, they gain an increased understanding and belief in the usefulness of the model that can

lead to more real-world outcomes.

The Model as a Management Tool

As stated at the end of the previous paragraph, one of the innate goals of an organizational model is to produce some form of

real-world outcomes either directly — if the model is being used without human intervention — or indirectly, by supporting decision

making. Our focus is on the latter. To support such decision-making, the model must be parametrized and validated accordingly.

However, since the presented model acts as a methodological example, we assume with the help of expert knowledge that the

modelled organization acts as a reasonable surrogate for a real one. Given this, we describe in the following lines, a list of possible

actions that decision-making factors might implement at the organizational level, based on the model.

Firstly, precise policy changes could be enacted at the level of help desks. For example, the policy regarding admin movement

between o�ces could be altered such that no more than half the initial number of admins in one help desk is allowed to be out of

the initial location at once. Furthermore, the number of admins in a help desk could be capped at a value in the interval [2, 5]:

the model reveals this interval as producing the highest rate of reduction in total recovery time. A fixed value can then be decided

upon based on additional hiring or economic policies that the organization might have interacting with its security posture.

Secondly, organizations can use the model to test di↵erent configurations of recovery techniques and then analyse their

performance and benefits. For example, we have observed that the recovery techniques employed form classes of recovery behaviour

that are reducible: on average, the organization displayed a similar recovery duration when under an uniform rate attack but using

USB based recovery and, when under an exponential rate attack but using only network recovery. Based on historical data and risk

appetite, organizations might consider one class of attacks as a priority, and therefore base their recovery technology choice on that.

In our execution, a combination of 30% embedded recovery and 70% network-based recovery mechanisms on laptops was shown to

produce a significant decrease in recovery time across di↵erent locations, particularly when compared with the more rigid but often

used, complete network approach. This led to an increase in the overall number of devices that managed to perform recovery at all,

even in locations where the embedded recovery was not deployed, due to a reduction in network throttling. Therefore, organizations

might choose to experiment with the exact percentage value and the locations in which di↵erent recovery technologies are deployed.

Possible deployment strategies could be focused on the criticality of the employee tasks to the organization, departmental budgets

or organizational hierarchy.

Thirdly, the choice of inputs and their sensitivity with respect to the outputs can be used to highlight possible areas of further

development, if their degree of control is being taken into account. In our case, although the attack type and duration were seen as

having a somewhat medium impact on the recovery duration, they are not controllable by the organization in any way. Di↵erently,

the infection probability can be controlled with improvements at the level of technical defense mechanisms, employee training or

changes in policy. Furthermore, additional insights can be drawn by performing the same sensitivity analysis procedure but fixating

some of the variable inputs — particularly the ones considered uncontrollable — to average values observed historically in that

specific organizational context.

To summarize, the modelling is intended to aid decision-makers in exploring the consequences of potential decisions. Here we

have explored a model with some specific scenarios and, for decision-making, a company would need to parametrize the model with

its situation in terms of o�ce set-up, sta↵ skill-levels, and helpdesk support levels and policies. However, even in the scenarios we

have run, there are some general insights:

- Embedded recovery is valuable both for travellers with poor connectivity and in reducing recovery network loads within the

o�ce.

- Helpdesk and support policies can be critical in the smooth running of mass recovery, but need tailoring according to an

organization’s set-up and sta↵ skill-levels.

- The model shows sensitivities to factors outside of the direct recovery solution, such as the probability of infection. Thus, when

making recovery decisions, it is important to examine the wider enterprise systems such as AV, phishing protections, etc..

Conclusion

With an estimated global cost of $20 billion in 2021 alone (19) that might or might not have been reduced during the Covid

lockdown period, and an ever increasing list of high profile victims in both private and public sector organizations, ransomware is

and will continue to be a problem in the future. That is why most organizations will have to understand and manage the risk of

ransomware infection, or else face severe operational problems that could even turn to existential threats.

However, the tools available to support decision makers in better understanding the ransomware phenomena at the level of their

own organization and guide the recovery technology selection, allocation and policy adaptation procedures, are not that many.

Furthermore, most of the times, such tools exist in the form of general guidelines that do not o↵er enough practical understanding

Modelling and simulating organizational recovery 31

to decision makers which are less security inclined. Given this, we have considered organizational recovery under ransomware as

suitable for explicit, simulation modelling, due to descriptive power, modularity and possibility for extension, and ability to produce

quantitative measures for further analysis.

In this paper, we have described our structured modelling conceptualization based on the so called Distributed Systems Metaphor

and explained how it supports the model co-design methodology. We have exemplified the suitability of our approach in a complex,

yet technology focused organizational environment with the implementation of the recovery model. We then used the model to

generate several recovery scenarios corresponding to the behaviour manifested by ransomware strains and tested the impact of

recovery techniques on organizational recovery time under such conditions. Furthermore, we have detailed the main verification

and validation procedures employed, and how the model could be practically used in a decision-making context.

However, as with any model, the decisions regarding what not to model explicitly are just as relevant. Organisational resilience

is a complex phenomenon: device recovery, the nature of attacks, technical security mechanisms, policy, budgets and user training

and awareness and possibly even other ‘unknowns’ play important parts in overall resilience. Our models focus primarily on the

performance and behaviour of device recovery mechanisms under di↵erent ransomware attacks. Although we could argue that

elements of technical security mechanisms, policy, user training and awareness are present in the models at a very low level of

detail — in the infection probability and need of admins parameters — a separate analysis and model would be required to reason

about security in this context. For example, this could include an analysis of how images are protected; is there a mechanism

for ensuring only approved images are installed and that their integrity can be validated (Section 2.2.4) and where images are

maintained on the device, can they be protected from malware. Such security analysis and decisions should go alongside the

organizational model when considering a robust recovery strategy.

Nevertheless, the current model configuration is well-suited for further development. On the practical side, model extensions

could include explicit conceptualization and implementation of employee work — for example in the form of processes generating

revenue —, data loss, technical security mechanisms and policies around data storage or increasing the level of detail for users

and devices interacting with one another. From a theoretical perspective, the modelling formalism could be further extended

at the level of supporting tools: for example, to support local reasoning about the compositional model structure or to provide

dynamic model-checking capabilities. Last but not least, additional research can be done in the area of empirical case studies:

to include models constructed using this approach and deployed in varied organizational environments, in an attempt for further

methodological refinement.

32 Author Name et al.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development methods: Review and analysis. arXiv

preprint arXiv:1709.08439 (2017)

2. Abrams, L.: Jvckenwood hit by conti ransomware claiming theft of 1.5tb data. Bleepingcomputer (2021),

https://www.bleepingcomputer.com/news/security/jvckenwood-hit-by-conti-ransomware-claiming-theft-of-15tb-data/.

Accessed 05/07/2023

3. Abrams, L.: Allied universal breached by maze ransomware, stolen data leaked (2019), https://www.bleepingcomputer.com/

news/security/allied-universal-breached-by-maze-ransomware-stolen-data-leaked/. Accessed 05/07/2023

4. Alwashali, A.A.M.A., Abd Rahman, N.A., Ismail, N.: A survey of ransomware as a service (raas) and methods to mitigate the

attack. In: 2021 14th International Conference on Developments in eSystems Engineering (DeSE). pp. 92–96. IEEE (2021)

5. Analytica, O.: Us pipeline hack to make ransomware risks a priority. Emerald Expert Briefings (2021)

6. Anderson, G., D.Pym: A calculus and logic of bunched resources and processes. Theoretical Computer Science 614, 63–96

(2016)

7. ATT&CK, M.: Mitre att&ck matrix for enterprise, https://attack.mitre.org/matrices/enterprise/. Accessed 05/07/2023

8. Baker, W., Nohria, N., Eccles, R.: The network organization in theory and practice. Classics of Organization Theory 8, 401

(1992)

9. Baldwin, A., Beres, Y., Duggan, G.B., Mont, M.C., Johnson, H., Middup, C., Shiu, S.: Economic methods and decision

making by security professionals. In: Schneier B. (eds) Economics of Information Security and Privacy III. Springer, New

York, NY (2012), 978-1-4614-1981-5

10. Baldwin, A., Caulfield, T., Ilau, M.C., Pym, D.: Modelling organizational recovery. In: Simulation Tools and Techniques:

13th EAI International Conference, SIMUtools 2021, Virtual Event, November 5-6, 2021, Proceedings. pp. 284–314. Springer

(2022)

11. Baroni, G., Francke, T.: An e↵ective strategy for combining variance- and distribution-based global sensitivity analysis.

Environmental Modelling & Software 134, 104851 (2020). https://doi.org/10.1016/j.envsoft.2020.104851

12. Beres, Y., Gri�n, J., Shiu, S., Heitman, M., Markle, D., Ventura, P.: Analysing the performance of security solutions to

reduce vulnerability exposure window. 2008 Annual Computer Security Applications Conference (ACSAC) pp. 33–42 (2008)

13. Beresnevichiene, Y., Pym, D., Shiu, S.: Decision support for systems security investment. 2010 IEEE/IFIP Network Operations

and Management Symposium Workshops pp. 118–125 (2010)

14. Binary Defense: Emotet Evolves With new Wi-Fi Spreader. Available at https://www.binarydefense.com/

emotet-evolves-with-new-wi-fi-spreader/. Accessed 11/07/2023 (2020)

15. Birtwistle, G.: Demos — discrete event modelling on Simula. Macmillan (1979)

16. Birtwistle, G.: Demos implementation guide and reference manual. Tech. Rep. 81/70/22, University of Calgary (1981)

17. [blinded]: SysModels Julia Package. Available at [blinded]. Accessed 10/05/2021

18. Boyanov, P.: Educational exploiting the information resources and invading the security mechanisms of the operating system

windows 7 with the exploit eternalblue and backdoor doublepulsar. Association Scientific and Applied Research 14, 34 (2018)

19. Braue, D.: Global ransomware damage costs predicted to exceed $265 billion by 2031 (2022), https://cybersecurityventures.

com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/. Accessed 11/07/2023

20. Brierley, C., Pont, J., Arief, B., Barnes, D.J., Hernandez-Castro, J.: Persistence in linux-based iot malware. In: Nordic

Conference on Secure IT Systems. pp. 3–19. Springer (2020)

21. Broadhead, S.: The contemporary cybercrime ecosystem: A multi-disciplinary overview of the state of a↵airs and developments.

Computer Law & Security Review 34(6), 1180–1196 (2018)

22. Bromiley, M.: SANS 2019 Incident Response(IR) Survey: It’s Time for aChange. SANS (2012), https://www.sans.org/

reading-room/whitepapers/analyst/2019-incident-response-ir-survey-time-change-39070. Accessed 28/06/2021

23. Bronk, C., Tikk-Ringas, E.: The cyber attack on saudi aramco. Survival 55(2), 81–96 (2013)

24. Burns, T., Stalker, G.M.: Mechanistic and organic systems. Classics of organizational theory pp. 209–214 (1961)

25. Caulfield, T., Demjaha, A., Pym, D.: Found in translation: Co-design for security modelling. In: Proc. 11th STAST 2021.

Springer (2021)

26. Caulfield, T., Pym, D.: Improving security policy decisions with models. IEEE Security and Privacy 13(5), 34–41 (2015)

27. Caulfield, T., Pym, D.: Modelling and simulating systems security policy. In: Proc. SimuTools (2015)

28. Caulfield, T., Ilau, M.C., Pym, D.: Meta-modelling for ecosystems security. In: Proc 13th SIMUtools 2021. Springer (2021)

29. Caulfield, T., Ilau, M.C., Pym, D.: Engineering ecosystem models: Semantics and pragmatics. In: International Conference

on Simulation Tools and Techniques. pp. 236–258. Springer (2022)

30. Caulfield, T., Ilau, M.C., Pym, D.: Meta-modelling for ecosystems security. In: International Conference on Simulation Tools

and Techniques. pp. 259–283. Springer (2022)

31. Chad, H.: Malware lateral movement: A primer. Mandiant (2015), https://www.mandiant.com/resources/malware-lateral-move.

Accessed 12/07/2023

32. Chakkaravarthy, S.S., Sangeetha, D., Vaidehi, V.: A survey on malware analysis and mitigation techniques. Computer Science

Review 32, 1–23 (2019)

33. Charlie, O.: Updated kaseya ransomware attack faq: What we know now (2021), https://www.zdnet.com/article/

updated-kaseya-ransomware-attack-faq-what-we-know-now/. Accessed 12/07/2023

34. Chervenak, A., Vellanki, V., Kurmas, Z.: Protecting file systems: A survey of backup techniques. In: Joint NASA and IEEE

Mass Storage Conference. vol. 99. Citeseer (1998)

35. cisa : Emotet Malware. Available at https://us-cert.cisa.gov/ncas/alerts/aa20-280a. Accessed 28/06/2021 (2017)

https://www.bleepingcomputer.com/news/security/jvckenwood-hit-by-conti-ransomware-claiming-theft-of-15tb-data/
https://www.bleepingcomputer.com/news/security/allied-universal-breached-by-maze-ransomware-stolen-data-leaked/
https://www.bleepingcomputer.com/news/security/allied-universal-breached-by-maze-ransomware-stolen-data-leaked/
https://attack.mitre.org/matrices/enterprise/
https://www.binarydefense.com/emotet-evolves-with-new-wi-fi-spreader/
https://www.binarydefense.com/emotet-evolves-with-new-wi-fi-spreader/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://cybersecurityventures.com/global-ransomware-damage-costs-predicted-to-reach-250-billion-usd-by-2031/
https://www.sans.org/reading-room/whitepapers/analyst/2019-incident-response-ir-survey-time-change-39070
https://www.sans.org/reading-room/whitepapers/analyst/2019-incident-response-ir-survey-time-change-39070
https://www.mandiant.com/resources/malware-lateral-move
https://www.zdnet.com/article/updated-kaseya-ransomware-attack-faq-what-we-know-now/
https://www.zdnet.com/article/updated-kaseya-ransomware-attack-faq-what-we-know-now/
https://us-cert.cisa.gov/ncas/alerts/aa20-280a

Modelling and simulating organizational recovery 33

36. CISA: Destructive malware targeting organizations in ukraine. National Cyber Awareness System (2022), https://www.cisa.

gov/uscert/ncas/alerts/aa22-057a. Accessed 05/07/2023

37. Collinson, M., Monahan, B., Pym, D.: A discipline of mathematical systems modelling (2011), to appear: College Publications,

London

38. Collinson, M., Monahan, B., Pym, D.: A Discipline of Math.Systems Modelling. College Publns. (2012)

39. Collinson, M., Pym, D.: Algebra and logic for resource-based systems modelling. Math. Structures in Comput. Sci. 19,

959–1027 (2009)

40. Collinson, M., Monahan, B., Pym, D.: Semantics for structured systems modelling and simulation. In: Proc. Simutools 2010.

ACM Digital Library, ISBN 78-963-9799-87-5 (2010)

41. Crainer, S.: Key management ideas: Thinkers that changed the management. World Pretince Hall Books. New York (1993)

42. Dahl, O.J., Nygaard, K.: Simula: an algol-based simulation language. Communications of the ACM 9(9), 671–678 (1966)

43. Dansimp, mjcaparas, v jmathew, MSFTTracyP, JoeDavies-MSFT, alexbuckgit: What is ransomware. Microsoft Security

(2022), https://docs.microsoft.com/en-us/security/compass/human-operated-ransomware. Accessed 12/07/2023

44. David, S., Sabiescu, A.G., Cantoni, L.: Co-design with communities. a reflection on the literature. In: Proceedings of the 7th

International Development Informatics Association Conference. pp. 152–166. No. 2013, IDIA Pretoria, South Africa (2013)

45. Dehlawi, Z., Abokhodair, N.: Saudi arabia’s response to cyber conflict: A case study of the shamoon malware incident. In:

2013 IEEE International Conference on Intelligence and Security Informatics. pp. 73–75. IEEE (2013)

46. Demos2k: sourceforge.net, the Demos2k distribution is part of the Seymour distribution

47. Eccles, R.G., Crane, D.B.: Managing through networks in investment banking. California management review 30(1), 176–195

(1987)

48. Eckhardt, R.: Stan ulam, john von neumann, and the monte carlo method. Los Alamos Science 15(131-136), 30 (1987)

49. Edward, K.: What is ransomware as a service (raas)? the dangerous threat to world security (2022), https://www.upguard.

com/blog/what-is-ransomware-as-a-service. Accessed 12/07/2023.

50. Eric Parizo: Maersk CISO Says NotPeyta Devastated Several Unnamed US firms. Available at https://www.darkreading.

com/threat-intelligence/maersk-ciso-says-notpeyta-devastated-several-unnamed-us-firms/a/d-id/1336558?page_number=2.

Accessed 28/06/2021 (2019)

51. Europol: Internet organised crime threat assessment (2020), https://www.europol.europa.eu/cms/sites/default/files/

documents/internet_organised_crime_threat_assessment_iocta_2020.pdf. Accessed 12/07/2023

52. F-Secure: Trojan:androidkoler. F-Secure (2013), https://www.f-secure.com/v-descs/trojan_android_koler.shtml. Accessed

05/07/2023

53. FBI: 2019 internet crime report (2020), https://www.fbi.gov/news/stories/2019-internet-crime-report-released-021120.

Accessed 11/07/2023

54. FBI: Cisa-fbi guidance for msps and their customers a↵ected by the kaseya vsa supply-chain ransomware (2021), https://

www.cisa.gov/uscert/ncas/current-activity/2021/07/04/cisa-fbi-guidance-msps-and-their-customers-affected-kaseya-vsa.

Accessed 11/07/2023

55. Forrester, J.W.: Industrial dynamics. Journal of the Operational Research Society 48(10), 1037–1041 (1997)

56. Galison, P., et al.: Image and logic: A material culture of microphysics. University of Chicago Press (1997)

57. Galmiche, D., Méry, D., Pym, D.: The Semantics of BI and Resource Tableaux. Math. Structures in Comput. Sci. 15,

1033–1088 (2005)

58. Gareth, M.: Images de l’organisation. Presses de l’Université Laval (2019)

59. Gibson, C.A., Tarrant, M.: A’conceptual models’ approach to organisational resilience. Australian Journal of Emergency

Management, The 25(2), 6–12 (2010)

60. Gilmore, S., Hillston, J.: The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to Performance

Modelling. In: Proceedings of the Seventh International Conference on Modelling Techniques and Tools for Computer

Performance Evaluation. pp. 352–368. No. 794 in Lecture Notes in Computer Science, Springer-Verlag (1994)

61. Gittins, Z., Soltys, M.: Malware persistence mechanisms. Procedia Computer Science 176, 88–97 (2020)

62. Government, U.: Cyber security breaches survey 2020 (2020), https://www.gov.uk/government/statistics/

cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020. Accessed 17/07/2023

63. GROUP, I.: Overview of the 9 distinct data wipers used in the ukraine war. RecordedFuture (2022), https://www.

recordedfuture.com/overview-9-district-data-wipers-ukraine-war. Accessed 17/07/2023

64. Gulati, R., Nohria, N., Zaheer, A.: Strategic networks. Strategic management journal 21(3), 203–215 (2000)

65. Hearn, A.: Hackers publish private photos from cosmetic surgery clinic. The Guardian (2017), https://www.theguardian.

com/technology/2017/may/31/hackers-publish-private-photos-cosmetic-surgery-clinic-bitcoin-ransom-payments. Accessed

17/07/2023

66. Hewlett-Packard Laboratories: Security Analytics. Available at https://www.hpl.hp.com/news/2011/oct-dec/security_

analytics.html. Accessed 10/06/2023

67. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International, London (1985)

68. Hobbs, A.: The colonial pipeline hack: Exposing vulnerabilities in us cybersecurity. In: SAGE Business Cases. SAGE

Publications: SAGE Business Cases Originals (2021)

69. Hole, K.J.: Robustness to malware reinfections. In: Anti-fragile ICT Systems, pp. 93–98. Springer (2016)

70. Hopkins, M., Dehghantanha, A.: Exploit kits: The production line of the cybercrime economy? In: 2015 second international

conference on Information Security and Cyber Forensics (InfoSec). pp. 23–27. IEEE (2015)

71. Houghton, F.: Cybersecurity, ransomware attacks and health: Exploring the public health implications of the recent

cyberattack on ireland’s health service. Medicina Internacia Revuo 29(116), 160–163 (2021)

https://www.cisa.gov/uscert/ncas/alerts/aa22-057a
https://www.cisa.gov/uscert/ncas/alerts/aa22-057a
https://docs.microsoft.com/en-us/security/compass/human-operated-ransomware
sourceforge.net
https://www.upguard.com/blog/what-is-ransomware-as-a-service
https://www.upguard.com/blog/what-is-ransomware-as-a-service
https://www.darkreading.com/threat-intelligence/maersk-ciso-says-notpeyta-devastated-several-unnamed-us-firms/a/d-id/1336558?page_number=2
https://www.darkreading.com/threat-intelligence/maersk-ciso-says-notpeyta-devastated-several-unnamed-us-firms/a/d-id/1336558?page_number=2
https://www.europol.europa.eu/cms/sites/default/files/documents/internet_organised_crime_threat_assessment_iocta_2020.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/internet_organised_crime_threat_assessment_iocta_2020.pdf
https://www.f-secure.com/v-descs/trojan_android_koler.shtml
https://www.fbi.gov/news/stories/2019-internet-crime-report-released-021120
https://www.cisa.gov/uscert/ncas/current-activity/2021/07/04/cisa-fbi-guidance-msps-and-their-customers-affected-kaseya-vsa
https://www.cisa.gov/uscert/ncas/current-activity/2021/07/04/cisa-fbi-guidance-msps-and-their-customers-affected-kaseya-vsa
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://www.gov.uk/government/statistics/cyber-security-breaches-survey-2020/cyber-security-breaches-survey-2020
https://www.recordedfuture.com/overview-9-district-data-wipers-ukraine-war
https://www.recordedfuture.com/overview-9-district-data-wipers-ukraine-war
https://www.theguardian.com/technology/2017/may/31/hackers-publish-private-photos-cosmetic-surgery-clinic-bitcoin-ransom-payments
https://www.theguardian.com/technology/2017/may/31/hackers-publish-private-photos-cosmetic-surgery-clinic-bitcoin-ransom-payments
https://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
https://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html

34 Author Name et al.

72. HP: HP SureRecover. HP (2021), https://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-4556ENW.pdf. Accessed 16/07/2023

73. Iliev, A., Kyurkchiev, N., Rahnev, A., Terzieva, T.: Some new approaches for modelling large-scale worm spreading on the

internet. ii. Neural, Parallel, and Scientific Computations 27(1), 23–34 (2019)

74. Ioannidis, C., Pym, D., Williams, J., Gheyas, I.: Resilience in information stewardship. European journal of operational

research 274(2), 638–653 (2019)

75. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures. In: Proc. POPL (2001)

76. Karapapas, C., Pittaras, I., Fotiou, N., Polyzos, G.C.: Ransomware as a service using smart contracts and ipfs. arXiv preprint

arXiv:2003.04426 (2020)

77. Karyotis, V., Khouzani, M.: Chapter 3 - early malware di↵usion modeling methodologies. In: Karyotis, V., Khouzani,

M. (eds.) Malware Di↵usion Models for Wireless Complex Networks, pp. 39–60. Morgan Kaufmann, Boston (2016).

https://doi.org/https://doi.org/10.1016/B978-0-12-802714-1.00013-X

78. Keijzer, N.: The new generation of ransomware: an in depth study of Ransomware-as-a-Service. Master’s thesis, University of

Twente (2020)

79. Kerns, Q., Payne, B., Abegaz, T.: Double-extortion ransomware: A technical analysis of maze ransomware. In: Proceedings

of the Future Technologies Conference. pp. 82–94. Springer (2021)

80. Killijian, M.O., Courtès, L., Powell, D.: A survey of cooperative backup mechanisms (2006)

81. Kolmogorov, A.: Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn. 4, 83–91 (1933)

82. Korzybski, A.: Science and sanity: An introduction to non-Aristotelian systems and general semantics. Institute of GS (1958)

83. Kraemer-Mbula, E., Tang, P., Rush, H.: The cybercrime ecosystem: Online innovation in the shadows? Technological

Forecasting and Social Change 80(3), 541–555 (2013)

84. Kral, P.: The Incident Handlers Handbook. SANS (2012), https://www.sans.org/reading-room/whitepapers/incident/

incident-handlers-handbook-33901. Accessed 16/07/2023

85. Krebs, B.: Inside a reveton ransomware operation. KrebsonSecurity, August (2012), https://krebsonsecurity.com/2012/08/

inside-a-reveton-ransomware-operation/. Accessed 05/07/2023

86. Kshetri, N., Voas, J.: Do crypto-currencies fuel ransomware? IT professional 19(5), 11–15 (2017)

87. Lewinson, E.: Violin plots explained (2019), https://towardsdatascience.com/violin-plots-explained-fb1d115e023d. Accessed

16/07/2023

88. McColl, J.: Probability. Elsevier: Butterworth–Heinemann (1995)

89. Meland, P.H., Bayoumy, Y.F.F., Sindre, G.: The ransomware-as-a-service economy within the darknet. Computers & Security

92, 101762 (2020)

90. Microsoft: Windows Recovery Environment (Windows RE). Microsoft (2017), https://docs.microsoft.com/en-us/

windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference. Accessed

28/06/2021

91. Microsoft: Apply features and settings on your devices using device profiles in Microsoft Intune. Microsoft (2020), https:

//docs.microsoft.com/en-us/mem/intune/configuration/device-profiles. Accessed 28/06/2021

92. Microsoft: Deploy Windows 10 using PXE and Configuration Manager. Microsoft (2021), https://docs.microsoft.com/en-us/

windows/deployment/deploy-windows-cm/deploy-windows-10-using-pxe-and-configuration-manager. Accessed 28/06/2021

93. Microsoft: Microsoft Deployment Toolkit. Microsoft (2021), https://docs.microsoft.com/en-us/windows/deployment/

deploy-windows-mdt/get-started-with-the-microsoft-deployment-toolkit. Accessed 28/06/2021

94. Microsoft: Overview of Windows Autopilot. Microsoft (2021), https://docs.microsoft.com/en-us/mem/autopilot/

windows-autopilot. Accessed 28/06/2021

95. Microsoft: Destructive malware targeting ukrainian organizations. Microsoft Security (2022), https://www.microsoft.com/

security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/. Accessed 16/07/2023

96. Milletary, J.: Citadel trojan malware analysis. Dell SecureWorks (2012)

97. Milner, R.: A Calculus of Communicating Systems, LNCS, vol. 92. Springer Verlag (1980)

98. Milner, R.: Calculi for synchrony and asynchrony. Theor. Comput. Sci. 25(3), 267–310 (1983)

99. Milner, R.: Communicating and mobile systems: the ⇡-calculus. Cambridge University Press (1999)

100. Milner, R.: Bigraphs as a model for mobile interaction (invited paper). In: ICGT 2002, First International Conference on

Graph Transformation. LNCS, vol. 2505, pp. 8–13. Springer (2002)

101. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press (2009).

https://doi.org/10.1017/CBO9780511626661

102. Mimoso, M.: Europol takes down ransomware gang in spain, uae. Threatpost, February (2013), https://threatpost.com/

europol-takes-down-ransomware-gang-spain-uae-021413/77529/. Accessed 16/07/2023

103. Mintzberg, H.: The structuring of organizations. Englewood Cli↵s 330 (1979)

104. Mishra, B.K., Jha, N.: Seiqrs model for the transmission of malicious objects in computer network. Applied Mathematical

Modelling 34(3), 710–715 (2010)

105. Moran Stritch, M., Winterburn, M., Houghton, F.: The conti ransomware attack on healthcare in ireland: Exploring the

impacts of a cybersecurity breach from a nursing perspective. Canadian Journal of Nursing Informatics 16(3-4) (2021)

106. Morgan, J.M., Liker, J.K.: The Toyota product development system: integrating people, process, and technology. Productivity

press (2020)

107. Nuce, J., Kennelly, J., Goody, K., Moore, A., Rahman, A., Williams, M., McKeague, B., Wilson, J.: Shining a light on

darkside ransomware operations. FireEye Blogs (2021)

108. O’Hearn, P.: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375(1–3), 271–307 (May 2007)

https://www8.hp.com/h20195/v2/GetPDF.aspx/4AA7-4556ENW.pdf
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901
https://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
https://krebsonsecurity.com/2012/08/inside-a-reveton-ransomware-operation/
https://towardsdatascience.com/violin-plots-explained-fb1d115e023d
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-recovery-environment--windows-re--technical-reference
https://docs.microsoft.com/en-us/mem/intune/configuration/device-profiles
https://docs.microsoft.com/en-us/mem/intune/configuration/device-profiles
https://docs.microsoft.com/en-us/windows/deployment/deploy-windows-cm/deploy-windows-10-using-pxe-and-configuration-manager
https://docs.microsoft.com/en-us/windows/deployment/deploy-windows-cm/deploy-windows-10-using-pxe-and-configuration-manager
https://docs.microsoft.com/en-us/windows/deployment/deploy-windows-mdt/get-started-with-the-microsoft-deployment-toolkit
https://docs.microsoft.com/en-us/windows/deployment/deploy-windows-mdt/get-started-with-the-microsoft-deployment-toolkit
https://docs.microsoft.com/en-us/mem/autopilot/windows-autopilot
https://docs.microsoft.com/en-us/mem/autopilot/windows-autopilot
https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/
https://www.microsoft.com/security/blog/2022/01/15/destructive-malware-targeting-ukrainian-organizations/
https://threatpost.com/europol-takes-down-ransomware-gang-spain-uae-021413/77529/
https://threatpost.com/europol-takes-down-ransomware-gang-spain-uae-021413/77529/

Modelling and simulating organizational recovery 35

109. O’Hearn, P.W., Reynolds, J.C., Yang, H.: Local reasoning about programs that alter data structures. In: Proceedings of the

15th International Workshop on Computer Science Logic. p. 1–19. CSL ’01, Springer-Verlag, Berlin, Heidelberg (2001)

110. O’Hearn, P., Pym, D.: The logic of bunched implications. Bulletin of Symbolic Logic 5(2), 215–244 (1999)

111. O’Kane, P., Sezer, S., Carlin, D.: Evolution of ransomware. Iet Networks 7(5), 321–327 (2018)

112. Oz, H., Aris, A., Levi, A., Uluagac, A.S.: A survey on ransomware: Evolution, taxonomy, and defense solutions. ACM

Computing Surveys (CSUR) (2021)

113. Pape, R.A.: Bombing to win. Cornell University Press (2014)

114. Pianosi, F., Wagener, T.: A simple and e�cient method for global sensitivity analysis based on cumulative distribution

functions. Environmental Modelling & Software 67, 1–11 (2015)

115. Pianosi, F., Wagener, T.: Distribution-based sensitivity analysis from a generic input-output sample. Environmental Modelling

& Software 108, 197–207 (2018)

116. Plotkin, G.D.: A structural approach to operational semantics. Tech. Rep. DAIMI FN-19, Computer Science Dept., Aarhus

University, Aarhus, Denmark (1981)

117. Pym, D.: Resource semantics: Logic as a modelling technology. ACM SIGLOG News 6(2), 5–41 (Apr 2019).

https://doi.org/10.1145/3326938.3326940, https://doi.org/10.1145/3326938.3326940

118. Pym, D.: Resource semantics: logic as a modelling technology. ACM SIGLOG News 6(2), 5–41 (2019)

119. Pym, D., O’Hearn, P., Yang, H.: Possible Worlds and Resources: The Semantics of BI. Theor. Comput. Sci. 315(1), 257–305

(2004)

120. Raphael, S.: Up to 1,500 businesses a↵ected by ransomware attack, u.s. firm’s ceo says (2021), https://www.reuters.

com/technology/hackers-demand-70-million-liberate-data-held-by-companies-hit-mass-cyberattack-2021-07-05/. Accessed

16/07/2023

121. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proceedings of the 17th Annual IEEE

Symposium on Logic in Computer Science. pp. 55–74. LICS ’02, IEEE Computer Society, Washington, DC, USA (2002),

http://dl.acm.org/citation.cfm?id=645683.664578

122. Rhodes, C., Bettany, A.: Windows Installation and Update Troubleshooting. Apress (2016)

123. Richardson, R., North, M.M.: Ransomware: Evolution, mitigation and prevention. International Management Review 13(1),

10 (2017)

124. Schelling, T.C.: Arms and influence. Yale University Press (2008)

125. Shaun Hurley and Karan Sood: NotPetya Technical Analysis Part II: Further Findings and Potential for MBR Recovery.

Available at https://www.crowdstrike.com/blog/petrwrap-technical-analysis-part-2-further-findings-and-potential-for-mbr-recovery/.

Accessed 16/07/2023 (2017)

126. de Simone, R.: Higher-level synchronising devices in Meije-SCCS. Theor. Comput. Sci. 37, 245–267 (1985)

127. Smirnov, N.V.: On the estimation of the discrepancy between empirical curves of distribution for two independent samples.

Bull. Math. Univ. Moscou 2(2), 3–14 (1939)

128. Su lkowski, L., et al.: Types of metaphors of organisation. Journal of Intercultural Management 3(2), 221–227 (2011)

129. Szappanos, G.: Inside the blackhole. SophosLabs (2012)

130. Tweneboah-Kodua, S., Atsu, F., Buchanan, W.: Impact of cyberattacks on stock performance: a comparative study.

Information & Computer Security (2018)

131. Umar, R., Riadi, I., Kusuma, R.S.: Analysis of conti ransomware attack on computer network with live forensic method. IJID

(International Journal on Informatics for Development) 10(1), 53–61 (2021)

132. Voinov, A., Jenni, K., Gray, S., Kolagani, N., Glynn, P.D., Bommel, P., Prell, C., Zellner, M., Paolisso, M., Jordan, R., et al.:

Tools and methods in participatory modeling: Selecting the right tool for the job. Environmental Modelling & Software 109,

232–255 (2018)

133. Vynck, G.D., Lerman, R., Nakashima, E., Alcantara, C.: The anatomy of a ransomware attack. Washington

Post (2021), https://www.washingtonpost.com/technology/2021/07/09/how-ransomware-attack-works/?itid=mr_innovations_1.

Accessed 16/07/2023

134. Wardle, P.: Methods of malware persistence on mac os x. In: Proceedings of the virus bulletin conference (2014)

135. Weisberg, M.: Simulation and similarity: Using models to understand the world. Oxford University Press (2012)

136. Wyke, J.: What is zeus? Sophos, May (2011)

137. Xiao, X., Fu, P., Dou, C., Li, Q., Hu, G., Xia, S.: Design and analysis of seiqr worm propagation

model in mobile internet. Communications in Nonlinear Science and Numerical Simulation 43, 341–350 (2017).

https://doi.org/10.1016/j.cnsns.2016.07.012

138. Xiong, W., Legrand, E., Åberg, O., Lagerström, R.: Cyber security threat modeling based on the mitre enterprise att&ck

matrix. Software and Systems Modeling 21(1), 157–177 (2022)

139. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U. (eds.) Foundations of Software

Science and Computation Structures. pp. 402–416. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

140. Young, A., Yung, M.: Cryptovirology: Extortion-based security threats and countermeasures. In: Proceedings of the 1996

IEEE Conference on Security and Privacy. p. 129–140. SP’96, IEEE Computer Society, USA (1996)

141. Yuryna Connolly, L., Wall, D.S., Lang, M., Oddson, B.: An empirical study of ransomware attacks on organizations:

an assessment of severity and salient factors a↵ecting vulnerability. Journal of Cybersecurity 6(1) (12 2020).

https://doi.org/10.1093/cybsec/tyaa023

142. Zio, E.: Monte carlo simulation: The method. In: The Monte Carlo simulation method for system reliability and risk analysis,

pp. 19–58. Springer (2013)

https://doi.org/10.1145/3326938.3326940
https://www.reuters.com/technology/hackers-demand-70-million-liberate-data-held-by-companies-hit-mass-cyberattack-2021-07-05/
https://www.reuters.com/technology/hackers-demand-70-million-liberate-data-held-by-companies-hit-mass-cyberattack-2021-07-05/
http://dl.acm.org/citation.cfm?id=645683.664578
https://www.crowdstrike.com/blog/petrwrap-technical-analysis-part-2-further-findings-and-potential-for-mbr-recovery/
https://www.washingtonpost.com/technology/2021/07/09/how-ransomware-attack-works/?itid=mr_innovations_1

36 Author Name et al.

Appendix A: Ransomware Strains

This section contains information regarding the ransomware strains analysed for the purpose of constructing the conceptual

ransomware model. Based on the overall goals and techniques employed in the attacks, the strains are clustered into five categories

— locker, crypto locker, leakware, destructive ransomware and ransomware as a service —, with the mention that some ransomware

can fit into multiple categories at the same time. Therefore, these categories should be understood rather as operational capabilities

of the ransomware, than completely separable classes. Furthermore, we took into account the entry point and type of network

spreading once infection has been achieved.

Modelling and simulating organizational recovery 37

Name Year Locker
Crypto

Locker
Leakware Destructive RaaS Entry Point Automated Spread

PC Cyborg 1989 X Floppy disks None

Alien (Young

& Yung)
1996 X None None

Young

Leakware
2003 X None None

Krotten 2004 X Website downloads None

PGPCoder 2005 X
Website downloads

Phishing emails
None

Archiveus 2006 X X
Website downloads

Phishing emailss
None

CryZip 2006 X Website downloads None

Reveton 2012 X X

Website downloads

Phishing emails

Exploit Kits

None

Shamoon

StoneDrill
2012 X

Phishing emails &

Human operation
Network shares

CryptoLocker 2013 X
Phishing emails

Botnet droppers
None

CryptoWall

TorrentLocker
2014 X

Phishing emails

Website downloads

Exploit Kits

None

Linux.Encoder

KeRanger
2015 X

Magento shopping

cart vulnerability
None

RansomWeb 2015 X Manual exploit None

Fusob

Small
2015 X X

Website downloads

Exploit kits
None

Erebus 2016 X Website downloads None

Petya 2016 X
Phishing emails

MeDoc exploit

Credential harvesting

EternalBlue

Worm like

SamSam 2016 X

JexBoss Exploit Kit

RDP with stolen

or brute force credentials

None

WannaCry 2017 X

Phishing emails

Scanning TCP port 445

— EternalBlue

DoublePulsar backdoor

EternalBlue

DoublePulsar

Worm like

NotPetya 2017 X X
MeDoc exploit, EternalBlue

Eternal Romance, Phishing emails

Credential harvesting,

token impersonation

EternalBlue, EternalRomance

Worm like

BadRabbit 2017 X Website downloads

Credential harvesting,

dictionary attacks,

network shares,

EternalSynergy, Worm Like

Maze 2019 X X

Phishing emails

Website downloads

Exploit kits

Citrix web gateway RDP

None (human operated,

various exploits are used,

but manually)

RobbinHood 2019 X
RDP (brute force)

Exploit kits

None (human operated,

various exploits are used,

but manually)

Conti 2019 X X X X

TrickBot Malware

Spear Phishing

Human Operation(

Buying access

RDP with stolen or

brute force credentials)

None (human operated,

various exploits are used,

but manually)

Darkside 2020 X X X

Phishing emails

Human operated (

RDP with stolen

or brute forced credentials

Attacks on Virtual Desktop

Infrastructure (VDI))

None (human operated,

various exploits are used,

but manually)

Netwalker 2020 X X X

Phishing emails

Human operated (

RDP with stolen

or brute forced credentials

Attacks on Virtual Desktop

Infrastructure (VDI)

Pulse Secure VPN exploit

Telerik UI exploit)

None (human operated,

various exploits are used,

but manually)

Table 1. Ransomware Strains

38 Author Name et al.

Appendix B: Model Diagrams

This appendix contains the conceptual diagrams related to the architecture and behaviour of the constructed models: Network

Model, Malware Model and Server Model. The device model is being presented in the main text.

Start

Wait for packets on
the device endpoints

Wait for packets on
the server endpoints

Wait for packets on
the malware endpoint

Move packets to
transit location

Calculate network
congestion

Move packet to the
desired endpoint

Fig. 18. Network Model Process Diagram

Start

Construct target list Construct attack
timings

Determine if targets
get infected

Move infection
packets to the

malware endpoint

Fig. 19. Malware Model Process Diagram

Modelling and simulating organizational recovery 39

Start

Does the packet
requests the recovery

agent?

Wait for packets on
the server endpoint

Move the recovery
agent to the server

endpoint

Yes

Does the packet
requests an OS image?

No

Discard packet
No

Is the requested
image available?

Yes

Discard packet
No

Move the OS image
to the server endpoint

Yes

Fig. 20. Server Model Process Diagram

40 Author Name et al.

Appendix C: Sensitivity Analysis & Results

This appendix contains information regarding the overall model execution and sensitivity analysis. Tables 2 to 4 contain the

numerical outputs of the PAWN Sensitivity Analysis. Figures 21 to 23 contain the graphical representation of the sensitivity

analysis. Figures 24 to 35 show additional experimentation performed: we analysed the possible impact of the variable input

parameters — infection probability, attack duration, need of admin help and number of admins — on the output parameters

— average recovery duration, total recovery duration and average number of devices recovering. We note here that additional

experimentation could have been performed at the level of the recovery method: for example, by fixing one recovery method and

another variable and then performing sensitivity analysis again.

Minimum Mean Median Maximum CV

Recovery Method 0.280556 0.501074 0.553111 0.669556 0.325332

Attack Type 0.092444 0.134972 0.144444 0.158556 0.189384

Infection Probability 0.023667 0.080861 0.077111 0.145556 0.534977

Attack Duration 0.032667 0.063111 0.063111 0.093556 0.482394

Admins Number 0.018333 0.039289 0.027222 0.095000 0.715312

Admins Need 0.065444 0.106944 0.104222 0.153889 0.294688

Table 2. Sensitivity Analysis on the average recovery duration

Minimum Mean Median Maximum CV

Recovery Method 0.024222 0.031259 0.027556 0.042000 0.246833

Attack Type 0.100556 0.142000 0.146444 0.174556 0.187439

Infection Probability 0.307556 0.531000 0.508278 0.799889 0.337688

Attack Duration 0.072333 0.096167 0.096167 0.120000 0.247834

Admins Number 0.005111 0.006422 0.006333 0.007889 0.165729

Admins Need 0.007111 0.009639 0.009333 0.012778 0.228576

Table 3. Sensitivity Analysis on the average number of devices recovering

Minimum Mean Median Maximum CV

Recovery Method 0.151222 0.275815 0.279667 0.396556 0.363265

Attack Type 0.088333 0.133667 0.142000 0.162333 0.208527

Infection Probability 0.145556 0.305056 0.243000 0.588667 0.552403

Attack Duration 0.043778 0.073500 0.073500 0.103222 0.404384

Admins Number 0.010667 0.029622 0.020889 0.074000 0.764506

Admins Need 0.023778 0.051000 0.046778 0.086667 0.444535

Table 4. Sensitivity Analysis on the total recovery duration

Modelling and simulating organizational recovery 41

Fig. 21. Sensitivity Analysis on the average recovery duration of devices

Fig. 22. Sensitivity Analysis on the average number of devices recovering

42 Author Name et al.

Fig. 23. Sensitivity Analysis on total recovery duration of devices

Fig. 24. Impact of infection probability on average recovery duration

Modelling and simulating organizational recovery 43

Fig. 25. Impact of infection probability on total recovery duration

Fig. 26. Impact of infection probability on average number of devices recovering

44 Author Name et al.

Fig. 27. Impact of attack duration on average recovery duration

Fig. 28. Impact of attack duration on total recovery duration

Modelling and simulating organizational recovery 45

Fig. 29. Impact of attack duration on average number of devices recovering

Fig. 30. Impact of Admins Need on average recovery duration

46 Author Name et al.

Fig. 31. Impact of Admins Need on total recovery duration

Fig. 32. Impact of Admins Need on the average number of devices recovering

Modelling and simulating organizational recovery 47

Fig. 33. Impact of Admins Number on average recovery duration

Fig. 34. Impact of Admins Number on total recovery duration

48 Author Name et al.

Fig. 35. Impact of Admins Number on average number of devices recovering

Modelling and simulating organizational recovery 49

Appendix D: Model Parameters

This section contains information regarding the array of parameters used in the initialization and execution of our models. Tables 5

and 6 contain manually gathered recovery timings for the network, embedded and usb recovery. The same timing values have been

also used in (10). Furthermore, tables 7 and 8 describe in detail the types, values and meanings of both the static and variable

parameters used in the model.

Recovery Steps Sure Recover Embedded

Initialize Recovery 40 30

Copy from embedded N/A 20

Download and verify Recovery Agent 100 N/A

Boot to recovery agent 15 25

Initialize Drive 25 N/A

Download Imaged 1130 N/A

Verify Image 50 40

Extract Image 180 145

Install Drivers 60 80

Windows Installer to Config Screen 480 480

Table 5. HP Sure Recover times for both the network-based recovery and embedded recovery. Times are given in seconds and are based on
a number of recovery cycles.

USB Step Time

Create Bootable USB

Download recovery tool 60

Run Tool 45

Partition USB 35

Download Imaged 1260

Extract Image to USB 3120

Install from USB

Boot USB to Installer 120

Partition Disk 60

Install Windows and Drivers to disk 780

Windows Installer to Config Screen 480

Table 6. USB Based Recovery times. The first part of the table shows the steps in using a recovery tool to create a bootable windows
installer. The second section shows times for the install from the USB stick. Again, times are quoted in seconds.

Parameter Name Type Values Meaning

device scenario Categorical

1 - USB recovery

2 - Network recovery

3 - Embedded Recovery

4 - Network recovery with 30% embedded recovery

The type of recovery technique the devices will use.

attack scenario Categorical

1 - Uniform

2 - Exponential

3 - Fdist

4 - Uniform + Exponential

5 - Uniform + Fdist

The types of distributions used when sampling for the

timings of the attack/malware packets.

infection probability Float [0.1, 0.3, 0.5, 0.7, 0.95]
The probability a device will get infected when hit by

a malware packet.

attack duration Int

1 - 2 hours

2 - 4 hours

3 - 8 hours

The duration in hours that the malware attack will take.

admins nr Int [1, 2, 3, 5, 10, 15] The number of admins that can be found in a big o�ce.

admin need Float [0.0, 0.25, 0.50, 0.75, 1.0]
The probability a user needs a physical admin, or to

speak with an admin remotely to start the recovery process.

Table 7. Model Variable Parameters

50 Author Name et al.

Parameter Name Type Values Meaning

num iterations Int 50
The number of times the model will be run with the

same parameter configuration.

proc num Int 50
The process number running a certain model iteration.

Used for running multiple iterations in parallel.

nr of samples Float 300
The number of attack packets sent by the malware

model in a specified attack duration.

attack targets [String]

[”O�ce 1 LAN”, ”O�ce 2 LAN”, ”Travel WiFi”,

”Small O�ce 1 LAN”, ”Small O�ce 2 LAN”,

”O�ce 1 WiF”, ”O�ce 2 WiFi”, ”Small O�ce 1 WiFi”,

”Co↵ee WiFi”,”Home WiFi”,”Small O�ce 2 WiFi”]

The names of the locations where devices to be targeted

by malware can be found.

phisical admin time Float 15m
The time it takes for an admin to physically perform the

needed operations to start a recovery process.

admin movement time Float 120m
The time it takes for an admin to physically move to

a location where a recovery process is needed.

admin remote time Float 20m
The time it takes for an admin to guide a user remotely

to start a recovery process..

os images [OSImage] [windows10iso, windows10wim, recovery agent] The list of available recovery images on the recovery server.

max o�ce devices Int 30
The maximum number of devices that can connect to the

network from an o�ce.

max home devices Int 65
The maximum number of devices that can connect to the

network from home.

max co↵ee devices Int 65
The maximum number of devices that can connect to the

network from a co↵ee shop.

max travel devices Int 30 The maximum number of devices available for travelling.

scale uni Float [72, 144, 288]
Scaling factor used for interval boundaries movement for

attack packets that do not use mixed distributions.

scale dst Float [400, 750, 1500]
Scaling factor used for interval boundaries movement for

attack packets that use mixed distributions.

num o�ce desktops Int 20 The actual number of desktops in a big o�ce.

num o�ce laptops Int 20 The actual number of laptops in a big o�ce.

num small o�ce desktops Int 10 The actual number of desktops in a small o�ce.

num small o�ce laptops Int 10 The actual number of desktops in a small o�ce.

num travel laptops Int 5
The actual number of laptops that can be used for

travelling from a big o�ce.

server speed Float 10.0 * 1024ˆ4 The upload/download speed of the recovery server.

o�ce lan speed Float 1.0 * 1024ˆ3 LAN upload/download speed for a big o�ce.

o�ce wifi speed Float 150.0 * 1024ˆ2 Wifi upload/download speed for a big o�ce.

o�ce link speed Float 1.0 * 1024ˆ3 Switch upload/download speed for a big o�ce.

small o�ce lan speed Float 1.0 * 1024ˆ3 LAN upload/download speed for a small o�ce.

small o�ce wifi speed Float 150.0 * 1024ˆ2 Wifi upload/download speed for a small o�ce.

small o�ce link speed Float 200.0 * 1024ˆ2 Switch upload/download speed for a small o�ce.

co↵eeshop download speed Float 12.0 * 1024ˆ2 Download speed for a co↵ee shop.

co↵eeshop upload speed Float 2.0 * 1024ˆ2 Upload speed for a co↵ee shop.

co↵eeshop link speed Float 100.0 * 1024ˆ4 Switch upload/download speed for a co↵ee shop.

home download speed Float 50.0 * 1024ˆ2 Download speed for home.

home upload speed Float 4.0 * 1024ˆ2 Upload speed for home.

home link speed Float 100.0 * 1024ˆ4 Switch upload/download speed for home.

travel download speed Float 30.0 * 1024ˆ2 Download speed for a travelling location.

travel upload speed Float 5.0 * 1024ˆ2 Upload speed for a travelling location.

travel link speed Float 100.0 * 1024ˆ4 Switch upload/download speed for a travelling location.

o�ce1 usb images [OSImage] [windows10iso] The recovery images available on usb in o�ce1.

o�ce1 usb blanks Int 7 The number of blank usbs in o�ce1.

o�ce2 usb images [OSImage] [windows10iso] The recovery images available on usb in o�ce2.

o�ce2 usb blanks Int 7 The number of blank usbs in o�ce2.

small o�ce1 usb images [OSImage] Empty The recovery images available on usb in small o�ce1.

small o�ce1 usb blanks Int 3 The number of blank usbs in small o�ce1.

small o�ce2 usb images [OSImage] Empty The recovery images available on usb in small o�ce2.

small o�ce2 usb blanks Int 3 The number of blank usbs in small o�ce2.

home usb images [OSImage] Empty The recovery images available on usb at home.

home usb blanks Int 0 The number of blank usbs at home.

co↵ee usb images [OSImage] Empty The recovery images available on usb in a co↵ee shop.

co↵ee usb blanks Int 0 The number of blank usbs in a co↵ee shop.

travel usb images [OSImage] Empty The recovery images available on usb in a travelling location.

travel usb blanks Int 0 The number of blank usbs in a travelling location.

travel movement [Movement]

[Movement(”Travel”, ”Travel WiFi”, Uniform(4hours, 5days)),

Movement(”O�ce 1”, ”O�ce 1 WiFi”, Uniform(2hours,6hours)),

Movement(”O�ce 2”, ”O�ce 2 WiFi”, Uniform(2hours,6hours)),

Movement(”Small O�ce 1”, ”Small O�ce 1 WiFi”, Uniform(2hours,6hours)),

Movement(”Small O�ce 2”, ”Small O�ce 2 WiFi”, Uniform(2hours,6hours))]

The list of possible movements from a travel location.

large o�ce movement [Movement]

[Movement(”Home”, ”Home WiFi”, Uniform(0hours, 3hours)),

Movement(”O�ce ”, ”O�ce WiFi”, Uniform(5hours, 8hours)),

Movement(”Co↵ee Shop”, ”Co↵ee WiFi”, Uniform(20minutes, 2hours))]

The list of possible movements from a large o�ce location.

small o�ce movement [Movement]

[Movement(”Home”, ”Home WiFi”, Uniform(0hours, 3hours)),

Movement(”Small O�ce ”, ”Small O�ce WiFi”, Uniform(5hours, 8hours)),

Movement(”Co↵ee Shop”, ”Co↵ee WiFi”, Uniform(20minutes, 2hours))]

The list of possible movements from a small o�ce location.

Table 8. Model Static Parameters

	Introduction
	Background
	Ransomware
	Nature of the Problem

	Recovery
	Full System Backups
	Re-imaging to a Corporate Image
	Modern Management
	Re-imaging Mechanisms
	Enterprise Recovery Choices

	Background on Modelling Methodology
	Mathematical Theory
	Processes and Resources
	A Modal Logic
	Interfaces and Local Reasoning

	Interpretation in Julia
	The Julia Implementation
	The Stochastic Environment

	Practicalities

	The Modelling Process
	The Recovery Model
	Composed Model
	Methodological Observations

	The Experimental Space
	Parameters & Scenarios
	Overall Behaviour and Model Sensitivity
	PAWN Sensitivity Analysis: Method
	PAWN Sensitivity Analysis: Results
	Verification & Validation
	The Model as a Management Tool

	Conclusion
	Appendix A: Ransomware Strains
	Appendix B: Model Diagrams
	Appendix C: Sensitivity Analysis & Results
	Appendix D: Model Parameters

