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Traditionally, logic proceeds by inferring a conclusion from established pre-
misses using inference rules. This is the paradigm of deductive logic:

Established Premiss; ... Established Premiss,, U
Conclusion

The dual of deductive logic is the paradigm known as reductive logic (RL).
Here one proceeds from a putative conclusion, called the goal, to a collection of
premisses that suffice to witness the conclusion by means of a reduction operator,

Sufficient Premiss; ... Sufficent Premiss,,
Putative Conclusion
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Reductions may correspond to inference rules, read from conclusion to premisses,
or may have other forms (e.g., see [6]). The process of constructing a proof in
RL is known as proof-search.

Reductive logic more closely resembles the way in which mathematicians ac-
tually prove theorems and, more generally, the way in which people solve prob-
lems, especially when using formal representations. For example, it encompasses
diverse applications of logic to computer science such as, inter alia, logic pro-
gramming (LP), program verification, and model-checking. Despite the ubiquity
of reductive reasoning, it currently has little unified meta-theory. Developing a
general metatheory of RL (i.e., proof theory and semantics, with results such
as soundness and completeness) is an ongoing project. Some models have been
considered, especially for classical and intuitionistic logic (IL) (e.g., see [7]).!

In general, the proof-search space for a goal can be regarded as a state space
whose one-step dynamics is given by the reduction operators. It follows that
an appropriate model of reduction is provided by a coalgebraic construction;
specifically, let p; be the finite powerset functor, then reduction operators are
coalgebras p : GOALS — g p¢(GOALS). Using this perspective, the authors [2]
have developed a general coalgebraic model of reduction in sequent calculi, gen-
eralizing earlier work in [4] on Horn clause LP (HcLP).

Let I be the identity function on GOALS, and Y}, and py be defined as follows:
Yy := GOALS, Y41 :=GOALS X p; p¢(Yqo) and po := I, pat1:=1I X @5 @s(pacp).

* This work has been partially supported by the UK’s EPSRC through research grant
EP/S013008/1. The work discussed herein has been presented in [2].

! For example, uniform proof [5], while complete for the hereditary Harrop fragment of
IL, does not specify an operational semantics (OS) for proof-search. Rather, it gives
an RL basis relative to which an OS, specifying controls such as clause selection and
backtracking, can be defined.
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Let C be the co-free comonad of the pspy functor. The resulting coalgebra (e.g,
see [1]) A : GOALS — C(GOALS) maps a goal to its proof-search space (a more
accurate bi-algebraic model was given for HcLP in [1]).

This coalgebraic semantics is a model of reduction, but not of proof-search.
Here, proof-search is distinguished from reduction by a control régime determin-
ing precisely what reductions are made at what time. In general, control mani-
fests as a choice (e.g., to backtrack). One control problem that can be handled in
this coalgebraic semantics is choice of premisses. One applies a choice function
o after applying a reduction operator: GOALS % o 0(GOALS) % o (GOALS)
Choice could also be described using a structural OS for proof-search. In general,
such systems admit co- and bi-algebraic models; see, for example, [§].

One approach to a general theory of control is to simulate proof-search in
one logic as proof-search in another logic that is enriched by some algebra such
that solutions to equations on the algebra represent various control choices; for
example, this is the approach in [3] for the context-management problem of
proof-search in linear, bunched, and relevant logics. At the abstract level, this
approach could represent control as the algebra component of a bialgebra, whose
coalgebra components are essentially the reduction operators provided. This co-
heres with the bialgebraic model of structural OS provided in [8] (regarding
controls as constructors for explorations of a proof-search space).

In conclusion, RL proof-searches are important phenomena within philoso-
phy, mathematics, and computing, but currently lack a uniform meta-theory.
The proof-search space for a goal can be understood as a state space, for which
coalgebra provides an suitably general technology for a mathematical theory of
reduction. Further work is to characterize fully control in this setting.
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