
A SUBSTRUCTURAL MODAL LOGIC OF UTILITY

GABRIELLE ANDERSON AND DAVID PYM
UNIVERSITY COLLEGE LONDON

Abstract. We introduce a substructural modal logic of utility that can be
used to reason about optimality with respect to properties of states. Our

notion of state is quite general, and is able to represent resource allocation

problems in distributed systems. The underlying logic is a variant of the
modal logic of bunched implications, and based on resource semantics, which is

closely related to concurrent separation logic. We consider a labelled transition

semantics and establish conditions under which Hennessy–Milner soundness
and completeness hold. By considering notions of cost, strategy, and utility,

we are able to formulate characterizations of Pareto optimality, best responses,
and Nash equilibrium within resource semantics. We also show that our logic

is able to serve as a logic for a fully featured process algebra and explain the

interaction between utility and the structure of processes.

1. Introduction

Mathematical modelling and simulation modelling are fundamental tools of engi-
neering, science, and social sciences such as economics, and provide decision-support
tools in management. The components of distributed systems (as described, e.g.,
in [13]) are typically modelled using various algebraic structures for the structural
components — location, resource, and process — and probability distributions to
represent stochastic interactions with the environment [12, 10, 11, 2]. Applications
of this approach to systems security modelling have been explored extensively in,
for example, [11, 4, 7, 6, 5]. A key aspect of modelling distributed systems is re-
source allocation. For example, when many processes execute concurrently, they
compete for resources. A common desire of system designers, managers, and users
is to determine, if possible, the optimal allocation of resources required in order to
solve a specific problem or deliver a specific service.

We develop a substructural modal predicate logic, MBIU, that can be used to
reason about optimality with respect to properties of states. Our notion of state is
quite general, and is able to represent resource allocation problems in distributed
systems; in particular, it encompasses models of distributed systems in which there
is a notion of agent [13, 29, 11]. The preferences of agents among the various
outcomes of system evolutions are modelled using numerical payoffs, as formulated
in game theory. We use arithmetic predicates to relate states to payoffs, and so are
able to give a logical representation of agents’ degrees of satisfaction. The payoff
of a state is defined via the actions that the state can perform: the logic’s modal
formulae can then be used to reason about the payoffs of states that are related by
the transition system. The logic also includes substructural connectives — as in BI
[25, 26, 16], MBI [12, 10, 2], and Separation Logic [18, 28] — which can be used,
among other things, to support reasoning about decision-making by concurrent

1

2 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

combinations of agents. The notion of optimality of resource allocation is a central
topic in economics, where game theory plays a significant role.

In Section 2, we develop MBIU. To do so, we must we introduce actions, and
define a notion of transition systems with concurrent structure on their states.
We introduce a slight variant on the standard notion of bisimulation for such a
transition system, and describe various properties that we require for our results
to hold; in particular, that the concurrent composition operator is a congruence
with respect to the bisimulation relation. In Section 2.2, we specify our logic,
and define its semantics in terms of concurrent transition relations. We obtain the
technical result that, provided that bisimulation in the underlying transition system
is a congruence with respect to the concurrent composition and any state can only
evolve in finitely many ways, full Hennessy-Milner completeness holds for MBIU:
that is, bisimulation equivalence of states corresponds exactly to logical equivalence
in MBIU.

An agent or process, in a given starting state, makes a choice between possible
actions and so evolves, along with its environment, to achieve a new state. Asso-
ciated with such an action is its value, or utility, which is determined by a payoff
function. When agents evolve, or multiple agents co-evolve — such as when com-
peting as players in a game for resources — they make sequences of moves, called
strategies, that determine the outcome of the game and the payoffs for each of the
agents. For all elementary notions from economics required for this paper, including
ideas from utility theory and game theory, a suitable source is [29].

In order to define MBIU, we must introduce actions on states, their transition
systems and the associated notion of bisimulation, payoffs, and strategies. We give
some basic examples of how the logic is used to express properties of states, and
establish the conditions on the operational semantics of actions that are required
in order to obtain a Hennessy–Milner soundness and completeness theorem.

In Section 3, we illustrate how the the logical set-up that we have introduced can
be used to capture the classical notions of optimality and equilibrium as established
in utility theory and game theory. We begin with a classic example from distributed
systems modelling: mutual producer–consumer. We then explain how our set-up
can be used to express Pareto optimality. This example leads naturally into a
discussion of game-theoretic examples and concepts. We consider here the prisoner’s
dilemma, the best-response property, and Nash equilibria.

In Sections 4 and 5, we show that the framework for modelling distributed sys-
tems, as introduced in [12, 11] and improved theoretically in [2], is encompassed
by our framework, with the consequence that the treatment of of utility in MBIU
extends to the modelling framework given in [2]. We revisit the mutual producer–
consumer example from Section 3, explaining the interaction between the process-
theoretic structure and utility.

Finally, in Section 6, we discuss a range of challenges for future research, in both
logical and utility-theoretic directions.

A short version of this paper is [1].

2. A substructural modal logic of utility

In this section, we define a substructural modal predicate logic, MBIU, that can
be used to reason about optimality with respect to properties of states. Our notion
of state is quite general; in particular, it encompasses models of distributed systems

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 3

in which there is a notion of agent [13, 29, 11]. The preferences of agents among
the various outcomes of system evolutions are modelled using numerical payoffs, as
formulated in game theory. We use arithmetic predicates to relate states to payoffs,
and so are able to give a logical representation of agents’ degrees of satisfaction. The
payoff of a state is defined via the actions that the state can perform: the logic’s
modal formulae can then be used to reason about the payoffs of states that are
related by the transition system. The logic also includes substructural connectives
— as in BI, MBI, and Separation Logic [18, 28] — which can be used, among other
things, to support reasoning about decision-making by concurrent combinations of
agents.

In Section 2.1, we introduce actions, and define a notion of transition systems
with concurrent structure on their states. We introduce a slight variant of the
standard notion of bisimulation for such a transition system, and describe various
properties that we require for our results to hold; in particular, that the concurrent
composition operator is a congruence with respect to the bisimulation relation. In
Section 2.2, we specify our logic, and define its semantics in terms of concurrent
transition relations. We obtain the technical result that, provided that bisimulation
in the underlying transition system is a congruence with respect to the concurrent
composition and any state can only evolve in finitely many ways, full Hennessy-
Milner completeness holds for MBIU. That is, bisimulation equivalence of states
corresponds exactly to logical equivalence in MBIU.

2.1. Transition systems. First, we introduce our notion of action. We assume a
set, Act, of actions, which correspond to the events of the system.

Definition 1 (Action structure). An action structure Act is a structure (Act, ·, 1)
such that (Act, ·) is a total magma, and 1 ∈ Act is a distinguished action.

Note that we do not require that the distinguished action 1 be a unit for ·, nor do
we require · to be commutative, so Act is not necessarily a (commutative) monoid.
We use = to denote syntactic equality of actions. Let ab denote a · b.

We take an additional equivalence relation on actions, ≡, for a given action
structure Act.

Definition 2 (Action-composition equivalence relation). An action-composition
equivalence relation is an equivalence relation ≡ ⊆ Act ×Act such that, for all
a, b, a′, b′ ∈ Act, a · 1 ≡ a, a · b ≡ b · a, and a ≡ a′ and b ≡ b′ implies a · b ≡ a′ · b′.

Note that the syntactic equivalence relation = and the action-composition equiv-
alence relation ≡ are not necessarily the same. Herein, we only consider actions to
be interchangeable if they are syntactically equal.

Then, we can define transition systems. Let Act be an action structure.

Definition 3 (Transition system). A transition system is a structure

(S,Act,→)

with carrier set S, action structure Act, and transition relation →⊆ S×Act× S.

Let r, s, etc., range over elements of the carrier set of a transition system. We
refer to these elements as states.

Where we use partial functions, we employ the standard notations R ↓ and R ↑
to denote that the expression R is, respectively, defined or undefined.

4 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

Next, we add the concurrent structure of the states of a transition system. Con-
current transition systems (with some well-formedness conditions, defined below)
are the core mathematical structure representing system dynamics in this paper.

Definition 4 (Concurrent transition system). A concurrent transition system is
a structure (S,Act,→,≡, ◦, e) such that (S,Act,→) is a transition system, ≡ is
an action-composition equivalence relation, e ∈ S is a distinguished element of the
state space, and ◦ : S× S ⇀ S is a partial operation such that

• for all r and s, if r ◦ s is defined, then s ◦ r is defined;

• for all r, r′, s, s′, and all a and b, if r ◦ s is defined, r
a−→ r′, and s

b−→ s′,

then r′ ◦ s′ is defined and r ◦ s ab−→ r′ ◦ s′;
• for all r, r′′, s and c, there exist r′′′, s′′′, and a and b, s.t. if r ◦ s is defined

and r ◦ s c−→ r′′, then c = ab, r
a−→ r′′′, s

b−→ s′′′, and r′′ = r′′′ ◦ s′′′;
• the distinguished action 1 is s.t. e

1−→ e and, for all s and a, if e
a−→ s, then

a = 1 and s = e;
• for all r, r ◦ e is defined.

The action 1 is the distinguished action of Act, and can, in general, only be
considered a unit with respect to the action equivalence relation ≡ (and not, in
general, with respect to syntactic equality). The operation ◦ is referred to as the
concurrent composition operation. In the sequel, we work with a fixed concurrent
transition system at every point. We sometimes refer to the distinguished state as

the unit state. We write r → s if there exists some a such that r
a−→ s, →∗ for the

reflexive, transitive closure of →, and →+ for the transitive closure of →.
We can use the partiality of the concurrent composition, along with a transition

system, to model straightforwardly key examples in systems modelling [12, 11], such
as the following.

Example 5 (Semaphores). Let Act be the action structure freely generated by the
atomic actions a and 1, where 1 is the distinguished action. Suppose a concurrent

transition system ({s, e},Act,→, ◦, e), where s
a−→ s, s◦e = s, and s◦s is undefined.

Note that → is undefined for any values that are neither specified explicitly nor
required by properties of Definitions 3 and 4. We then have that no state can

perform the action aa, that is, e 6 aa−→ and s 6 aa−→. The concurrent transition system
acts like a semaphore, in that only one access action a can be performed at any
given time.

The standard notion of bisimulation is that two states in a system are bisimilar
if they can perform the same actions, and, after those reductions, remain bisimi-
lar. We weaken that approach slightly, and consider two states in a system to be
bisimilar if they can perform actions that are equivalent under ≡, and, following
those reductions, remain bisimilar. We define the notion of a (action-composition-
equivalence-relation) bisimulation relation between states in a concurrent transition
system.

Definition 6 (Bisimulation). A (action-composition-equivalence-relation) bisimu-
lation is a relation R such that, for all states rR s, then, for all actions a ∈ Act,

• if r
a−→ r′, then there exist b ∈ Act, s′ ∈ S such that s

b−→ s′, a ≡ b, and
r′R s′, and

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 5

• if s
a−→ s′, then there exist b ∈ Act, r′ ∈ S such that r

b−→ r′, a ≡ b, and
r′R s′.

Let ∼ ⊆ State× State be the union of all bisimulations for a given concurrent
transition system. The union of any two bisimulations is also a bisimulation. Hence
∼ is well defined, and a bisimulation. Note that the usual definition of bisimulation
for process calculi is a special case of the above, where Act is a monoid of actions
with commutative operation · and unit 1, and action-composition equivalence is
just syntactic equality.

There are various technical properties of bisimulation, that we make use in the
remainder of this paper. First, the bisimulation relation∼ is an equivalence relation.

Lemma 7. For all states s, s′, s′′ ∈ S, s ∼ s, s ∼ s′ implies s′ ∼ s, and s ∼ s′ and
s′ ∼ s′′ imply s ∼ s′′.

Proof. The above are straightforward to observe. �

Second, in the state space quotiented by the bisimulation relation, the concurrent
composition ◦ is commutative.

Lemma 8. For all r1, r2 ∈ S, if r1 ◦ r2 is defined, then r1 ◦ r2 ∼ r2 ◦ r1.

Proof. The bisimulation ∼ relation is the largest bisimulation relation, and contains
all other bisimulation relations. In order to show that the above properties hold
it is sufficient, therefore, to define a relation R, for which the required properties
hold, and show that the relation R is a bisimulation.

Let

R = {(r1 ◦ r2, r2 ◦ r1) | r1 ◦ r2 is defined }.
By Definition 4, as r1 ◦ r2 is defined, r2 ◦ r1 is defined. Suppose that r1 ◦ r2

c−→ s.
By Definition 4, we have that there exist a1, a2 ∈ Act, r′1, r

′
2 ∈ S such that c = a1a2,

r1
a1−→ r′1, r2

a2−→ r′2, and s = r′1 ◦ r′2. Also by Definition 4, we have that r′2 ◦ r′1 is

defined and r2 ◦ r1
a2a1−−−→ r′2 ◦ r′1. By Definition 2, a1a2 ≡ a2a1. As r′1 ◦ r′2 is defined,

we have that (r′1 ◦ r′2, r′2 ◦ r′1) ∈ R.
The other case is similar. Hence R is closed and a bisimulation. �

Third, the distinguished state of a concurrent transition system, e, is a unit with
respect to bisimulation.

Lemma 9. For all states s ∈ S, s ◦ e ∼ s.

Proof. Let

R = {(s ◦ e, s) | s ∈ S}.
By Definition 4, s◦e is defined. Suppose that s◦e c−→ r′. By Definition 4, we have

that there exist a1, a2 ∈ Act, r′1, r
′
2 ∈ S such that c = a1a2, s

a1−→ r′1, e
a2−→ r′2, and

r′ = r′1 ◦ r′2. Also by Definition 4, we have that a2 = 1 and r′2 = e. By Definition 2,
a11 ≡ a1. We straightforwardly have that (r′1 ◦ e, r′1) ∈ R.

The other case is similar. Hence R is closed and a bisimulation.
�

The transition systems can be non-deterministic. Consider the following exam-
ple, which is externally non-deterministic in the sense that transitions with different
actions are defined on individual states [30].

6 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

Example 10. Let Act be the action structure freely generated from the atomic
actions p, c, and 1, where 1 is the distinguished action. Suppose a concurrent
transition system

((N× N) ∪ {e},Act,→,=, ◦, e),
whose transition relation is the least transition relation such that

(m,n)
p−→ (m,n+ 1)

(m+ 1, n)
c−→ (m,n)

(m,n)
1−→ (m,n),

and (m1,m2) ◦ (n1, n2)=(m1+n1,m2+n2). Then, for the resource (2, 0), actions
p and c are both defined on the resource and so, in the transition system, there is
external non-determinism between the distinct actions, p and c.

When evolving non-deterministic transition systems, it is necessary to have a
method to decide between possible options. A strategy can be used to determine,
for a given state, which possible transition preferred. If there are no possible tran-
sitions, then the strategy returns the non-state symbol •.
Definition 11 (Strategy). A strategy is a total function σ : S→ ((Act×S)∪{•})
such that, for all states r ∼ s ∈ S,

• if there exist a ∈ Act, r′ ∈ S such that σ(r) = (a, r′), then there exist

b ∈ Act and s′ ∈ S such that a ≡ b, σ(s) = (b, s′), r
a−→ r′, s

b−→ s′, and
r′ ∼ s′;
• σ(r) = • if and only if r 6→.

Example 12. We can define a strategy to resolve the non-determinism we see in
Example 10. Let σ be a function such that

σ((m,n)) =

{
(c, (m− 1, n)) if 1 ≤ m
(1, (m,n)) otherwise.

This strategy chooses the to consume whenever possible, and to do nothing other-
wise.

One property that we immediately obtain is that all strategies map the distin-
guished state to the pair of the distinguished action and the distinguished state.

Lemma 13. For all strategies σ, σ(e) = (1, e).

Proof. By Definition 4, s
1−→ e and, for all states s and actions a, if e

a−→ s, then a = 1
and s = e. By Definition 11, there exists some a and s′ such that σ(e) = (a, s′) and

e
a−→ s′. As the transition e

1−→ e is the only transition defined on the distinguished
state e, a = 1 and s′ = e. �

The transition system approach to distributed systems modelling abstracts away
from the entities that make decisions, and their mechanisms for doing so. A mech-
anism for resolving choices can be reintroduced into the models through strategies:
it does not, however, represent the goals and interests of the entities making the
choices. We can model the decision-making-entities’ preferences concerning the
events (or outcomes) of the system through the use of a map from actions to the
rationals. These numbers are interpreted as measures of an agent’s level of satis-
faction with a given action. Let Act be an action structure, with distinguished
action 1.

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 7

Definition 14 (Action payoff function). An action payoff function is a partial
function v : Act→ Q such that, for all a, b∈Act:

• If v(a) and v(b) are defined, then v(ab)=v(a)+v(b);
• If a ≡ b and v(a) is defined, then v(b) is defined and v(a) = v(b);
• v(1)=0.

Note that it is possible to have that v(ab) is defined, but that v(a) and v(b) are
not defined (c.f., Example 36).

We use different action payoff functions to represent the preferences of different
decision-making entities (or, agents). In order to extend payoff functions to states,
we must consider what value to give those states that can perform no actions. The
structure in which we value states is the tropical semiring.

Definition 15 (Tropical semiring). The tropical semiring

(Q ∪ {−∞}, sup,−∞,+, 0)

comprises the carrier set of the rationals together with negative infinity, supremum
as the additive function, addition as the multiplicative function, and negative infin-
ity and zero as the additive and multiplicative units, respectively. Let the elements
of the tropical semiring be denoted q, q′, etc. We sometimes refer to such elements
as utility values or payoffs. Let D = (Q ∪ −∞).

Fix an action payoff function v, a strategy σ, and let δ be some rational number
in the open interval (0, 1). We can then extend the notion of preference over actions
to preferences over states. These numbers are interpreted as measures of an agent’s
level of satisfaction with the given states [29].

Definition 16 (State payoff function). A state payoff function is a partial function
uv,σ,δ : S ⇀ (Q ∪ −∞) such that:

uv,σ,δ(s) =

{
v(a) + δ × uv,σ,δ(s′) if σ(s) = (a, s′), and v(a) and uv,σ,δ(s

′) are defined
−∞ if σ(s) = •
undefined otherwise.

The value that can be obtained from actions performed at states reachable in the
future is less than value that can be obtained immediately; that is, δ is a discount
factor for future values. Since δ ∈ (0, 1), the recursive term in Definition 16 is
contractive.

Lemma 17. For all states s, action payoff functions v, strategies σ, and discount
factors δ, if σ(s) = (a, s) and v(a) = 0, then uv,σ,δ(s) = 0.

Proof. By Definition 16, we have that uv,σ,δ(s) = 0 + δ × uv,σ,δ(s). As (1− δ) 6= 0,
we have that uv,σ,δ(s) = 0. �

We can now determine payoffs for various resources in Example 12 (which relies
on Example 10).

Example 18. This is a simplification of a distributed systems example, presented
fully in Example 34. Let v be an action payoff function such that

v(p) = −1 v(c) = 3 δ = 0.8.

Recall that

σ((m,n)) =

{
(c, (m− 1, n)) if 1 ≤ m
(1, (m,n)) otherwise,

8 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

and hence that

σ((0, 0)) = (1, (0, 0)) σ((1, 0)) = (c, (0, 0)) σ((2, 0)) = (c, (1, 0)).

We then have that

uv,σ,δ((0, 0)) = 0 By Lemma 17.

uv,σ,δ((1, 0)) = 3 + 0.8× uv,σ,δ((0, 0))
= 3

uv,σ,δ((2, 0)) = 3 + 0.8× uv,σ,δ((1, 0))
= 5.4.

Note that with a different strategy, and the same action payoff function, discount
factor, and underlying systems model, different payoffs can be achieved.

State payoff functions (Definition 16) specify the value of states in terms of
a series of simultaneous equations. In order to solve these straightforwardly, we
only consider strategies that generate a finite set of simultaneous equations. We
make some auxiliary definitions that we use to reason about the actions and states
chosen by repeatedly applying a strategy to a state (and its resulting chosen states).
We particularly make use of these definitions in the proof of various equational
properties of payoffs of resource-process pairs (Section 5).

Definition 19. If σ(r) = (a, s), then σ0
state(r) = s and σ0

act(r) = a, and, for all
n ∈ N, if σ(r) = (a, s), σnstate(s) ↓, and σnact(s) ↓, then σn+1

state(r) = σnstate(s) and
σn+1
act (r) = σnact(s). Let σlast(s, σ) = n if and only if σnstate(s) ↓ and, for all n′ > n,

σn
′

state(s) ↑.

Definition 20 (Strategy transition closure). Let Cσ(r) be the set of states that can
be reached from state r by following the transitions specified by a strategy σ, that is,

Cσ(r) = {s | n ∈ N and σnstate(r) = s} ∪ {r}.

In the case that Cσ(r) is finite, then uv,σ,δ(r) is specified in terms of a finite set
of simultaneous linear equations (by Definition 16), which can be solved using the
methods described in [20]. Henceforth, we consider only strategies σ such that, for
all states s ∈ S, Cσ(s) is finite. The background definitions required for the proof
of Lemma 21 (below) can also be found in [20].

With these assumptions, we can show a key property: bisimilar states are
mapped to the same payoffs. This is used to demonstrate the fulfilment of required
properties concerning the interpretation of logical predicates (Definition 26).

Lemma 21. If r ∼ s, then, for all v, σ, δ, uv,σ,δ(r) = uv,σ,δ(s).

Proof. By our assumptions, r and s both have a finite number of successor states.
These states, and their relevant transition systems, can be uniquely mapped into
the final coalgebra of finite and infinite sequences of actions. In particular, since
r ∼ s we know that both are uniquely mapped to the same element of the final
coalgebra (see Definition 11). The payoff functions of r and s (which are contractive
in their recursive terms) can be computed as the solution of a finite linear system
of equations determined by their transition structure. As the elements r and s
are mapped to the same element of the final coalgebra, the linear systems that
determine the payoff can be shown to have the exact same solution. �

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 9

We conclude this section with an additional property of our framework, namely,
that the unit state always has a payoff of 0.

Lemma 22. For all action payoff functions v, strategies σ, and discount factors δ,
uv,σ,δ(e) = 0.

Proof. By Definition 14, we have that v(1) is defined, and equal to 0. By Defini-

tions 4 and 11, we have that σ(e) = (1, e) and e
1−→ e. By Definition 16, we have

that uv,σ,δ(e) = 0 + δ × uv,σ,δ(e). As (1− δ) 6= 0, we have that uv,σ,δ(e) = 0. �

2.2. Logic and transition semantics. We define a modal predicate logic, MBIU,
for expressing properties of resources and their utility. Building directly on [12, 10,
2], we define a semantics for MBIU in terms a concurrent transition system and its
corresponding bisimulation relation.

We assume a two-sorted first-order language Σ, building standard terms t, u, etc.,
from standard variables x, y, z, etc., and action terms, denoted w, w′, etc., built
from action variables α, β, etc. The predicate symbols of the language, however,
may be applied to standard terms only.

Definition 23. The action terms of MBIU, denoted d, d′, etc., building on actions
a, b, c, etc., are formed according to the following grammar:

d ::= a | α | d � d.

Let q be a term constant denoting the rational number q, and v(d) be a constant
denoting the rational-valued payoff of the denotation of an action term d according
to action payoff function v.

Definition 24 (Terms). Let the numerical terms, denoted t, t′, etc., be formed
according to the following grammar:

t ::= q | x | v(d) | t+ t | t× t.

We assume a set Pred of predicate symbols, each with a given arity n, with
elements denoted p, q, etc.. Then, formulae can be defined as follows.

Definition 25 (Predicate formulae). The predicate formulae of MBIU, denoted p,
p′, etc., are given by the following grammar:

ϕ ::= p(t) | t = t | d ≡ d | ⊥ | > | ¬ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ→ ϕ | I | ϕ ∗ ϕ | ϕ−−∗ ϕ |
〈d〉ϕ | [d]ϕ | ∃α.ϕ | ∀α.ϕ | ∃x.ϕ | ∀x.ϕ,

where t, s, x, and α range over terms, action terms, term variables, and action
variables, respectively.

The (additive) modalities are the standard necessarily and possibly connectives
familiar from modal logics, in particular Hennessy–Milner-style logics for process
algebras [17, 24]. As such, they implicitly use meta-theoretic quantification to make
statements about reachable resources. Multiplicative modalities can also be defined
[12, 11]. The connectives ∗ and −−∗ are the multiplicative conjunction (with unit I)
and implication (right-adjoint to ∗), respectively, familiar from bunched logics [16]
and in particular Boolean BI [22].

Now we give a Kripke-style frame semantics for MBIU. A valuation is a function
mapping standard variables to rational numbers and action variables to actions.
Valuations can be extended to arbitrary terms and action terms in the standard

10 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

s �ρ p(t) iff (ρ(t), s) ∈ pM

s �ρ t1 = t2 iff ρ(t1) = ρ(t2)
s �ρ d1 ≡ d2 iff ρ(d1) ≡ ρ(d2)
s �ρ ⊥ never
s �ρ > always
s �ρ ¬φ iff s 6�ρ φ
s �ρ φ1 ∨ φ2 iff s �ρ φ1 or s �ρ φ2
s �ρ φ1 ∧ φ2 iff s �ρ φ1 and s �ρ φ2
s �ρ φ1 → φ2 iff s �ρ φ1 implies s �ρ φ2
s �ρ I iff s ∼ e
s �ρ φ1 ∗ φ2 iff there exist s1, s2, with s ∼ s1 ◦ s2, such that

s1 �ρ φ1 and s2 �ρ φ2
s �ρ φ1 −−∗ φ2 iff for all s′, s′ �ρ φ1 and s ◦ s′ defined implies

s ◦ s′ �ρ φ2
s �ρ 〈d〉φ iff there exist a ∈ Act, s′ ∈ S such that s

a−→ s′,
ρ(d) ≡ a, and s′ �ρ φ

s �ρ [d]φ iff for all a ∈ Act, s′ ∈ S, s
a−→ s′ and ρ(d) ≡ a implies

s′ �ρ φ
s �ρ ∃α.φ iff there exists a ∈ Act such that s �ρ[α:=a] φ
s �ρ ∀α.φ iff for all a ∈ Act, s �ρ[α:=a] φ
s �ρ ∃x.φ iff there exists q ∈ D such that s �ρ[x:=q] φ
s �ρ ∀x.φ iff for all q ∈ D, s �ρ[x:=q] φ

Figure 1. Satisfaction relation for MBIU

way: action constants are mapped to their obvious action, � is mapped to ac-
tion composition ·, term constants are mapped to their obvious denotations, and
arithmetical functions are mapped to their standard definitions. Let ρ() denote
valuations of terms and action terms. Valuations extend to tuples of terms in the
straightforward way. We relate the value of states to terms, for each payoff func-
tion v ∈ V, via a distinguished predicate uv(t). An interpretation then comprises
a model and a valuation.

Definition 26 (MBIU-model). A model, M , of MBIU, together with a valuation ρ
of variables, interprets standard terms in the carrier set of the tropical semiring, D,
and action terms in a set Act of actions, denoted a, b, etc., in the manner familiar
from first-order logic. We write tM for the interpretation of term t in model M
(extended pointwise to tuples of terms). Models must also contain the following
elements:

• a concurrent transition system (S,Act,→,≡, ◦, e);
• a set of payoff functions V, a discount factor δ ∈ (0, 1), and a strategy σ;
• an interpretation pM ⊆ S×Dk, for each predicate symbol p of arity k such

that the following properties hold:
– Predicate ∼-closure: if s ∼ s′ and (s,d) ∈ pM , then (s′,d) ∈ pM ;
– Distinguished predicates: (s, ρ(t)) ∈ uMv if and only if uv,σ,δ(s) = ρ(t).

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 11

As bisimilar states have the same payoff, for fixed action payoff function, strategy,
and discount factor (Lemma 21), interpretations of the distinguished predicates are
∼-closed.

We can then define the semantics of formulas φ via the satisfaction relation
s �M,ρ φ, where M is a model, s is a state in the concurrent transition system
of the model, and ρ is a valuation. Satisfaction in a given model is then denoted
s �M,ρ ϕ, read as ‘for the given model M , with valuation ρ, the state s has property
ϕ’. The definition of our satisfaction relation is given by Figure 1. In the sequel, we
drop the model M or the valuation ρ, writing s �ρ φ or s � φ, when their definitions
are obvious. An alternative formulation of MBIU with intuitionistic additives (cf.
[25, 12]) can be taken if desired. Its use in modelling applications remains to be
explored in future work.

We can now formally describe payoff properties of states.

Example 27. Recall Examples 10, 12, and 18. The formula

φ = ∃x, y.(〈p〉uv(x)) ∧ (〈c〉uv(y)) ∧ (v(p) + (δ × x) < v(c) + δ × y)

denotes that it is possible to perform actions p and c, and that the payoff obtained
by performing p (and the actions that follow from the resulting state) is less than
that obtained by performing c (and the actions that follow from the resulting state).
Note that uv,σ,δ((2, 1)) = 5.4 and uv,σ,δ((1, 0)) = 3, and hence

−1 + 0.8× 5.4 = 3.32 < 5.4 = 3 + 0.8× 3.

As a result, we have that (2, 0) � φ.

To obtain some key theoretical results concerning of our modelling framework,
we require some additional properties.

When we perform a composition of states, it is necessary to take account of
the partiality of the composition operator. As a result, we shall also require the
following ◦-∼-closed property of concurrent transition systems.

Definition 28 (◦-∼-closed). If r1 ∼ s1, r2 ∼ s2, and r1 ◦ r2 is defined, then s1 ◦ s2
is defined.

Henceforth, all concurrent transitions systems are assumed to be ◦-∼-closed. An
immediate result is that concurrent compositions of bisimilar states are bisimilar.
This is a key result, which is used in the proof of the soundness direction of the
Hennessy–Milner correspondence (Theorem 32, Case ϕ = ϕ1 −−∗ ϕ2).

Lemma 29 (Composition congruence). If r1 ∼ s1, r2 ∼ s2, and r1 ◦ r2 and s1 ◦ s2
are defined, then r1 ◦ r2 ∼ s1 ◦ s2.

Proof. Let

R = {(r1 ◦ r2, s1 ◦ s2) | r1 ∼ s1, r2 ∼ s2, r1 ◦ r2 ↓, and s1 ◦ s2 ↓}.

Suppose that r1 ◦ r2
c−→ r′. By Definition 4, there exist a1, a2, r′1, r′2 such that

c = a1a2, r′ = r′1 ◦ r′2, r1
a1−→ r′1, and r2

a2−→ r′2. By Definition 6, there exist b1, b2,

s′1, s′2 such that a1 ≡ b1, a2 ≡ b2, s1
b1−→ s′1, s2

b2−→ s′2, r′1 ∼ s′1, and r′2 ∼ s′2. By

Definition 2, a1a2 ≡ b1b2. By Definition 4, s1 ◦ s2
b1b1−−−→ s′1 ◦ s′2. We immediately

have that (r1 ◦ r2)R (s1 ◦ s2).
The other case is similar. Hence R is closed and a bisimulation. �

12 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

When we describe states logically, it is necessary to take account of the number of
successor states that can be reached. As a result, we shall also require the following
image-finiteness property of concurrent transition systems.

Definition 30 (Image-finite). A state s is image-finite if it has finitely many
derivatives.

From this point onwards, all states are assumed to be image-finite.
With this set-up, we can prove the Hennessy–Milner soundness and complete-

ness theorem. While this result is standard within the field of process calculi, in the
multi-world framework of resource-process calculi, this result has only recently been
obtained in adequate generality (the issue was raised in [12] and conclusively ad-
dressed in [2]). A key contribution in [2] was restrictions on resource-process calculi
sufficient to prove congruence results, which are required to prove the soundness
direction of the Hennessy–Milner result for the standard notion of bisimulation and
a logic that included multiplicative implication and multiplicative modalities. In
this paper, we modify those requirements to permit the handling of predicate logics
which can be used to represent notions of optimality (given a suitable notion of
payoff over worlds).

We define the notion of logical equivalence as follows.

Definition 31 (Logical equivalence). Fix some model M . Then, r ≡MBIU s if and
only if, for all valuations ρ and formulae φ, r �M,ρ φ if and only if s �M,ρ φ.

With this set-up, we can prove the soundness direction of the Hennessy–Milner
completeness theorem — operational equivalence implies logical equivalence. This
proof requires the congruence property (Lemma 29).

Theorem 32. If r ∼ s, then r ≡MBIU s.

Proof. Fix some model M . We show that, for all states r and s, valuations ρ,
and formulae φ, if r �M,ρ φ and r ∼ s, then s �M,ρ φ. This property is sufficient
to prove logical equivalence. We proceed by induction over the structure of the
satisfaction relation, r �M,ρ ϕ.

Case ϕ = p(t). By Definition 26, as (ρ(t), r) ∈ pM and r ∼ s, we have that
(ρ(t), s) ∈ pM . Hence we have that s �M,ρ p(t).

Case ϕ = t1 = t2. By the hypothesis, we have that ρ(t1) = ρ(t2). Hence we
have that s �ρ t1 = t2.

Case ϕ = d1 ≡ d2. By the hypothesis, we have that ρ(d1) ≡ ρ(d2). Hence we
have that s �ρ d1 ≡ d2.

Case ϕ = ⊥. As the premisses assume r �M,ρ ⊥, we have a contradiction and
can disregard this case.

Case ϕ = >. We have that s �M,ρ >, straightforwardly.
Case ϕ = ϕ1 ∨ ϕ2. By the hypotheses, we have that r �M,ρ ϕ1 or r �M,ρ ϕ2.

By the induction hypothesis, we have that s �M,ρ ϕ1 or s �M,ρ ϕ2. Hence we have
that s �M,ρ ϕ1 ∨ ϕ2.

Case ϕ = ϕ1 ∧ ϕ2. By the hypotheses, we have that r �M,ρ ϕ1 and r �M,ρ ϕ2.
By the induction hypothesis, we have that s �M,ρ ϕ1 and s �M,ρ ϕ2. Hence we
have that s �M,ρ ϕ1 ∧ ϕ2.

Case ϕ = ϕ1 → ϕ2. By the induction hypothesis, we have that s �M,ρ ϕ1

whenever r �M,ρ ϕ1, and s �M,ρ ϕ2 whenever r �M,ρ ϕ2. Hence we have that
s �M,ρ ϕ1 → ϕ2.

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 13

Case ϕ = I. By Lemma 7, as r ∼ e and r ∼ s, we have that s ∼ e. Hence we
have that s �M,ρ I.

Case ϕ = ϕ1 ∗ ϕ2. By the hypotheses, we have that r ∼ (r1 ◦ r2), r1 �M,ρ ϕ1,
and r2 �M,ρ ϕ2. By Lemma 7, we have that s ∼ r1 ◦ r2. Hence we have that
s �M,ρ ϕ1 ∗ ϕ2.

Case ϕ = ϕ1−−∗ϕ2. Suppose some r′ such that r′ �M,ρ ϕ1 and s◦r′ is defined. By
Definition 28, we have that r◦r′ is defined. By Lemma 29, we have that r◦r′ ∼ s◦r′.
By the hypotheses, we have that r ◦ r′ �M,ρ ϕ2. By the induction hypothesis, we
have that s ◦ r′ �M,ρ ϕ2. Hence we have that s �M,ρ ϕ1 −−∗ ϕ2.

Case ϕ = 〈d〉ψ. By the hypothesis, there exist a, r′ such that r
a−→ r′, ρ(d) ≡ a,

and r′ �M,ρ ψ. By the definition of bisimulation, we have that there exist b ∈ Act,

s′ ∈ S such that s
b−→ s′, a ≡ b, and r′ ∼ s′. By Definition 2, ρ(d) ≡ b. By the

induction hypothesis, we have that s′ �M,ρ ψ. Hence we have that s �M,ρ 〈d〉ψ.

Case ϕ = [d]ψ. Suppose that s
b−→ s′ and ρ(d) ≡ b. By the definition of

bisimulation, we have that there exist a ∈ Act, r′ ∈ S such that r
a−→ r′, a ≡ b, and

r′ ∼ s′. By Definition 2, a ≡ ρ(d). By the hypotheses, we have that r′ �M,ρ ψ. By
the induction hypothesis, we have that s′ �M,ρ ψ. Hence we have that s �M,ρ [d]ψ.

Case ϕ = ∃α.ψ. By the hypotheses, there exists a ∈ Act such that r �M,ρ[α:=a]

ψ. By the induction hypothesis, we have that s �M,ρ[α:=a] ψ. Hence we have that
s �M,ρ ∃α.ψ.

Case ϕ = ∀α.ψ. We have, for all a ∈ Act, that r �M,ρ[α:=a] ψ. By the induction
hypothesis, we have, for all a ∈ Act, that s �M,ρ[α:=a] ψ. Hence we have that
s �M,ρ ∀α.ψ.

Case ϕ = ∃x.ψ. By the hypotheses, there exists q ∈ D such that r �M,ρ[x:=q] ψ.
By the induction hypothesis, we have that s �M,ρ[x:=q] ψ. Hence we have that
s �M,ρ ∃x.ψ.

Case ϕ = ∀x.ψ. We have, for all q ∈ D, that r �M,ρ[x:=q] ψ. By the induction
hypothesis, we have, for all q ∈ D, that s �M,ρ[x:=q] ψ. Hence we have that
s �M,ρ ∀x.ψ.

�

The reverse direction of the Hennessy-Milner completeness theorem relies on
image-finiteness (Definition 30).

Theorem 33. If r ≡MBIU s, then r ∼ s.

Proof. Fix some model M . Supposing that r ≡MBIU s, we require to show that
r ∼ s. As ∼ is the largest relation closed under the conditions in Definition 6, it
suffices to show that ≡MBIU is a bisimulation.

Let
R = {(r, s) | r ≡MBIU s}.

Suppose some a ∈ Act and r′ ∈ State such that r
a−→ r′. Suppose, for a

contradiction, that, there exist no b ∈ Act and s′ ∈ State, such that s
b−→ s′, a ≡ b,

and r′ R s′.

Let F = {s′ | s b−→ s′ and a ≡ b}. If F is empty, then r � 〈a〉> and s 6� 〈a〉>,
contradicting r ≡MBIU s. Hence F is non-empty. By Definition 30, F = {s′i | 1 ≤
i ≤ n}, for some finite n. By our supposition, for all 1 ≤ i ≤ n, (r′, s′i) 6∈ R, hence
r′ 6≡MBIU s′i. Thus there exist formulae φ1, . . . , φn such that r′ � φi but s′i 6� φi, for
all i. Hence r � 〈a〉(φ1 ∧ . . . ∧ φn) and s 6� 〈a〉(φ1 ∧ . . . ∧ φn), again contradicting

14 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

r ≡MBIU s. Hence our supposition must be false, and there must exist b ∈ Act and

s′i ∈ F such that s
b−→ s′i, a ≡ b, and r′ R s′i.

The other case is similar. Hence R is closed and a bisimulation. �

The notion of attaching payoffs or weights to actions exists in the literature.
Markov chains support reasoning about complex notions such as average utility
with a given time discount, but do not provide compositionality results over model
structures [19]. Process calculi for Markov decision processes, which include both
stochastic and cost-based decision-making, provide such compositionality results
for the class of systems that do not permit negative utility, and then only for a
notion of simulation [15]. That calculus has an associated modal logic, where the
action modalities are also modalities on the weights of the actions. The notion of
payoff of a process state is not directly represented, and cannot be reasoned over
in the logic.

3. Examples and optimality

To illustrate the logical set-up we have introduced, we begin with a classic ex-
ample from distributed systems modelling: mutual producer–consumer. We then
explain how our set-up can be used to express Pareto optimality. This example leads
naturally into a discussion of game-theoretic examples and concepts. We consider
here the prisoner’s dilemma, the best-response property, and Nash equilibrium.

Example 34 (Mutual producer–consumer). A classic example of distributed sys-
tems modelling is distributed coordination without mutual exclusion, the most com-
mon form of which is that of the producer–consumer system [11, Section 2.3.5]. In
such a scenario, one entity generates work that another entity can handle at a later
point. We modify this slightly to the scenario with two entities, where each entity
can generate work for, and consume work from, the other.

We extend Example 10. Suppose a concurrent transition system

((N× N) ∪ {e},Act,→,=, ◦, e),

where

(m,n)
p1−→ (m,n+ 1)

(m+ 1, n)
c1−→ (m,n)

(m,n)
p2−→ (m+ 1, n)

(m,n+ 1)
c2−→ (m,n)

(m,n)
1−→ (m,n),

and (m1,m2) ◦ (n1, n2)=(m1+n1,m2+n2).
The states of the concurrent transition system are pairs of natural numbers,

where the first element of the pair denotes the number of work packages that the
first entity can consume and the second element of the pair denotes the number of
work packages that the second entity can consume. The action p1 denotes production
of a work package by the first entity for the second entity, and the action c1 denotes
the consumption of a work package by the first entity. The actions p2 and c2 have
the obvious converse denotations.

Consider the situation where the entities ‘profit’ from the consumption of work
packages, and must ‘pay’ to create work packages. A pair of possible payoff functions

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 15

v1 and v2, for the two entities, which represents this situation is

v1(p1) = −1 v1(c1) = 3 v1(p2) = 0 v1(c2) = 0
v2(p1) = 0 v2(c1) = 0 v2(p2) = −2 v2(c2) = 4.

Note that each entity has no direct preferences over the actions of the other entity.
Let the discount factor δ be 0.8, and the strategy σ be a function such that each

entity consumes, if possible, does nothing if the other is consuming, and produce
together when there are no resources for either to consume.

σ((m,n)) =


(c1c2, (m− 1, n− 1)) if 1 ≤ m and 1 ≤ n
(c1, (m− 1, n)) if 1 ≤ m and n = 0
(c2, (m,n− 1)) if m = 0 and 1 ≤ n
(p1p2, (m+ 1, n+ 1)) if m = 0 and n = 0.

Consider the resource (10, 0). As there are only work packages available for
the first entity, the actions defined on the resource are the consume action c1, the
produce actions p1 and p2, and the distinguished action 1. Each entity incurs a
negative payoff when performing a produce action, which only benefits the other
entity. The payoffs that can be obtained by performing the p1 and c1 actions, in the
state (10, 0), are as follows.

v1(p1) + δ × uv1,σ,δ(10, 1) ≈ −1 + δ × 13.4 ≈ 9.7
v1(c1) + δ × uv1,σ,δ(9, 0) ≈ 13.4
v2(p1) + δ × uv2,σ,δ(10, 1) = 0 + 0.8× 4 = 3.2
v2(c1) + δ × uv2,σ,δ(9, 0) = 0.

In state (10, 0), the action c1 gains the most for the first entity and p1 gains the
most for the second.

For either action, it is not possible to swap to an alternative action that makes
one of the entities better off, without making the other entity worse off. This notion
is called Pareto optimality.

Definition 35 (Pareto optimality). A state s is Pareto optimal if there exists an
action a such that, for all other actions b, if some entity weakly prefers that action
b be performed, then there is some other agent that strongly prefers that action a
be performed. Formally, the state s is Pareto optimal if, for entities with payoff
functions v1, . . . , vn,

R � ∃α . ∀β . (¬(β ≡ α))→
∀x, x′.∃y, y′.(

(〈α〉uv1(x)) ∧ (〈β〉uv1(x′)) ∧ (x < x′)
)
→(

(〈α〉uv2(y)) ∧ (〈β〉uv2(y′)) ∧ (y′ < y)
)

∨ . . .∨(
(〈α〉uvn(y)) ∧ (〈β〉uvn(y′)) ∧ (y′ < y)

)


∨ . . .∨

∀x, x′.∃y, y′.(
(〈α〉uvn(x)) ∧ (〈β〉uvn(x′)) ∧ (x < x′)

)
→(

(〈α〉uv1(y)) ∧ (〈β〉uv1(y′)) ∧ (y′ < y)
)

∨ . . .∨(
(〈α〉uvn−1

(y)) ∧ (〈β〉uvn−1
(y′)) ∧ (y′ < y)

)

 .

16 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

We abbreviate the above formula as PO(v1, . . . , vn). In Example 34, the re-
source (10, 0) is Pareto optimal, witnessed by both the actions p1 and c1, and
(10, 0) � PO(v1, v2) holds. Note that optimality is defined in terms of actions; this
is as, here, we take seriously the representation of actions that perform allocations.
A transition is then an (actively performed) state allocation.

One field in which notions of optimality have been studied significantly is that
of games and decision theory. We can model games in our resource semantics. A
classic decision-making example from game theory is the prisoner’s dilemma.

Example 36 (Prisoner’s dilemma). Two individuals have been arrested, and are
kept separately, so that they cannot collude in their decision making. Each is offered
the choice of attempting to ‘defect’, and give evidence against their partner, or to
‘collaborate’, and say nothing. If one person collaborates and the other defects, then
the collaborating partner goes to jail for a long time, and the defecting partner goes
free. If both people defect, then they both go to jail for a moderate time. If both
people collaborate, then they both go to jail for a short time.

Let Act be the action structure freely generated by the actions c1, d1, c2, d2, and
1, where 1 is the distinguished action. Let S = {r1, r2, r1,2, e} be the state space.
The state r1 denotes a resource where the first person can make a choice, the r2
resource denotes a resource where the second person can make a choice, and the
r1,2 resource denotes a resource where both people can make a choice at the same
time. Let r1 ◦ r2 = r1,2 be defined, and

r1
c1−→ e r1

d1−→ e r2
c2−→ e r2

d2−→ e.

The c1 action denotes collaboration by the first person, and the d1 action denotes
defection by the person. The c2 and d2 actions have the obvious denotations for the
second person. Then, (S,Act,→,=, ◦, e) is a concurrent transition system.

We make use of the trivial strategy, for all states s ∈ S, σ(s) = (1, s). The
action payoff functions v1 and v2 for the two people are:

v1(c1c1) = −2 v1(c1d2) = −6 v1(d1c2) = 0 v1(d1d2) = −4
v2(c1c1) = −2 v2(c1d2) = 0 v2(d1c2) = −6 v2(d1d2) = −4.

So if the first person collaborates and the second defects, then the first person re-
ceives six years in prison (cost v1(c1d2) = −6), while the second receives no time
in prison (cost v2(c1d2) = 0).

We can define notions of best response and Nash equilibrium.

Definition 37 (Best response). An action a is a best response for a given entity to
a particular choice of action b by another entity, at a given resource, if the (former)
entity has no other action c available to it such that the action cb is defined on the
resource and the entity (strongly) prefers cb to ab. Formally, a is the best response
to action b at resource s if

s � ∀α.∃x, y.
((

(〈a〉> ∧ 〈α〉>) ∗ (〈b〉>)
)
∧
(
[a � b](uv(x)) ∧ [α � b](uv(y))

))
→

(
(v(α � b) + δ × y) ≤ (v(a � b) + δ × x)

)
.

We abbreviate the above formula, denoting that a is the best response to ac-
tion b for the agent whose payoff function is v, as BR(a, b, v). In the prisoner’s
dilemma example, the best response for the first agent to the action c2 is d1, and
r1,2 � BR(d1, c2, v1) holds.

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 17

We generalize this notation slightly, so that we write BR(a, b1, . . . , bn, v) to de-
note that a is the best response to the composite action b1 . . . bn, for the payoff
function v. Formally,

R � ∀α.∃x, y. (
(〈a〉> ∧ 〈α〉>) ∗ (〈b1 � (. . . � bn)〉>)〉

)
∧(

[a � (b1 � (. . . � bn))](uv(x))
)
∧(

[α � (b1 � (. . . � bn))](uv(y))
)


→(

(v(α � (b1 � (. . . � bn))) + δ × y) ≤ (v(a � (b1 � (. . . � bn)))) + δ × x)
)
.

Now we can express Nash equilibrium.

Definition 38 (Nash equilibrium). A state s is a Nash equilibrium for a set of
entities I = {1, . . . , n} if there is a collection of actions a1, . . . , an such that,
for each entity i ∈ I with payoff function vi, the action ai is the best response to
the composition of actions aj, where j ∈ I \ {i}. Formally, the state s is a Nash
equilibrium if

s � ∃α1 . . . αn . BR(α1, α2, . . . , αn, v1) ∧ . . . ∧BR(αn, α1, . . . , αn−1, vn).

We abbreviate the above formula as NE(v1, . . . , vn). In the prisoner’s dilemma
example, the Nash equilibrium is the state r1,2, witnessed by the actions d1 and d2,
for payoff functions v1 and v2, and r1,2 � NE(v1, v2) holds.

4. Resource semantics and modelling

In this section, we take the first step towards using MBIU as a logic of state for
a fully featured process algebra. To this end, we recall our theory of distributed
systems modelling, as presented in, for example [12, 11, 2]. Building on the clas-
sical distributed systems theory [13], the structural components of this modelling
framework are location, resource, and process, together with a stochastically mod-
elled environment. In this paper, we make no further use of stochastically modelled
environments.

Mathematically, we capture the structural components as follows:

• Location. In general, locations can be conveniently modelled using a range
of graph-theoretic and topological structures [9, 11], with directed graphs
being the key example for most practical modelling work. For simplicity,
we make no further use of locations in this paper. The reader might think
of them either as implicitly present, or consider them to be rolled up into
the definition of resources (see [11] for relevant technical support);
• Resource. In general, resources are assumed to form a preordered partial

commutative resource monoid, in which resource elements can be combined,
using the monoid operation, compared, using the preorder. The partiality
ensures that not all combinations need be considered (for example, such
as those beyond a certain size in a resource monoid based on the natural
numbers). The structure of the monoid is subject to some coherence con-
ditions [25, 16, 11]. A key example of a monoid of resources is given by
the natural numbers (with 0), with addition as the monoid operation and
less-than-or-equals as the order: (N,≤,+, 0). For this paper, we work in the
simpler setting in which we omit the preorder (see Definition 39, below);

18 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

• Process. In general, our treatment of process is based on Milner’s synchro-
nous calculus of communicating systems (SCCS) [23], as developed as a
basis for systems modelling in [12, 11]. Note that asynchronous calculi can
be encoded within such synchronous calculi [23].

The key idea is that resources and processes co-evolve, according to one of the

following judgement: R,E
a→ R′, E′, which is read as ‘the process E, using resources

R, performs action a and so becomes the process E′ that is able to evolve using
resources R′’. The operational semantics that defines such a transition system
relies on a (partial) modification function (see Definition 40, below) that specifies
how a given action modifies a given resource. This approach is know as resource
semantics.

A simple way to describe distributed systems — neglecting for now the process-
theoretic structure — is using resource semantics for the state space and concurrent
composition, and using a modification function as the dynamics of the transition
system. This family of systems are concurrent transition systems, and have all the
properties that we described in Section 2. Later, in Section 5, we develop the theory
in the process of a fully featured process algebra.

For now, we begin with the notion of resource from Boolean BI [18].

Definition 39 (Resource monoid). A resource monoid is a structure
R = (R, ◦, e) with carrier set R, commutative partial binary operation ◦ : R×R ⇀
R, and unit e ∈ R.

Let Act be a commutative monoid of actions, freely generated from a set of
atomic actions, with operation · and unit 1. The actions correspond to the events
of the system. The dynamics of the system is then given by the modification
function, which describes how actions transform resources.

Definition 40 (Modification function). A modification function is a partial func-
tion µ : R×Act ⇀ R such that

• for all R and S, and all a and b, if µ(R, a), µ(S, b), and R◦S are all defined,
then µ(R, a) ◦ µ(S, b) and µ(R ◦ S, ab) are both defined, and µ(R ◦ S, ab) =
µ(R, a) ◦ µ(S, b);
• for all R, µ(R, 1) = R;
• for all R and S, and all c, if R ◦ S and µ(R ◦ S, c) are defined, then there

exist a and b such that c = ab, and µ(R, a) and µ(S, b) are both defined;
and
• the distinguished action 1 is s.t. µ(e, 1) = e and, for all s and a, if µ(e, a) =
s, then a = 1 and s = e.

If µ(R, a) is defined, then we say that action a is defined on resource R. We refer
to a structure (R,Act, µ,=, ◦, e) as a resource monoid model.

A key systems modelling example, seen previously in Example 5, is that of
semaphores. Note that Example 41 is essentially the same as Example 5, excepting
that here we use the modification function as the transition relation.

Example 41 (Semaphores). Let Act be the free monoid generated by the atomic
actions a and 1, where 1 is the distinguished action. Let R be the resource monoid
(R, ◦, e) such that s ◦ e = s and s ◦ s is undefined. We use a modification function
such that µ(sa) = s. We then have that no resource can perform the action aa, that

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 19

is, µ(e, aa) ↑ and µ(s, aa) ↑. The resource monoid model acts like a semaphore, in
that only one access action a can be performed at any given time.

The mutual-producer-consumer model (Example 34) and the prisoner’s dilemma
model (Example 36) are also resource semantics models. In fact, all resource models
(as specified in this section) are concurrent transitions systems (as specified in
Definition 4).

Proposition 42. A resource monoid model (R,Act, µ,=, ◦, e) is a concurrent
transition system.

Proof. By Definition 40, we have that (R,Act, µ) is a transition system.
Suppose some a, b, c ∈ Act. By the definition of a commutative monoid, we

have that a1 = a, ab = ba, and, if a = a′ and b = b′, ab = a′b′. Hence = is an
action-composition equivalence relation.

Suppose some states r, s, r′, s′, r′′ ∈ S and actions a, b ∈ Act. As ◦ is commu-
tative, if r ◦ s is defined, then s ◦ r is defined. The other required properties of ◦
follow straightforwardly from Definition 40. �

If the modification function is defined for an action a on a resource R, and

µ(R, a) = S, then we say that there exists a transition R
a−→ S, and that S is a

successor of R. The notion of bisimulation in Definition 6 is immediately applicable
to resource models.

In order to use of resource models as a semantics for MBIU, we restrict ourselves
to those resource models that conform to Definitions 28 and 30. With those restric-
tions in place, we can then use resource monoid models as a semantics for MBIU. So
we can make use of logical characterizations of notions of optimality, such as were
described in Section 3, over distributed systems modelled using resource monoid
models.

We conclude this section with a property of payoff functions for resource monoid
models which is not true of payoff functions for generic concurrent transition sys-
tems; namely, that if a strategy chooses the unit action in some state, then the
payoff of that state is always 0.

Lemma 43. For all action payoff functions v, strategies σ, and discount factors δ,
if σ(s) = (1, s′), then uv,σ,δ(s) = 0.

Proof. By Definition 14, we have that v(1) = 0. By Definitions 11 and 40, we have

that s
1−→ s and s′ = s. By Definition 16, we have that uv,σ,δ(s) = 0 + δ× uv,σ,δ(s).

As (1− δ) 6= 0, we have that uv,σ,δ(s) = 0. �

5. Resource-process systems modelling

One modelling approach, which might be expected to form the basis of an exam-
ple of our methodology in Section 2, is that based on the resource–process calculi,
as given in [12, 11] and introduced in Section 4. These calculi consist of two com-
ponents: resources, which describe objects that can be created, moved, and con-
sumed; and processes, which describe the dynamics of systems, and have a more
complex, algebraic structure, including sequencing, non-deterministic choice, and
fixed points. Each component has a notion of composition, and so resource–process
pairs have the obvious composition pairwise on the components. An action-indexed
transition system can be defined in terms of a structural operational semantics over

20 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

the structure of processes, so that resources and processes (i.e., the state) co-evolve:

R,E
a−→ R′, E′.

Unfortunately, in such calculi (for example, in [12, 11]), bisimulation fails to be
a congruence for concurrent composition. As a result, the soundness direction of
the Hennessy–Milner property holds only for fragments of the logic that exclude
multiplicative implication (−−∗). Bisimulation fails to be a congruence for concurrent
composition because of the way in which the resource semantics interacts with the
resource-process operational semantics. Resources can be viewed as being ‘capa-
bilities’, which enable behaviour in the process components of the pairs. When
performing concurrent composition, these ‘capabilities’ can be exchanged between
the process components of the pairs, enabling different behaviour in different com-
positions. This clearly violates the required congruence property.

This problem has been solved, in [2], by changing the resource semantics to
ensure that ‘capabilities’ cannot be exchanged between process components in the
operational semantics. Additional structure is added to the resource model, beyond
that in [12, 11] and Section 4. The key structural modification is the introduction
of additional combinatorial structure to the resource semantics — resources are
bunched, being combined using either ⊗, corresponding to the monoidal composi-
tion ◦, or ⊕, which builds in choice — with the key property being injectivity of
concurrent composition.

In this section, we review the resource–process calculi as set up in [2] and show
that they are indeed examples of our methodology. In particular, we show that
our analysis of utility extends to these resource–process calculi, and provide an
extended example (Example 64, below) based on the ‘mutual producer–consumer’
introduced in Example 34, comprising distributed coordination without mutual
exclusion: a mutual producer-consumer system, where each ‘agent’ can generate
work for, and consume work from, the other. In Example 34, the ‘agents’ performing
the production and consumption are represented indirectly. For example, it is
not possible to consider one agent’s behaviour on its own; as the dynamics are
directly encoded via the resource semantics, both agents are always ‘present’ in
any given resource. Using the richer resource–process framework that we introduce
in this section, we can represent the dynamics of the different agents more directly.
Specifically, we represent these agents as processes. We can then demonstrate how,
for example, the first entity cannot make progress when it only possesses resources
that the second process can consume available to it.

The set-up of the required process calculi — henceforth known as Calculi of
Bunched Resources and Processes, or CBRP — assumes the provision of certain
additional data pertaining to some semantic structure (Act,R, µ,Γ,H) — of ac-
tions, resources, modification function, a set redistribution functions, and a set
hiding functions, respectively — over which we work and which we define in the
development below. The actions, resources (excepting the injective bunching struc-
ture), and modification function are defined as they are in Section 4, the redistri-
bution functions are used to specify how combinations of resources defined using
⊗ and ⊕ can be rearranged, and the hiding functions are used to bind resources
to processes locally (see Definition 50, below). The modification function, the
redistribution functions, and the hiding functions are all essential parts of the op-
erational semantics (see Figure 2). Thus we should properly refer to the calculus

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 21

as (Act,R, µ,Γ,H)-CBRP. In this section, however, we suppress the prefix as, at
every stage, we work with a fixed such structure.

We begin with a notion of resource which can be seen as restricting the com-
binatorial structure taken in Section 4 in that it considers choices between re-
sources, and it requires the notions of composition to be injective. Let R be a
set of resources, equipped with an ‘empty’ element e ∈ R. We write R, S, etc. to
denote resources. We consider unique (partial) concurrent composition of, and non-
deterministic choice between, resources. In [27, 25, 12, 11], and other works in the
relevant logic tradition, bunches are trees with leaves labelled by atomic resources,
and internal nodes labelled by either ⊕ or ⊗. We implement bunching through
the use of two injective functions; a resource is a node of a particular type if there
exists some (unique) pair of resources that are mapped to the initial resource by
the relevant function.

Definition 44 (Resource models). A resource model (R, e,⊗,⊕) is a structure
consisting of a set of resources R with a distinguished ‘empty’ resource e ∈ R, and
two injective, partial functions ⊗,⊕ : R ×R ⇀ R, such that, for all R,S, T ∈ R
and � ∈ {⊕,⊗},

(1) R� S is defined if and only if S �R is defined,
(2) R� (S � T) is defined if and only if (R� S)� T is defined,
(3) R⊗ e is defined,
(4) R⊕R is defined, and
(5) R⊗ (S ⊕ T) is defined if and only if (R⊗ S)⊕ (R⊗ T) is defined.

Note that properties 2, 4, and 5 are only required to obtain the algebraic results
(Proposition 56) and are not necessary to obtain the Hennessy–Milner correspon-
dence via the approach in Section 2.

In the sequel, when we write an expression of the form R ⊗ S or R ⊕ S, we
assume that the result of the application of the partial function to its arguments
is defined. Actions correspond to the events of a system. In resource-process
algebra as set up in [12, 11], actions are used to determine how resources evolve.
This necessitates a relationship between the concurrent structure of actions and
the concurrent structure of resources. To obtain an analogous relationship in our
setting (formally stated in Definition 47), we also require action composition to be
injective.

Definition 45 (Action model). An action model (Act, ·, 1) is a structure consisting
of a set of actions with a distinguished unit action 1 ∈ Act, and an injective, total
function ·.

In many process algebras, such as SCCS and SCRP, the commutative monoid
structure of actions is used to prove various algebraic properties of states. In this
section, unlike resource monoid models (Section 4), as we do not require that 1 be a
unit for · with respect to syntactic equality, the actions do not form a (commutative)
monoid with respect to syntactic equality. We establish that the CBRP notion of
actions (Definition 45) is an action structure (as in Definition 1), a property that
we will use when we demonstrate that CBRP are instances of concurrent transition
systems (Proposition 54).

Lemma 46. The structure (Act, ·, 1) is an action structure.

Proof. As Act is closed under pairing, (Act, ·) is a total magma. �

22 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

The semantics of resources is then given by a modification function from action-
resource pairs to resources.

Definition 47 (Modification function). A modification function is a partial func-
tion µ : R×Act ⇀ R such that

• for all R and S, and all a and b, if µ(R, a), µ(S, b), and R⊗S are all defined,
then µ(R, a)⊗µ(S, b) and µ(R⊗S, ab) are both defined, and µ(R⊗S, ab) =
µ(R, a)⊗ µ(S, b) holds;
• for all R, µ(R, 1) = R;
• for all R and S, and all c, if R⊗ S and µ(R⊗ S, c) are defined, then there

exist a and b such that c = ab, and µ(R, a) and µ(S, b) are both defined;
• the distinguished action 1 is s.t. µ(e, 1) = e and, for all s and a, if µ(e, a) =
s, then a = 1 and s = e.

Note that the action 1 is a unit with respect to µ’s action on resources. Note
also that a modification function is one of the parameters to the calculus.

Modification functions are homomorphisms with respect to the concurrent prod-
uct structure of resource bunches. As a result, we cannot use the modification
function to ‘move’ resources from one side of a concurrent product to another (such
a move corresponds to changing the process to which the resources are allocated, for
example, passing an object from producer to consumer). Using a modification func-
tion, we can only add or remove resources to each side of a product independently
of what is on the other side of the concurrent product.

As we cannot use a modification function for redistribution of resources, instead,
we make use of redistribution functions. In Figure 2, the rules for the operational
semantics of sequential composition are

R,E
a−→ R′, E′ → γ ∈ Γ

R,E :γ F
a−→ R′, E′ :γ F

PrefixOne
R,E

a−→ R′, E′ 6→ γ ∈ Γ

R,E :γ F
a−→ γ(R′), F

PrefixTwo.

The resource-process pair R,E :γ F consists of a resource bunch and a sequential
composition. The sequential composition consists of two processes, E and F , and a
redistribution function γ. If the prefix E can evolve with the resources R to a non-
blocked state, then the sequential composition evolves similarly (the PrefixOne
rule). If the prefix E can evolve with the resources R to a blocked state, then the
redistribution function is applied to the resulting resources R′, and the pair that
consists of the redistributed resources and the suffix, γ(R′), F , is the result of the
transition (the PrefixTwo rule). The redistribution function is applied to the
resources so that the structure of the resulting resources will match the structure
of the suffix process. Redistribution functions are total so that the evolution of
a sequential composition can only be blocked by the behaviour of the prefixing
process, not the redistribution of resources.

Definition 48 (Redistribution functions). A redistribution function is a total func-
tion γ : R→ R. Let there be a set of redistribution functions Γ whose elements are
written γ, γ′, etc..

Let Γ, which is one of the parameters to the calculus, include the identity func-
tion. From a modelling perspective, we argue that the use of redistribution functions
encourages good discipline with respect to making decisions about how resources
are allocated to processes within a system. In [12, 9, 11], following a transition,

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 23

all possible allocations are possible, and a system can non-deterministically choose
between them. In the resource-process modelling methodology used in this section,
whenever resources are to be reallocated (i.e., following each reduction step, within
a sequential composition), a conscious modelling decision is required as to where
the resources should be allocated.

In classical process calculi, restriction is used to ensure that certain behaviour
is only visible, or accessible, in certain parts of a system. A similar feature can
be incorporated into resource–process modelling [12]. The hiding operator on pro-
cesses associates additional resources with the process to which it is applied. If a
resource–process pair is allocated additional resources, it may be able to perform
additional actions. This behaviour must then be restricted, however; only actions
that could be performed without the additional resources must be visible beyond
the process where the hidden resources are available. First, we define a notion of
action containment, so that we can formalize the notion of ‘additional behaviour’.

Definition 49 (Action-containment order). We define ≤ to be the least reflexive-
transitive relation on actions such that 1 ≤ α, for any atomic action α, and if
a ≤ a′ and b ≤ b′ then a · b ≤ a′ · b′.

Then, we define hiding functions on actions and resources. In Figure 2, the rule
for the operational semantics of hiding functions is

h(R), E
a−→ h(R′), E′ h ∈ H

R, νh.E
νh.a−−−→ R′, νh.E′

Hide.

A resource-process pair R, ν h.E evolves by stripping the hiding operator ν h. from
the process component and applying the hiding function h to the resource compo-
nent, resulting in the resource-process pair h(R), E. Following the evolution of the
transformed state, the resulting pair h(R′), E′ is modified by applying the inverse
of the hiding function to the resource component and adding the hiding operator to
the process component, resulting in the resource-process pair R′, ν h.E′. To ensure
that a hiding function and its inverse can be uniquely applied, hiding functions
on resources are bijections. Moreover, the action performed in the evolution of
the transformed state must be suitably transformed to restrict external visibility of
actions that can only be performed with the additional resources.

Definition 50 (Hiding functions). Let (R, e,⊗,⊕) be a resource model and µ be
a modification function. A function h : R → R on a resource model is a hiding
function if it is a bijection. Let there be a set of hiding functions H whose elements
are written h, h′, etc.. Define A : H→ Act→ P(Act) such that

A(h, a) = {b ≤ a | for all R,S ∈ R, µ(h(R), a) = h(S) implies µ(R, b) = S} .
Then, a hiding function on actions ν : H→ Act→ Act is defined as

νh.a =

{
sup(A(h, a)) if sup(A(h, a)) is defined and unique
1 otherwise.

Let H, which is one of the parameters to the calculus, include the identity
function. Next, we define processes formally.

Definition 51 (Processes). Processes are formed according to the following gram-
mar:

E ::= 0 | X | a | E + E | E × E | E :γ E | νh.E | fix X.E.

24 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

R, a
a−→ µ(R, a),0

Act
Ri, Ei

a−→ R′i, E
′
i

R1 ⊕R2, E1 + E2
a−→ R′i, E

′
i

Sum, i ∈ {1, 2}

R1, E1
a1−→ R′1, E

′
1 R2, E2

a2−→ R′2, E
′
2

R1 ⊗R2, E1 × E2
a1·a2−−−→ R′1 ⊗R′2, E′1 × E′2

Prod

R,E
a−→ R′, E′ → γ ∈ Γ

R,E :γ F
a−→ R′, E′ :γ F

PrefixOne
R,E

a−→ R′, E′ 6→ γ ∈ Γ

R,E :γ F
a−→ γ(R′), F

PrefixTwo

h(R), E
a−→ h(R′), E′ h ∈ H

R, νh.E
νh.a−−−→ R′, νh.E′

Hide
R,E[fix X.E/X]

a−→ R′, E′

R,fixX.E
a−→ R′.E′

FV (E)⊆{X} Rec

Figure 2. Operational Semantics

Here, 0 is the null process, X is a process variable, a is an action, γ ∈ Γ is a
redistribution function, and h ∈ H is a hiding function. Let Proc be the set of
all processes, and E, F etc. denote processes. The process 1, which performs the
action 1 infinitely, is denoted as µX.1 :id X.

Closed processes are those processes that contain no free variables. A state is a
pair consisting of a resource and a closed process. Let State be the set of all states,
and CState be the set of all closed states.

The operational behaviour of a closed state is defined by a labelled family of
transition relations

a−→ ⊆ CState×Act×CState,

The family is defined recursively using the derivation rules in Figure 2.
An action process reduces according to the modification function µ. Nondeter-

minism is introduced solely through the presence of sums. There, a choice must
be made both in the process component and the resource component. Product
processes distribute the resources according to the multiplicative structure in the
resources.

Sequential composition behaves slightly counter-intuitively. If the prefix is re-
duced to a non-blocking state, then the sequential composition follows similarly. If
the prefix process is reduced to a blocking state, then the sequential composition
reduces to the resource that results from applying the redistribution function to
the residual resources from evolving the prefix, and the suffix. The redistribution
function is used to redistribute the resources between the process components, fol-
lowing a reduction that moves to the second part of a sequential composition. It
should be noted that the use of process prefixing, rather than action prefixing, is
a deliberate design decision, made so that models can more intuitively reflect the
structure of the system they abstract.

We can then show that all CBRP, equipped with a suitable notion of equivalence
of actions and composition of states, are concurrent transition systems (as specified
in Definition 4).

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 25

Definition 52 (Resource-process action equivalence). Let the relation ≡ be the least
action equivalence relation such that, for all actions a, b, c, a · (b · c) ≡ (a · b) · c.

Definition 53 (Concurrent composition of resource-process states). The concur-
rent composition of resource-process states ◦ is the partial function (R1, E1) ◦
(R2, E2) = (R1 ⊗R2, E1 × E2), that is defined if and only if R1 ⊗R2 is defined.

Proposition 54. The structure (CState,Act,→,≡, ◦, (e,1)) is a concurrent tran-
sition system.

Proof. By Lemma 46, Act is an action structure. Then, we straightforwardly
have that (CState,Act,→) is a transition system, and ≡ is an action-composition
equivalence relation.

Suppose some states (R,E), (S, F), (R′, E′), (S′, F ′), (T,G) ∈ CState and ac-
tions a, b ∈ Act. By Definition 44, we have that, if R ⊗ S is defined, then S ⊗ R
is defined, and hence if (R,E) ◦ (S, F) is defined, then (S, F) ◦ (R,E) is defined.

Suppose that (R,E) ◦ (S, F) is defined, R,E
a−→ R′, E′, and S, F

b−→ S′, F ′. By

the Prod rule, we have that R ⊗ S,E × F
ab−→ R′ ⊗ S′, E′ × F ′. Suppose that

R ⊗ S,E × F c−→ T,G. By the Prod rule, we have that there exist a, b, R′, S′, E′,

F ′ such that c = ab, T = R′ ⊗ S′, G = E′ × F ′, R,E a−→ R′, E′, and S, F
b−→ S′, F ′.

Suppose that e, µX.1 :id X
a−→ S′, F ′. By the Fix, PrefixTwo, and Act rules, and

Definition 47, we have that S′ = e, F ′ = µX.1 :id X and a = 1. By Definition 44,
we have that R⊗ e is defined, and hence (R,E) ◦ (e,1) is defined. �

In order to use CBRP transition systems as a semantics for MBIU, we must
restrict ourselves to those calculi that conform to Definitions 28 and 30. In order
to obtain the property specified in Definition 28, it is sufficient to restrict ourselves
to those calculi that have the following property:

Definition 55 (∼-resource-closed CBRP). A calculus is ∼-resource-closed if, for
all R1, E1, S1, F1, R2, E2, S2, F2, if R1, E1 ∼ S1, F1 and R2, E2 ∼ S2, F2, then
R1⊗R2 (respectively, R1⊕R2) is defined if and only if S1⊗S2 (respectively, S1⊕S2)
is defined.

Henceforth, we consider only CBRP that are ∼-resource-closed. An immedi-
ate result is that concurrent compositions of bisimilar resource-process pairs are
bisimilar (Lemma 29), and that we have the Hennessy-Milner completeness result
(Theorems 32 and 33).

In order to reason equationally about resource-process states, it is also useful
to establish various algebraic properties concerning concurrent composition and
choice. Notable standard algebraic properties of process calculi are commutativity
and associativity of concurrent composition. We obtain such properties for CBRP.

26 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

Proposition 56 (Algebraic properties). For all bunched resources R,S, T ∈ R and
closed processes E,F,G,

(Commutativity of choice) R ⊕ S,E + F ∼ S ⊕ R,F + E
(Unit of choice) R ⊕ R,E + 0 ∼ R,E
(Associativity of choice) R ⊕ (S ⊕ T), E + (F +G) ∼

(R ⊕ S) ⊕ T, (E + F) +G

(Commutativity of product) R ⊗ S,E × F ∼ S ⊗ R,F × E
(Unit of product) R ⊗ e, E × 1 ∼ R,E
(Zero property of product) R ⊗ e, E × 0 ∼ e,0
(Associativity of product) R ⊗ (S ⊗ T), E × (F ×G) ∼

(R ⊗ S) ⊗ T, (E × F)×G

(Distribution of product R ⊗ (S ⊕ T), E × (F +G) ∼
over choice) (R ⊗ S) ⊕ (R ⊗ T), (E × F) + (E ×G).

Proof. Commutativity of choice. Let

R = {((R⊕ S,E + F), (S ⊕R,F + E)) | E and F are closed}∪ ∼ .

Suppose that R ⊕ S,E + F
a−→ T,G. By the Sum rule, either R,E

a−→ T,G or

S, F
a−→ T,G. As R⊕S is defined, by Definition 44[1], S⊕R is defined. By the Sum

rule, S ⊕ R,F + E
a−→ T,G. By Definition 52, a ≡ a. By Lemma 7, T,G ∼ T,G,

and hence (T,G)R (T,G).
The other case is similar. Hence R is closed and a bisimulation.
Unit of choice. Let

R = {((R⊕R,E ⊕ 0), (R,E)) | E is closed}∪ ∼ .

Suppose that R ⊕ R,E ⊕ 0
a−→ T,G. By the Sum rule, either R,E

a−→ T,G

or R,0
a−→ T,G. By Figure 2, R,0 6→, and hence R,E

a−→ T,G. By Defini-
tion 52, a ≡ a. As simulation is an equivalence relation, T,G ∼ T,G, and hence
(T,G)R (T,G).

Suppose that R,E
a−→ T,G. By Definition 44[3], R ⊕ R is defined. By the Sum

rule, R⊕R,E ⊕ 0
a−→ T,G. By Lemma 7, T,G ∼ T,G, and hence (T,G)R (T,G).

Hence R is closed and a bisimulation.
Associativity of choice. Let

R = {((R⊕ (S⊕T), E+(F+G)), ((R⊕S)⊕T, (E+F)+G)) | E,F,G are closed}∪ ∼ .

Suppose that R ⊕ (S ⊕ T), E+(F +G)
a−→ U,H. By repeated application of the

Sum rule, either R,E
a−→ U,H, S, F

a−→ U,H, or T,G
a−→ U,H. As R ⊕ (S ⊕ T) is

defined, by Definition 44 (2), (R ⊕ S)⊕ T is defined. Suppose that R,E
a−→ U,H.

By repeated application of the Sum rule, R ⊕ S,E + F
a−→ U,H and (R ⊕ S) ⊕

T, (E + F) + G
a−→ U,H. Suppose that S, F

a−→ U,H. By repeated application of

the Sum rule, R ⊕ S,E + F
a−→ U,H and (R ⊕ S) ⊕ T, (E + F) + G

a−→ U,H.

Suppose that T,G
a−→ U,H. By the Sum rule, (R ⊕ S) ⊕ T, (E + F) +G

a−→ U,H.
By Definition 52, a ≡ a. By Lemma 7, U,H ∼ U,H, and hence (U,H)R (U,H).

The other case is similar. Hence R is closed and a bisimulation.
Commutativity of product. Let

R = {((R ⊗ S,E × F), (S ⊗ R,F × E)) | E and F are closed}.

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 27

Suppose that R ⊗ S,E × F c−→ T,G. By the Prod rule, there exist a, b, R′,

S′, E′, and F ′, such that c = ab, T = R′ ⊗ S′, G = E′ × F ′, R,E a−→ R′, E′, and

S, F
b−→ S′, F ′. By Definition 44 (2), S ⊗R and S′ ⊗R′ are defined. By the Prod

rule, S ⊗R,F ×E ba−→ S′ ⊗R′, F ′×E′. By Definition 52, ab ≡ ba. We immediately
have that (R′ ⊗ S′, E′ × F ′) R (S′ ⊗R′, F ′ × E′).

The other case is similar. Hence R is closed and a bisimulation.
Unit of product. Let

R = {((R ⊗ e, E × 1), (R,E)) | E is closed}.

Suppose that R ⊗ e, E × 1
c−→ T,G. By the Prod rule, there exist a, b, R′,

E′, S′, F ′ such that c = ab, T = R′ ⊗ S′, G = E′ × F ′, R,E
a−→ R′, E′, and

e,1
b−→ S′, F ′. As 1 = fix X.(1 : X), by the Rec, PrefixTwo, and Act rules,

b = 1, S′ = µ(e, 1), and F ′ = 1. By Definition 40, S′ = e. By Definition 52, a1 ≡ a.
We immediately have that (R′ ⊗ e, E′ × 1) R (R′, E′).

Suppose that R,E
a−→ R′, E′. As 1 = fix X.(1 : X), by the Rec, PrefixTwo,

and Act rules, e,1
1−→ µ(e, 1),1. By Definition 40, S′ = e. By Definition 44[3],

R⊗ e and R′ ⊗ e are defined. By the Prod rule, R ⊗ e, E × 1
a1−→ R′ ⊗ e, E′ ⊗ 1.

By Definition 52, a1 ≡ a. We immediately have that (R′ ⊗ e, E′ × 1) R (R′, E′).
Hence R is closed and a bisimulation.
Zero property of product. Let

R = {((R ⊗ e, E × 0), (e,0)) | E is closed}.

Suppose that R ⊗ e, E × 0 →. By the Prod rule, R,E → and e,0 →. This is
a contradiction as, by Figure 2, e,0 6→.

The other case is similar. Hence R is closed and a bisimulation.
Associativity of product. Let

R = {((R⊗ (S⊗T), E× (F ×G)), ((R⊗S)⊗T, (E×F)×G)) | E,F,G are closed}.

Suppose that R⊗ (S ⊗ T), E × (F ×G)
d−→ U,H. By repeated application of the

Prod rule, there exist a, b, c, R′, S′, T ′, E′, F ′, G′, such that d = a(bc), U =

R′⊗(S′⊗T ′), H = E′×(F ′×G′), R,E a−→ R′, E′, S, F
b−→ S′, F ′. and T,G

c−→ T ′, G′.
By Definition 44 (2), we have that (R ⊗ S) ⊗ T is defined. By further application

of the Prod rule, (R ⊗ S)⊗ T, (E × F)×G (ab)c−−−→ (R′ ⊗ S′)⊗ T ′, (E′ × F ′)×G′.
By Definition 52, a(bc) ≡ (ab)c. We then have that (R′ ⊗ (S′ ⊗ T ′), E′ × (F ′ ×
G′))R((R′ ⊗ S′)⊗ T ′, (E′ × F ′)×G′).

The other case is similar. Hence R is closed and a bisimulation.
Distribution of product over choice. Let

R =

{ (
(R ⊗ (S ⊕ T), E × (F +G)) ,

((R ⊗ S) ⊕ (R ⊗ T), (E × F) + (E ×G))

)
| E,F,G are closed

}
∪ ∼ .

Suppose that (R ⊗ (S ⊕ T), E × (F + G))
c−→ U,H. By Definition 44[4], (R ⊗

S) ⊕ (R ⊗ T) is defined. By the Prod rule, there exists a, b, R′, E′, V ′, I ′ such

that c = ab, U = R′ ⊗ V ′, H = E′ × I ′, R,E a−→ R′, E′, and S ⊕ T, F + G
b−→

V ′, I ′. By the Sum rule, either S, F
b−→ V ′, I ′ or T,G

b−→ V ′, I ′. Suppose the

former. By the Prod rule, R ⊗ S,E × F
ab−→ R′ ⊗ V ′, E′ × I ′. By the Sum

28 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

rule, (R ⊗ S) ⊕ (R ⊗ T), (E × F) + (E × G)
ab−→ R′ ⊗ V ′, E′ × I ′. Suppose the

latter. By the Prod rule, R ⊗ T,E × G ab−→ R′ ⊗ V ′, E′ × I ′. By the Sum rule,

(R ⊗ S) ⊕ (R ⊗ T), (E × F) + (E × G)
ab−→ R′ ⊗ V ′, E′ × I ′. By Definition 52,

ab ≡ ab. By Lemma 7, U,H ∼ U,H, and hence (U,H)R (U,H).
The other case is similar. Hence R is closed and a bisimulation. �

Corollary 57. For all bunched resources R,S, T ∈ R and closed processes E,F,G,

R ⊕ R,E + F ∼ R ⊕ R,F + E R ⊕ S,E + E ∼ S ⊕ R,E + E
R ⊗ R,E × F ∼ R ⊗ R,F × E R ⊗ S,E × E ∼ S ⊗ R,E × E.

Moreover, it is possible to reason equationally about the payoffs of resource-
process pairs. We define a class of strategies that generate payoffs functions whose
output will follow the structure of the resource-process pairs (Proposition 62).
These strategies are known as elementary strategies.

Definition 58. An elementary CBRP strategy is a strategy σ such that, for all
actions a, b, c, resources R, S, R′, S′, T and closed processes E, F , E′, F ′, G,

(1) if σ(R,E) = (a, (R′, E′)) and (R′, E′) 6→, then σ(R,E :γ F) = (a, (γ(R′), F)),
(2) if σ(R,E) = (a, (R′, E′)) and (R′, E′)→, then σ(R,E :γ F) = (a, (R′, E′ :γ

F)),
(3) σ(R1 ⊕R2, E1 + E2) = σ(Ri, Ei), for some i ∈ {1, 2},
(4) if R⊗S ↓, then c = ab, T = R′⊗S′, G = E′×F ′, σ(R,E) = (a, (R′, E′)),

and σ(S, F) = (b, (S′, F ′)) if and only if

σ(R⊗ S,E × F) = (c, (T,G)),

and
(5) σ(R,fix X.E) = σ(R,E[fix X.E/X]).

In order to obtain the equational result for concurrent composition (Proposi-
tion 62[8]), we establish two auxiliary lemmas. First, we show that if a strategy
can be applied to a state at least n times, then we can unroll the definition of state
payoff functions (Definition 16) n times, and the payoff of the state is the sum of
the discounted payoffs of the action chosen at each step and the discounted payoff
of the state reached after n steps.

Lemma 59. For all states (R,E) and natural numbers n ∈ N, if uv,σ,δ(R,E) and
σnstate(R,E) are defined, then

uv,σ,δ(R,E) =
(
Σni=0δ

i × v(σiact(R,E))
)

+ δn+1 × uv,σ,δ(σnstate(R,E)).

Proof. By induction over n.
Suppose n = 0. We immediately have that

uv,σ,δ(R,E) = v(σ0
act(R,E)) + δ × uv,σ,δ(σ0

state(R,E)).
= v(σnact(R,E)) + δn+1 × uv,σ,δ(σnstate(R,E)).

Suppose 0 < n. Let σ(R,E) = (a, (R′, E′)). By Definition 19, σn−1state(R
′, E′) =

S, F . By Definition 16, v(a) and uv,σ,δ(R
′, E′) are defined. By the induction hy-

pothesis,

uv,σ,δ(R
′, E′) = Σn−1j=0 δ

j × v(σjact(R,E)) + δn × uv,σ,δ(σn−1state(R
′, E′)).

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 29

By Definition 16,

uv,σ,δ(R
′, E′) = v(a) + δ × uv,σ,δ(R′, E′)

= v(σ0
act(R,E)) + δ ×

(
Σn−1j=0 δ

j × v(σjact(R
′, E′)) +

δn × uv,σ,δ(σn−1state(R
′, E′)))

)
= v(σ0

act(R,E)) + (Σn−1j=0 δ
j+1 × v(σjact(R

′, E′)) +

δn+1 × uv,σ,δ(σn−1state(R
′, E′)))

= v(σ0
act(R,E)) + (Σni=1δ

i × v(σi−1act (R′, E′)) +
δn+1 × uv,σ,δ(σn−1state(R

′, E′)))
= v(σ0

act(R,E)) + (Σni=1δ
i × v(σiact(R,E)) +

δn+1 × uv,σ,δ(σn−1state(R
′, E′)))

=
(
Σni=0δ

i × v(σiact(R,E))
)

+ δn+1 × uv,σ,δ(σnstate(R,E)).

�

Second, we show that if a strategy can be applied to a concurrent composition
of states at least n times, for all number of applications of the strategy up to n, the
action and state chosen by the strategy is the concurrent composition of the actions
and states chosen by the strategy on the states of the concurrent composition. This
provides a way to compositionally reason about actions and states that are chosen
by a strategy for a sequence of transitions of a concurrent composition of states.

Lemma 60. For all elementary strategies σ, natural numbers n, resources R,S, T ,
and closed processes E,F,G, if σnstate(R ⊗ S,E × F) = T,G, then, there exist
resources R′, S′ and closed processes E′, F ′ such that T = R′⊗S′ and G = E′×F ′,
and for all 0 ≤ i ≤ n,

σiact(R⊗ S,E × F) = σiact(R,E) · σiact(S, F)
σistate(R⊗ S,E × F) = σistate(R,E) ◦ σistate(S, F).

Proof. By induction over n.
Suppose n = 0. By Definition 19, there exists an action c such that

σ(R⊗ S,E × F) = (c, (T,G)).

By Definition 11, R ⊗ S,E × F c−→ T,G. As the Prod rule is the only operational
semantics rule to evolve concurrent compositions, we have that there exist resources
R′, S′ and closed processes E′, F ′ such that T = R′ ⊗ S′ and G = E′ × F ′. By
Definition 58[4], there exist a, b, such that c = ab, T = R′ ⊗ S′, G = E′ × F ′,
σ(R,E) = (a, (R′, E′)), and σ(S, F) = (b, (S′, F ′)). As 0 ≤ i ≤ n, the only possible
value of i is 0. By Definitions 19 and 53,

σ0
act(R⊗ S,E × F) = σ0

act(R,E) · σ0
act(S, F)

σ0
state(R⊗ S,E × F) = σ0

state(R,E) ◦ σ0
state(S, F).

Suppose 0 < n. By Definition 19, there exist c, U , H such that

σ(R⊗ S,E × F) = (c, (U,H))

and σn−1state(U,H) = T,G. By Definition 11, R⊗S,E×F c−→ U,H. As the Prod rule
is the only operational semantics rule to evolve concurrent compositions, we have
that there exist resources R′′, S′′ and closed processes E′′, F ′′ such that U = R′′⊗S′′
and H = E′′ × F ′′. By the induction hypothesis, there exist resources R′, S′ and

30 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

closed processes E′, F ′ such that T = R′ ⊗ S′ and G = E′ × F ′, and for all
0 ≤ i ≤ (n− 1),

σiact(R
′′ ⊗ S′′, E′′ × F ′′) = σiact(R

′′, E′′) · σiact(S′′, F ′′)
σistate(R

′′ ⊗ S′′, E′′ × F ′′) = σistate(R
′′, E′′) ◦ σistate(S′′, F ′′).

By Definition 58[4], there exist a, b, such that c = ab, σ(R,E) = (a, (R′′, E′′)), and
σ(S, F) = (b, (S′′, F ′′)), and hence

σ0
act(R⊗ S,E × F) = σ0

act(R,E) · σ0
act(S, F)

σ0
state(R⊗ S,E × F) = σ0

state(R,E) ◦ σ0
state(S, F).

By Definition 19, σiact(R
′′ ⊗ S′′, E′′ × F ′′) = σi+1

act (R ⊗ S,E × F) and σistate(R
′′ ⊗

S′′, E′′ × F ′′) = σi+1
state(R⊗ S,E × F). Hence, for all 0 ≤ i ≤ n,

σiact(R⊗ S,E × F) = σiact(R,E) · σiact(S, F)
σistate(R⊗ S,E × F) = σistate(R,E) ◦ σistate(S, F).

�

We define the payoff of a n-length prefix of a trace, for use when considering
sequencing.

Definition 61 (Bounded utility calculation).

uv,σ,δ,n(R,E) =



v(a) if σ(R,E) = (a, (R′, E′)), v(a) ↓,
and n = 0

v(a) + δ × uv,σ,δ,(n−1)(R
′, E′) if σ(R,E) = (a, (R′, E′)),

v(a) ↓, uv,σ,δ,(n−1)((R
′, E′)) ↓,

and 0 < n
−∞ if σ(R,E) = •
undefined otherwise.

Now we can show that payoffs of states, determined using elementary strategies,
have intuitive equational properties over the structure of states, notably, that the
payoff of a non-deterministic choice is the payoff of one of the possible choices
and that the payoff of a concurrent composition is the sum of the payoffs of the
concurrent components.

Proposition 62. For all valuation functions v, elementary strategies σ, discount
factors δ, resources R,R1, R2, R

′, and closed processes E,E′, F, E1, E2, we have
that:

(1) uv,σ,δ(R,0) = −∞;
(2) uv,σ,δ(R,1) = 0;
(3) If R,E 6→, then uv,σ,δ(R,E :γ F) = −∞;
(4) If σlast(R,E) = n, σnstate(R,E) = R′, E′, and uv,σ,δ(R,E :γ F) is defined,

then

uv,σ,δ(R,E :γ F) = uv,σ,δ,n(R,E) + δ(n+1) × uv,σ,δ(γ(R′), F);

(5) If uv,σ,δ(R1 ⊕ R2, E1 + E2) is defined, then

uv,σ,δ(R1 ⊕ R2, E1 + E2) = uv,σ,δ(Ri, Ei),

for some i ∈ {1, 2};
(6) If uv,σ,δ(R1 ⊕ R2, E1 + 0) is defined, then

uv,σ,δ(R1 ⊕ R2, E1 + 0) = uv,σ,δ(R1, E1);

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 31

(7) If v is total, then

uv,σ,δ(R1 ⊗ R2, E1 × E2) = uv,σ,δ(R1, E1) + uv,σ,δ(R2, E2);

(8) If uv,σ,δ(R,fix X.E) is defined, then

uv,σ,δ(R,fix X.E) = uv,σ,δ(R,E[fix X.E/X]).

Proof.
1. This follows from Definitions 11 and 16.
2. This follows similarly to Lemma 22.
3. As R,E 6→, by PrefixOne and PrefixTwo rules, R,E :γ F 6→. By

Definition 16, uv,σ,δ(R,E :γ F) = −∞.
4. By induction over n.
Suppose that n = 0. By Definition 19, we have that there exists an action a

such that σ(R,E) = (a, (R′, E′)) and σ(R′, E′) = •. By Definition 11, R′, E′ 6→.
By Definition 63, uv,σ,δ,0(R,E) = v(a). By Definition 58 (1), σ(R,E :γ F) =
(a, (γ(R′), F)). By Definition 16, uv,σ,δ(R,E :γ F) = v(a) + δ × uv,σ,δ(γ(R′), F),
and hence

uv,σ,δ(R,E :γ F) = uv,σ,δ,0(R,E) + δ(n+1) × uv,σ,δ(γ(R′), F).

Suppose that n < 0. By Definition 19, we have that there exists an action a
such that σ(R,E) = (a, (R′′, E′′)) and σn−1state(R

′′, E′′) = R′, E′. By Definition 63,
uv,σ,δ,n(R,E) = v(a) + δ × uv,σ,δ,(n−1)(R′′, E′′). By the induction hypothesis,

uv,σ,δ(R
′′, E′′ :γ F) = uv,σ,δ,(n−1)(R

′′, E′′) + δn × uv,σ,δ(γ(R′), F).

By Definition 58 (1), σ(R,E :γ F) = (a, (R′′, E′′ :γ F)). By Definition 16,

uv,σ,δ(R,E :γ F) = v(a) + δ × uv,σ,δ(R′′, E′′ :γ F)
= v(a) + δ × (uv,σ,δ,(n−1)(R

′′, E′′) + δn × uv,σ,δ(γ(R′), F))
= v(a) + δ × (uv,σ,δ,(n−1)(R

′′, E′′)) + δ(n+1) × uv,σ,δ(γ(R′), F)
= uv,σ,δ,n(R,E) + δ(n+1) × uv,σ,δ(γ(R′), F).

5. By Definition 58 (2), σ(R1⊕R2, E1+E2) = σ(Ri, Ei), for some i ∈ {1, 2}. By
Definition 16, we immediately have that uv,σ,δ(R1 ⊕ R2, E1 +E2) = uv,σ,δ(Ri, Ei).

6. Suppose that R1 ⊕ R2, E1 + 0 →. By the Sum rule, R1, E1 →. By Defi-
nition 11, σ(R1, E1) 6= •, σ(R2,0) = •, and σ(R1 ⊕ R2, E1 + 0) 6= •. By Case 5,
σ(R1 ⊕R2, E1 + 0) = σ(R1, E1). By Definition 16, we immediately have that

uv,σ,δ(R1 ⊕ R2, E1 + 0) = uv,σ,δ(R1, E1).

Suppose that R1 ⊕ R2, E1 +0 6→. By the Sum rule, R1, E1 6→. By Definition 11,
σ(R1, E1) = • and σ(R2,0) = •. By Proposition 62[5], σ(R1⊕R2, E1 + 0) = •. By
Definition 16, we immediately have that:

uv,σ,δ(R1 ⊕ R2, E1 + 0) = uv,σ,δ(R1, E1) = −∞.
7. To prove this property, we must consider three cases. The first is where

the concurrent composition can make no transitions. The second is where the
concurrent composition can make a finite number of transitions. The third is where
the concurrent composition can make an infinite number of transitions.

For the first case, suppose that R1 ⊗ R2, E1 ×E2 6→. By Definition 11, σ(R1 ⊗
R2, E1) = •. By Definition 16, uv,δ,σ(R1 ⊗R2, E1×E2) = −∞. By Definition 58[4],
there exists i ∈ {1, 2} such that σ(Ri, Ei) = •. By Definition 16, uv,δ,σ(Ri, Ei) =
−∞. Hence uv,σ,δ(R1 ⊗ R2, E1 × E2) = uv,σ,δ(R1, E1) + uv,σ,δ(R2, E2).

32 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

For the second case, suppose that R1 ⊗ R2, E1×E2 → and that there exists some
n ∈ N such that σlast(R1 ⊗R2, E1×E2) = n. Let σnstate(R1 ⊗R2, E1×E2) = (T,G).
By Definition 19, T,G 6→. By Definition 11, σ(T,G) = •. By Definition 16,
uv,δ,σ(T,G) = −∞. By Lemma 60, there exist R′1, R′2, E′1, E′2 such that T =
R′1 ⊗ R′2, G = E′1 × E′2, and, for all 0 ≤ i ≤ n,

σiact(R1 ⊗ R2, E1 × E2) = σiact(R1, E1) · σiact(R2, E2)(1)

σistate(R1 ⊗ R2, E1 × E2) = σistate(R1, E1) ◦ σistate(R2, E2).(2)

In particular, we have that σnact(R1, E1) = R′1, E
′
1 and σnact(R2, E2) = R′2, E

′
2. By

Lemma 59, as v is total:

uv,σ,δ(R1 ⊗ R2, E1 × E2) =(3) (
Σni=0δ

i × v(σiact(R1 ⊗ R2, E1 × E2))
)

(4)

+

δn+1 × uv,σ,δ(T,G)(5)

uv,σ,δ(R1, E1) =(6) (
Σni=0δ

i × v(σiact(R1, E1))
)

(7)

+

δn+1 × uv,σ,δ(σnact(R1, E1))(8)

uv,σ,δ(R2, E2) =(9) (
Σni=0δ

i × v(σiact(R2, E2))
)

(10)

+

δn+1 × uv,σ,δ(σnact(R1, E1)).(11)

By the Prod rule, either R′1, E
′
1 6→ or R′2, E

′
2 6→. So, by Definitions 11 and 16,

either uv,σ,δ(R
′
1, E

′
1) = −∞ or uv,σ,δ(R

′
1, E

′
1) = −∞. As a result, uv,σ,δ(T,G) =

uv,σ,δ(R
′
1, E

′
1) + uv,σ,δ(R

′
2, E

′
2), that is, (5) = (8) + (11). By Definition 14, for all

0 ≤ i ≤ n,

(12) v(σiact(R1 ⊗ R2, E1 × E2)) = v(σiact(R1, E1)) + v(σiact(R2, E2)),

and hence (4) = (7) + (10). By rearranging the arithmetic, we obtain our desired
result.

uv,σ,δ(R1 ⊗ R2, E1 × E2) = (4) + (5)
= ((7) + (10)) + ((8) + (11))
= ((7) + (8)) + ((10) + (11))
= (6) + (9)
= uv,σ,δ(R1, E1) + uv,σ,δ(R2, E2).

For the third case, suppose that R1 ⊗ R2, E1 × E2 → and that there exists no
n ∈ N such that σlast(R1 ⊗ R2, E1×E2) = n. As we assume that Cσ(R1 ⊗ R2, E1×
E2) is finite, then, by Definition 20, there exist a state S, F ∈ Cσ(R1 ⊗ R2, E1×E2)
and a natural number n such that σnstate(S, F) = S, F . Without loss of generality, let
n be the least number such that the above holds. By Lemma 59, as (1− δn+1) 6= 0:

uv,σ,δ(S, F) =
(
Σni=0δ

i × v(σiact(S, F))
)

+ δn+1 × uv,σ,δ(σnstate(S, F))
(1− δn+1)× uv,σ,δ(S, F) = (Σni=0δ

i × v(σiact(S, F))).

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 33

Suppose that S, F = R1 ⊗ R2, E1 × E2. By Lemma 60, for all 0 ≤ i ≤ n:

σiact(R1 ⊗ R2, E1 × E2) = σiact(R1, E1) · σiact(R2, E2)(13)

σistate(R1 ⊗ R2, E1 × E2) = σistate(R1, E1) ◦ σistate(R2, E2),(14)

and σnact(R1, E1) = R1, E1 and σnact(R2, E2) = R2, E2. By Definition 14, for all
0 ≤ i ≤ n,

v(σiact(R1 ⊗ R2, E1 × E2)) = v(σiact(R1, E1)) + v(σiact(R2, E2)).

Then,

(1− δn+1)× uv,σ,δ(S, F) = (Σni=0δ
i × (v(σiact(R1, E1)) + v(σiact(R2, E2))))(15)

= (Σni=0δ
i × (v(σiact(R1, E1))))(16)

+

(Σni=0δ
i × (v(σiact(R2, E2)))).(17)

By Lemma 59,

uv,σ,δ(R1, E1) =
(
Σni=0δ

i × v(σiact(R1, E1))
)

+

δn+1 × uv,σ,δ(R1, E1)

(1− δn+1)× uv,σ,δ(R1, E1) = (Σni=0δ
i × v(σiact(R1, E1)))(18)

uv,σ,δ(R2, E2) =
(
Σni=0δ

i × v(σiact(R2, E2))
)

+

δn+1 × uv,σ,δ(R1, E1)

(1− δn+1)× uv,σ,δ(R2, E2) = (Σni=0δ
i × v(σiact(R2, E2))).(19)

So, as S, F = R1 ⊗ R2, E1 × E2,

(15) = (16) + (17)
= (18) + (19)

(1− δn+1)× uv,σ,δ(R1 ⊗ R2, E1 × E2) = (1− δn+1)× uv,σ,δ(R1, E1)+
(1− δn+1)× uv,σ,δ(R2, E2)

uv,σ,δ(R1 ⊗ R2, E1 × E2) = uv,σ,δ(R1, E1) + uv,σ,δ(R2, E2).

Suppose that S, F 6= R1 ⊗ R2, E1 × E2. By Definition 20, there exists some
natural number m such that σmstate(R1 ⊗ R2, E1×E2) = S, F . By Lemma 60, there
exist R′1, R′2, E′1, E′2 such that S = R′1 ⊗ R′2, F = E′1×E′2, and, for all 0 ≤ i ≤ m,

σiact(R1 ⊗ R2, E1 × E2) = σiact(R1, E2) · σiact(R2, E2)(20)

σistate(R1 ⊗ R2, E1 × E2) = σistate(R1, E1) ◦ σistate(R2, E2),(21)

and hence σmstate(R1, E1) = R′1, E
′
1 and σmstate(R2, E2) = R′2, E

′
2. By Lemma 59,

uv,σ,δ(R1 ⊗ R2, E1 × E2) =
(
Σmi=0δ

i × v(σiact(R1 ⊗ R2, E1 × E2))
)

+

δm+1 × uv,σ,δ(R′1 ⊗ R′2, E
′
1 × E′2),

uv,σ,δ(R1, E1) =(22) (
Σmi=0δ

i × v(σiact(R1, E1))
)

(23)

+

δm+1 × uv,σ,δ(R′1, E′1)(24)

uv,σ,δ(R2, E2) =(25)

34 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON(
Σmi=0δ

i × v(σiact(R2, E2))
)

(26)

+

δm+1 × uv,σ,δ(R′1, E′1).(27)

By Definition 14, for all 0 ≤ i ≤ m,

v(σiact(R1 ⊗ R2, E1 × E2)) = v(σiact(R1, E1)) + v(σiact(R2, E2)),

and hence

uv,σ,δ(R1 ⊗ R2, E1 × E2) =(28) (
Σmi=0δ

i × v(σiact(R1, E1)) + v(σiact(R2, E2))
)

(29)

+

δm+1 × uv,σ,δ(R′1 ⊗ R′2, E
′
1 × E′2)(30)

We can use the same technique as in the case where S, F = R1 ⊗ R2, E1 × E2

(above) to prove that

uv,σ,δ(R
′
1 ⊗ R′2, E

′
1 × E′2) = uv,σ,δ(R

′
1, E

′
1) + uv,σ,δ(R

′
2, E

′
2),

and hence (30) = (24) + (27). By straightforward rearrangement of arithmetic, we
have that (29) = ((23) + (26)). Hence,

uv,σ,δ(R1 ⊗ R2, E1 × E2) = (29) + (30)
= ((23) + (26)) + ((24) + (27))
= ((23) + (24)) + ((26) + (27))
= (22) + (25)
= uv,σ,δ(R1, E1) + uv,σ,δ(R2, E2).

8. By Definition 58[5], σ(R,fix X.E) = σ(R,E[fix X.E/X]). By Definition 16,
we immediately have that uv,σ,δ(R,fix X.E) = uv,σ,δ(R,E[fix X.E/X]). �

We can also show similar results for bounded utility calculations.

Proposition 63. For all valuation functions v, elementary strategies σ, discount
factors δ, resources R,R1, R2, R

′, processes E,E′, F, E1, E2, and natural numbers
m, n, we have that:

(1) uv,σ,δ,n(R,0) = −∞;
(2) uv,σ,δ,n(R,1) = 0;
(3) If R,E 6→, then uv,σ,δ,n(R,E :γ F) = −∞;
(4) If σlast(R,E) = m, σmstate(R,E) = R′, E′, uv,σ,δ,n(R,E :γ F) ↓, and m < n,

then

uv,σ,δ,n(R,E :γ F) = uv,σ,δ,m(R,E) + δ(m+1) × uv,σ,δ,(n−(m+1))(γ(R′), F);

(5) If σlast(R,E) = m, σmstate(R,E) = R′, E′, uv,σ,δ,n(R,E :γ F) ↓, and n ≤ m,
then

uv,σ,δ,n(R,E :γ F) = uv,σ,δ,n(R,E);

(6) If uv,σ,δ,n(R1 ⊕ R2, E1 + E2) is defined, then

uv,σ,δ,n(R1 ⊕ R2, E1 + E2) = uv,σ,δ,n(Ri, Ei),

for some i ∈ {1, 2};
(7) If uv,σ,δ,n(R1 ⊕ R2, E1 + 0) is defined, then

uv,σ,δ,n(R1 ⊕ R2, E1 + 0) = uv,σ,δ,n(R1, E1);

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 35

(8) If v is total, then

uv,σ,δ,n(R1 ⊗ R2, E1 × E2) = uv,σ,δ,n(R1, E1) + uv,σ,δ,n(R2, E2);

(9) If uv,σ,δ,n(R,fix X.E) is defined, then

uv,σ,δ,n(R,fix X.E) = uv,σ,δ,n(R,E[fix X.E/X]).

Proof. This follows Proposition 62. We demonstrate with the cases that differ the
most.

4. By induction over m.
Suppose that m = 0. By Definition 19, we have that there exists an ac-

tion a such that σ(R,E) = (a, (R′, E′)) and σ(R′, E′) = •. By Definition 11,
R′, E′ 6→. By Definition 63, uv,σ,δ,n(R,E :γ F) = v(a) + δ × uv,σ,δ,n−1(γ(R′), F)
and uv,σ,δ,0(R,E) = v(a). By Definition 58 (1), σ(R,E :γ F) = (a, (γ(R′), F)). As
m = 0,

uv,σ,δ,n(R,E :γ F) = uv,σ,δ,m(R,E) + δ × uv,σ,δ,(n−1)(γ(R′), F)
uv,σ,δ,m(R,E) + δ(m+1) × uv,σ,δ,(n−(m+1))(γ(R′), F).

Suppose that m > 0. By Definition 19, we have that there exists an action a
such that σ(R,E) = (a, (R′′, E′′)) and σm−1state(R

′′, E′′) = R′, E′. By Definition 63,

uv,σ,δ,n(R,E :γ F) = v(a) + δ × uv,σ,δ,(n−1)(R′′, E′′ :γ F).

and

uv,σ,δ,m(R,E) = v(a) + δ × uv,σ,δ,(m−1)(R′′, E′′).
By the induction hypothesis, we have that

uv,σ,δ,(n−1)(R
′′, E′′ :γ F) = uv,σ,δ,(m−1)(R

′′, E′′) +
δm × uv,σ,δ,((n−1)−((m−1)+1))(γ(R′), F).

By straightforward arithmetic, (n − 1) − ((m − 1) + 1) = (n − (m + 1)). By
Definition 58 (1), σ(R,E :γ F) = (a, (R′′, E′′ :γ F)). Hence

uv,σ,δ,n(R,E :γ F) = v(a) + δ ×
(

uv,σ,δ,(m−1)(R
′′, E′′) +

δm × uv,σ,δ,(n−(m+1))(γ(R′), F))

)
= (v(a) + δ × uv,σ,δ,(m−1)(R′′, E′′))+

δ(m+1) × uv,σ,δ,(n−(m+1))(γ(R′), F)
= uv,σ,δ,m(R,E) + δ(m+1) × uv,σ,δ,(n−(m+1))(γ(R′), F).

5. By induction over m.
Suppose that m = 0. As n ≤ m, n = 0. By Definition 19, we have that

there exists an action a such that σ(R,E) = (a, (R′, E′)). By Definition 63,
uv,σ,δ,0(R,E :γ F) = v(a). By Definition 63, uv,σ,δ,0(R,E) = v(a). By Defini-
tion 58[1], σ(R,E :γ F) = (a, (γ(R′), F)). Hence

uv,σ,δ,n(R,E :γ F) = uv,σ,δ,n(R,E).

Suppose that 0 < m. By Definition 19, we have that there exists an action a
such that σ(R,E) = (a, (R′′, E′′)) and σm−1state(R

′′, E′′) = R′, E′. By Definition 63

uv,σ,δ,n(R,E :γ F) = v(a) + δ × uv,σ,δ,(n−1)(R′′, E′′ :γ F)

By Definition 63, uv,σ,δ,n(R,E) = v(a) + δ×uv,σ,δ,(n−1)(R′′, E′′). By the induction
hypothesis, we have that uv,σ,δ,(n−1)(R

′′, E′′ :γ F) = uv,σ,δ,(m−1)(R
′′, E′′). By

36 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

Definition 58[1], σ(R,E :γ F) = (a, (R′′, E′′ :γ F)). Hence

uv,σ,δ,n(R,E :γ F) = v(a) + δ × uv,σ,δ,(m−1)(R′′, E′′)
= uv,σ,δ,n(R,E).

�

We demonstrate the use of elementary strategies, and their equational payoffs
over resource-process structure, in the following example.

Example 64 (Mutual producer–consumer). In Example 34, we introduce an ex-
ample of distributed coordination without mutual exclusion: a mutual producer-
consumer system, where each ‘agent’ can generate work for, and consume work
from, the other. There, the agents performing the production and consumption
are represented indirectly. Using a resource-process framework, we can represent
the dynamics of the different agents more directly. Specifically, we represent these
agents as processes. We can then demonstrate how, for example, the first entity
cannot make progress when it only possesses resources that the second process can
consume available to it.

Suppose a resource model (R, e,⊗,⊕) such that, for all resources r, s, t ∈ R and
for all natural numbers n1, n2 ∈ N,

• (n1, n2) ∈ R,
• (r, s) ∈ R if and only if r ⊗ s = (r, s), and
• r ⊕ s = t if and only if r = s = t.

Intuitively, a pair of natural numbers denotes the resources, or work packages,
that could be consumed by the two agents in the system (should they have access to
them): the first number denotes the resources that could be consumed by the first
entity, and the second number denotes the resources that could be consumed by the
second entity. The p1 action denotes production of a work package by the first entity
for the second entity, and the c1 action denotes the consumption of a work package
by the first entity. Note that a process cannot perform a consume action if there
are zero resources that it can consume available to it. The p2 and c2 actions have
the obvious converse denotations. This is represented formally in the modification
function. Let µ be a modification function such that

µ((m,n), p1) = (m,n+ 1)
µ((m+ 1, n), c1) = (m,n)
µ((m,n), p2) = (m+ 1, n)
µ((m,n+ 1), c2) = (m,n).

We represent the first agent with a process, E1.

E1 = fix Y1.
(

(p1 : Y1) + (c1 : Y1) + 1
)

The process is a fixed point which consists of three possibilities. The process may
either: produce a resource (for the second process), using p1, and recurse; consume a
resource from the other process (if available), using c1, and recurse; or, perform the
tick action and terminate. When combined with the resource (1, 0), it can perform

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 37

any of its three possible actions, as demonstrated by the following derivations.

µ((1, 0), p1) = (1, 1)

(1, 0), p1
p1−−→ (1, 1), 0

(1, 0), p1 : E1
p1−−→ (1, 1), E1

(1, 0), (p1 : E1) + (c1 : E1) + 1
p1−−→ (1, 1), E1

µ((1, 0), c1) = (0, 0)

(1, 0), c1
c1−−→ (0, 0), 0

(1, 0), (c1 : E1)
c1−−→ (0, 0), E1

(1, 0), (p1 : E1) + (c1 : E1) + 1
c1−−→ (0, 0), E1

µ((1, 0), 1) = (1, 0)

(1, 0), 1
1−→ (1, 0), 0

(1, 0), (p1 : E1) + (c1 : E1) + 1
1−→ (1, 0), 0

When combined with the resource (0, 0), it can only produce (and recurse) or
terminate; it cannot perform the c1 action. The process E2 = fix Y2.((p2 : Y2)+(c2 :
Y2) + 1), which represents the second agent, behaves similarly.

In order to transfer the produced resources from one process to another, we make
use of a redistribution function γ such that:

γ(z) =

{
((n1 +m1, 0), (0, n2 +m2)) if z = ((n1, n2), (m1,m2))
z otherwise.

This redistribution function takes all of the work packages for the first process,
including those that were previously allocated to the second process, and gives them
all to the first process, and takes all of the work packages for the second process,
including those that were previously allocated to the first process, and gives them all
to the second process.

The dynamics of the full system can then be defined by the process E:

E = fix X.(E1 × E2) :γ X.

Suppose that the agents ‘profit’ from the consumption of work packages, and must
‘pay’ to create work packages. We can represent this situation via a pair of total
payoff functions v1 and v2 for the two entities such that

v1(p1) = −1 v1(c1) = 3 v1(p2) = 0 v1(c2) = 0
v2(p1) = 0 v2(c1) = 0 v2(p2) = −2 v2(c2) = 4.

We make use of a strategy where each entity consumes, if able; if not, and there
are no resources for the other entity, it produces; otherwise, it terminates. This is
represented via an elementary strategy σ such that

(1) σ
(

(n1, n2), (p1 : E1) + (c1 : E1) + 1
)

=
(
c1, ((n1 − 1, n2), E1)

)
if 1 ≤ n1

(2) σ
(

(0, 0), (p1 : E1) + (c1 : E1) + 1
)

=
(
p1, ((0, 1), E1)

)
(3) σ

(
(0, n2), (p1 : E1) + (c1 : E1) + 1

)
=

(
1, ((0, n2),0)

)
if 1 ≤ n2

(4) σ
(

(n1, n2), (p2 : E2) + (c2 : E2) + 1
)

=
(
c2, ((n1, n2 − 1), E2)

)
if 1 ≤ n2

(5) σ
(

(0, 0), (p2 : E2) + (c2 : E2) + 1
)

=
(
p2, ((1, 0), E2)

)
(6) σ

(
(n1, 0), (p2 : E2) + (c2 : E2) + 1

)
=

(
1, ((n1, 0),0)

)
if 1 ≤ n1.

38 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

As σ is an elementary strategy, we can the derive the payoff of the resource-
process pairs over their structure, via Propositions 62 and 63, rather than via Def-
inition 16. Suppose that uv1,δ,σ(((0, 0), (0, 0)), E) is defined. Let us consider the
payoff of the state ((0, 0), (0, 0)), E, from the perspective of the first agent.

Let the discount factor δ be 0.8. By Proposition 62[8], the payoff of the fixed
point of ((0, 0), (0, 0)), E is the payoff of the unfolding of the fixed point:

uv1,δ,σ(((0, 0), (0, 0)), E) = uv1,δ,σ(((0, 0), (0, 0)), (E1 × E2) :γ E).

In order to further proceed in the equational handling of utility, we need to determine
whether or not σlast(((0, 0), (0, 0)), (E1 × E2)) is defined. To establish this, we
can apply the strategy σ repeatedly. As the strategy σ is elementary, σ(e, E1) =(
p1, ((0, 1), E1)

)
, and σ(e, E2) =

(
p2, ((1, 0), E2)

)
, we have that

σ(((0, 0), (0, 0)), (E1 × E2)) = (p1p2, (((0, 1), (1, 0)), (E1 × E2))).

Similarly, as σ((0, 1), E1) =
(

1, ((0, 1),0)
)

, and σ((1, 0), E2) =
(

1, ((1, 0),0)
)

:

σ(((0, 1), (1, 0)), (E1 × E2)) = (1 · 1, (((0, 1), (1, 0)), (0× 0))).

As ((0, 1), (1, 0)),0 × 0 6→, we have that σlast(((0, 0), (0, 0)), (E1 × E2)) = 1. Let
R′, E′ = σ1

state(((0, 0), (0, 0)), E1 × E2) = ((0, 1), (1, 0)),0× 0.
The payoff of the sequential composition is the payoff of the prefix plus the dis-

counted payoff of the suffix:

uv1,σ,δ(((0, 0), (0, 0)), (E1 × E2) :γ E) = uv1,σ,δ,1(((0, 0), (0, 0)), E1 × E2)
+ δ2 × uv1,σ,δ(γ(R′), E).

The payoff of the concurrent composition is the sum of the payoffs of the concurrent
components:

uv1,σ,δ,1(((0, 0), (0, 0)), E1 × E2) = uv1,σ,δ,1((0, 0), E1) + uv1,σ,δ,1((0, 0), E2).

The payoff of the fixed point of (0, 0), E1 is the payoff of the unfolding of the fixed
point:

uv1,σ,δ,1((0, 0), E1) = uv1,σ,δ,1((0, 0), (p1 : E1) + (c1 : E1) + 1).

The payoff of the non-deterministic choice is the payoff of the branch chosen by the

strategy; that is, σ
(

(0, 0), (p1 : E1) + (c1 : E1) + 1
)

=
(
p1, ((0, 1), E1)

)
:

uv1,σ,δ,1((0, 0), (p1 : E1) + (c1 : E1) + 1) = uv1,σ,δ,1((0, 0), p1 : E1).

The payoff of the sequential composition is the payoff of the prefix plus the discounted
payoff of the suffix. Let σ0

state((0, 0), p1) = (R′1, E1):

uv1,σ,δ,1((0, 0), p1 : E1) = uv1,σ,δ,0((0, 0), p1) + δ × uv1,σ,δ,0(R′1, E1).

We straightforwardly have that R′1 = µ((0, 0), p1) = (0, 1) and uv1,σ,δ,0((0, 0), p1) =
v1(p1) = −1. The payoff of the fixed point of (0, 1), E1 is the payoff of the unfolding
of the fixed point:

uv1,σ,δ,0((0, 1), E1) = uv1,σ,δ,1((0, 0), (p1 : E1) + (c1 : E1) + 1).

The payoff of the non-deterministic choice is the payoff of the branch chosen by the

strategy; that is, σ
(

(0, 1), (p1 : E1) + (c1 : E1) + 1
)

=
(

1, ((0, 1),0)
)

:

uv1,σ,δ,0((0, 1), (p1 : E1) + (c1 : E1) + 1) = uv1,σ,δ,0((0, 1), 1).

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 39

The payoff of the trivial action process is uv1,σ,δ,0((0, 1), 1) = 0. Putting this all
together, we have that

uv1,σ,δ,1((0, 0), E1) = −1 + δ × 0 = −1.

We can use the same approach to show that uv1,σ,δ,1((0, 0), E2) = 0, as the first
agent has no (direct) payoffs from the actions performed by the second agent. Hence
we have that uv1,σ,δ,1(((0, 0), (0, 0)), E1 × E2) = −1 + 0 = −1.

We then consider the payoff of the suffix, γ(R′), E. Note that when we apply
the redistribution function γ, the work packages are moved to the process that can
consume them; that is,

γ(((0, 1), (1, 0)) = ((1, 0), (0, 1)).

The payoff of the fixed point ((1, 0), (0, 1)), E is the payoff of the unfolding of the
fixed point:

uv1,δ,σ((1, 0), (0, 1), E) = uv1,δ,σ((1, 0), (0, 1), (E1 × E2) :γ E).

In order to further proceed, we need to determine whether or not σlast(((1, 0), (0, 1)),
(E1×E2)) is defined. By repeated application of the strategy σ, we determine that:

σlast(((1, 0), (0, 1)), (E1 × E2)) = 2.

Let σ2
state(((1, 0), (0, 1)), (E1 × E2)) = (R′′, E′′) = ((0, 1), (1, 0)),0 × 0. The payoff

of the sequential composition is the payoff of the prefix plus the discounted payoff of
the suffix:

uv1,σ,δ(((1, 0), (0, 1)), (E1 × E2) :γ E) =
uv1,σ,δ,2(((1, 0), (0, 1)), E1 × E2) + δ3 × uv1,σ,δ(γ(R′′), E).

Following the above approach, uv1,σ,δ,2(((1, 0), (0, 1)), E1×E2) can be determined in
terms of the payoff of the concurrent components. For each component i ∈ {1, 2},
the strategy choses to perform the action ci, then pi, then 1. Hence

uv1,σ,δ,2((1, 0), E1) = 3 + 0.8×−1 + 0.82 × 0 = 2.2,

and uv1,σ,δ,2((0, 1), E2) = 0. As a result, we have that

uv1,σ,δ(((1, 0), (0, 1)), (E1 × E2) :γ E) = (2.2 + 0) + δ3 × uv1,σ,δ(((1, 0), (0, 1)), E).

We can solve this simultaneous equation for uv1,σ,δ(((1, 0), (0, 1)), E), and hence

uv1,σ,δ(((1, 0), (0, 1)), E) ≈ 4.5.

The payoff of the whole system is then the payoff of the original prefix and the
discounted payoff of the original suffix:

uv1,σ,δ(((0, 0), (0, 0)), (E1 × E2) :γ E) = uv1,σ,δ,1(((0, 0), (0, 0)), E1 × E2)+
δ2 × uv1,σ,δ(γ(R′), E)

≈ −1 + 0.82 × 4.5
≈ 1.9.

Recall the notion of Pareto optimality from Definition 35, that is, that a state
s is Pareto optimal if there exists an action a such that, for all other actions
b, if some entity (weakly) prefers that action b be performed, then there is some
other agent that strongly prefers that action a be performed. Here we have that
the state ((0, 0), (0, 0)), E is Pareto optimal, witnessed by the action p1 · p2. The
only other action that can be performed by ((0, 0), (0, 0)), E is 1 · 1. Note that

40 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

((0, 0), (0, 0)), E
1·1−−→ ((0, 0), (0, 0)), E. The payoff for the first agent obtained by

performing the action 1 · 1 is

v1(1 · 1) + δ × uv1,δ,σ(((0, 0), (0, 0)), E) ≈ 0 + 0.8× 1.9
≈ 1.5.

So, for the first agent, switching from the action p1 · p2 to 1 · 1 results in a loss of
payoff, so the state is Pareto optimal.

6. Discussion

In this paper, we motivate our development from a richly expressive modal logic
for resource semantics and distributed systems modelling, MBIU. This logic in-
cludes both additive and multiplicative propositional connectives and also additive
action modalities, as well as certain first-order quantifiers. We employ an abstract
formulation of MBIU that is based on a semantics that employs a labelled transition
system, a notion of concurrent composition of states, and an equivalence relation
on actions. Following the approach in [2], we establish Hennessy–Milner sound-
ness and completeness for our abstract formulation. This framework and logic is
sufficient to model classic examples from distributed systems modelling and game
theory, and to express game-theoretic concepts, including Pareto optimality, the
best-response property, and Nash equilibrium. The key role of the multiplicative
conjunction, ∗, in the formulae representing best response should be noted. Used
with the additives, it allows the separation of the states performing different actions
(the as and bs) to be enforced when required, whilst allowing payoff properties of
the overall system to be expressed relative to the overall resources, as required. We
then describe two instantiations of our abstract formulation. First, monoidal re-
source semantics: this can be utilized to provide a simple way to model distributed
systems. Many of our early examples in the abstract formulation turned out to
be of this class. Second, resource-process modelling: this can be utilized to model
scenarios in more structural detail. Using this approach, we should be able to incor-
porate the analysis of utility and optimality presented here into the widely deployed
systems and security modelling tools established in, for example, [12, 10, 11], with
deployments described in, for example, [21, 3, 7, 5, 6].

Some conceptual and technical issues, beyond our present scope, remain to be
addressed.

Multiplicative modalities, logical formulae that are often included in multiplica-
tive logics such as MBI, can be used to reason about transitions in the situations
where additional components are concurrently composed with the state at which
a formula is evaluated for satisfiability. With these modalities, it is possible to
provide a natural description of various agent based scenarios, including the notion
that achieving some goal is within an agent’s capabilities, were it to be given addi-
tional resources, and the notion that achieving some goal is never within an agent’s
capabilities, no matter how much additional resource it is given [14]. This can be
further extended to represent security examples where attacks can occur through
introduction of racy concurrent behaviour.

There are various possible choices of how to interpret the multiplicative com-
ponents of a logic in the case where the states have a multi-dimensional struc-
ture [12, 11, 14]. We present and contrast different possible interpretations (defined
informally) of multiplicative implication and multiplicative modalities.

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 41

We can add multiplicative modalities into our system straightforwardly. For
example, the multiplicative modality 〈d〉ν can be specified as:

R,E �ρ 〈d〉νφ iff there exist a, S, F,R′, E′ such that R⊗ S,E × F a−→ R′, E′,
|d| ≡ a, and R′, E′ �ρ φ.

Note that this formulation adds both a process and a resource component, following
the interpretation of multiplicative implication:

R,E �ρ φ1 −−∗ φ2 iff for all S, F , S, F �ρ φ1 implies R⊗ S,E × F �ρ φ2.

As a result, this multiplicative modality can be defined in terms of the multiplicative
implication and the additive fragment of the logic [2].

By contrast, in [12, 11], multiplicative implication composes both a resource
and a process component, while the multiplicative modalities compose solely a
resource component. An interpretation of multiplicative implication, following [12,
11], in our resource-process calculus, would be as above, but an interpretation of the
multiplicative modality 〈a〉νφ, following [12, 11], in our resource-process calculus,
would be:

R,E �ρ 〈d〉νφ iff there exist a, S,R′, E′ such that R⊗ S,E a−→ R′, E′,
|d| ≡ a, and R′, E′ �ρ φ.

By further contrast, in [14], one of us has considered a generalization of resource
semantics to admit multi-dimensional satisfaction relations of the form, for example,
w, r � φ, in which w ∈ W are taken to be Kripke worlds (ordered by v, say) in
the sense of classical modal logic and r ∈ R are interpreted as resources, where R
carries monoidal structure (with composition ◦, say). In this set-up, we can define
a multiplicative modality ♦s as

w, r � ♦sφ iff there is a world w v v such that v, r ◦ s � φ.
Such a modality is highly expressive and, among other things, generalizes the usual
S4 modality [8, 14]. This multiplicative modality can be defined in terms of the
multiplicative implication and the additive fragment of the logic.

Thus, there are various approaches taken in terms of which components are
augmented by multiplicative implication and multiplicative modalities. We believe
that an investigation into the comparative properties of these approaches would
be valuable. Furthermore, we conjecture that all of the above are examples of a
more general treatment of multiplicative connectives within a generalized multi-
dimensional handling of concurrent transition systems, and that such a handling
would have natural resource interpretations.

Another multiplicative possible extension to the logic is multiplicative quantifiers
[12, 11]. Multiplicative quantifiers reason about actions in the presence of hiding;
their inclusion of multiplicative quantifiers into our system is a complex prospect.
A rendering of multiplicative existential quantification, ∃να.φ, for our resource-
process calculus, following [12, 11], would be

R,E �ρ ∃να.φ iff there exists S, F, a ∈ Act, h ∈ H such that R,E ∼ S, νh.F
and h(S), F �ρ[α:=a] φ.

Thus, multiplicative quantification is closely related to the notion of hiding and
to the multi-dimensional world structure in resource-process calculi. There is no
immediately apparent generalization of such an approach to arbitrary concurrent
transition systems that do not have a multi-dimensional world structure.

42 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

It does not appear possible, within the current framework, to handle of the payoff
of the hiding operator equationally. It is relatively straightforward to determine the
payoff of a resource-process pair with hiding in terms of the derivation of the payoff
of the relevant resource-process pair without hiding. This can be done as follows.
Extend the notion of elementary strategy (Definition 58), for all hiding functions
h, with:

If σ(h(R), E) = (a, (h(R′), E′)), then σ(R, νh.E) = (νh.a, (R′, νh.E′)).

The payoff of the state h(R), E is specified by a finite set of linear simultaneous
equations,

uv,σ,δ(h(R), E) = v(σ0
act(h(R), E)) + δ × uv,σ,δ(σ0

state(h(R), E))
. . .
uv,σ,δ(σ

n−1
state(h(R), E)) = v(σnact(h(R), E)) + δ × uv,σ,δ(σnstate(h(R), E)).

The payoff of the state R, νh.E, with respect to an elementary strategy σ, can then
be specified by the modified finite set of linear simultaneous equations,

uv,σ,δ(R, νh.E) = v(νh.(σ0
act(h(R), E))) + δ × uv,σ,δ(σ0

state(R, νh.E))
. . .
uv,σ,δ(σ

n−1
state(R, νh.E)) = v(νh.(σnact(h(R), E))) + δ × uv,σ,δ(σnstate(R, νh.E)).

It does not appear possible to render this result so that the payoff uv,σ,δ(R, νh.E)
is determined equationally in terms of the value of the payoff uv,σ,δ(h(R), E). One
possibility is to modify our definition of state payoff functions to include action
transformations of the form seen above. Let an action transformation function be
a total function f : Act → Act such that, for all action payoff functions v ∈ V
and actions a ∈ Act, if v(a) ↓, then v(f(a)) ↓. We define a transformative payoff
function as

uv,σ,δ,f (s) =

{
v(f(a)) + δ × uv,σ,δ,f (s′) if σ(s) = (a, s′), v(f(a)) ↓, and uv,σ,δ,f (s′) ↓
−∞ if σ(s) = •
undefined otherwise.

Let us restrict the set of hiding functions H so that, for all h ∈ H and v ∈ V,
v(a) ↓ implies v(ν h.a) ↓. Then, the payoff of (R, νh.E), uv,σ,δ(R, νh.E), is simply
the (action transformed) payoff of (h(R), E) with respect to the hiding function ν h,
uv,σ,δ,(νh)(h(R), E).

Further research is required to determine how hiding can be used in practice in
modelling scenarios that consider payoff, the extent to which the lack of equational
theory is a concern, and our alternative derivation of payoff in such circumstances.

Finally, while it is possible to define an operational semantics for open states, an
appropriate notion of substitution, and an appropriate notion of bisimulation for
open states, in arbitrary concurrent transition systems are open problems.

Acknowledgements. We are grateful to James Brotherston, Matthew Collinson,
Guy McCusker, and Alexandra Silva for their advice on writing this paper. This
work has been partially supported by the UK EPSRC project EP/K033042/1, ‘Al-
gebra and Logic for Policy and Utility in Information Security’.

A SUBSTRUCTURAL MODAL LOGIC OF UTILITY 43

References

[1] G. Anderson, J. Brotherston, and D. Pym. Hennessy-Milner Completeness in Transition
Systems with Synchronous Concurrent Composition. Technical report, RN/15/05, Univer-

sity College London, 2015. Manuscript at http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/

research/Research_Notes/RN-15-05.pdf.
[2] G. Anderson and D. Pym. A Calculus and Logic of Bunched Resource Processes. Theoretical

Computer Science, 614:63–96, 2016.

[3] Y. Beres, D. Pym, and S. Shiu. Decision Support for Systems Security Investment. In Pro-
ceedings of the 5th Workshops on Network Operations and Management Symposium, pages

118–125. IEEE Xplore, 2010.
[4] Y. Beresnevichiene, D. Pym and S. Shiu. Decision Support for Systems Security Invest-

ment. In Network Operations and Management Symposium Workshops, pages 118–125. IEEE

Xplore, 2010.
[5] T. Caulfield and D. Pym. Improving Security Policy Decisions with Models. IEEE Security

and Privacy, 13(5):34–41, 2015.

[6] T. Caulfield and D. Pym. Modelling and Simulating Systems Security Policy. In Proceedings
of the 8th Conference on Simulation Tools and Techniques, pages 9–18. ACM Digital Library,

2015.

[7] T. Caulfield, D. Pym, and J. Williams. Compositional Security Modelling: Structure, Eco-
nomics, and Behaviour. Lecture Notes in Computer Science, 8533:233–245, 2014.

[8] B. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.

[9] M. Collinson, B. Monahan, and D. Pym. A Logical and Computational Theory of Located
Resource. Journal of Logic and Computation, 19(b):1207-1244, 2009.

[10] M. Collinson, B. Monahan, and D. Pym. Semantics for Structured Systems Modelling and
Simulation. In Proceedings of the 3rd Conference on Simulation Tools and Techniques, pages

34:1–34:10, 2010.

[11] M. Collinson, B. Monahan, and D. Pym. A Discipline of Mathematical Systems Modelling.
College Publications, 2012.

[12] M. Collinson and D. Pym. Algebra and Logic for Resource-Based Systems Modelling. Math-

ematical Structures in Computer Science, 19(5):959–1027, 2009.
[13] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: Concepts and Design.

Addison Wesley, 3rd edition, 2000.

[14] J.-R. Courtault, D. Galmiche, and D. Pym. A Logic of Separating Modalities. Theoretical
Computer Science, 637:30–58, 2016. doi: 10.1016/j.tcs.2016.04.040.

[15] Y. Deng and M. Hennessy. Compositional Reasoning for Weighted Markov Decision Processes.

Science of Computer Programming, 78(12):2537–2679, 2013.
[16] D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux. Mathe-

matical Structures in Computer Science, 15:1033–1088, 2015.

[17] M. Hennessy and G. Plotkin. On Observing Nondeterminism and Concurrency. Lecture Notes
in Computer Science, 85:299–308, 1980.

[18] S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable Data Structures. In
Proceedings of the 28th Symposium on Principles of Programming Languages, pages 14–26.

ACM SIGPLAN Notices, 2001.
[19] W. Jamroga. A Temporal Logic for Markov Chains. In Proceedings of the 7th Conference on

Autonomous Agents and Multiagent Systems, pages 697–704. ACM Digital Library, 2008.

[20] J.-B. Jeannin, D. Kozen, and A. Silva. Language Constructs for Non-well-Founded Compu-

tation. Lecture Notes in Computer Science, 7792:61–80, 2013.
[21] Hewlett-Packard Laboratories. Towards a Science of Risk Analysis. http://www.hpl.hp.com/

news/2011/oct-dec/security_analytics.html. Accessed 16 October 2015.
[22] D. Larchey-Wendling and D. Galmiche. Exploring the Relation Between Intuitionistic BI

and Boolean BI: An Unexpected Embedding. Mathematical Structures in Computer Science,

19(3):435–500, 2009.

[23] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Science, 25(3):267–
310, 1983.

[24] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
[25] P. O’Hearn and D. Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic,

5(2):215–244, 1999.

http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN-15-05.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN-15-05.pdf
http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
http://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html

44 GABRIELLE ANDERSON AND DAVID PYM UNIVERSITY COLLEGE LONDON

[26] D. Pym, P. O’Hearn, and H. Yang. Possible Worlds and Resources: The Semantics of BI.

Theoretical Computer Science, 315(1):257–305, 2003.

[27] S. Read. Relevant Logic: A Philosophical Examination of Inference. Basil Blackwell, 1989.
[28] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proceedings

of the 17th Conference on Logic in Computer Science, pages 55–75. IEEE, 2002.

[29] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. Cambridge University Press, 2008.

[30] A. Sokolova and E. Vink, Probabilistic Automata: System Types, Parallel Composition and

Comparison. Lecture Notes in Computer Science, 2925:1–43, 2004.

University College London

E-mail address: gabrielle.anderson@ucl.ac.uk

University College London
E-mail address: d.pym@ucl.ac.uk

	1. Introduction
	2. A substructural modal logic of utility
	2.1. Transition systems
	2.2. Logic and transition semantics

	3. Examples and optimality
	4. Resource semantics and modelling
	5. Resource-process systems modelling
	6. Discussion
	References

