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Abstract: In this paper, we set up a mathematical framework for modelling and control
of complex cyber-physical ecosystems. In our setting, cyber-physical ecosystems (CPES) are
cyber-physical systems of systems, which are highly connected. CPES are understood as open
and adaptive cyber-physical infrastructures. These networked systems combine cyber-physical
systems with an interaction mechanism with other systems and the environment (ecosystem
capability). The main focus will be on modelling cyber and physical interfaces that play an
important role on the control of the emergent properties like safety and security.
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1. INTRODUCTION

The concept of Cyber-Physical System (CPS) was intro-
duced by NSF in 2006 to define a new generation of sys-
tems that integrate computation, networking and physical
processes at different complexity scales. CPSs go beyond
traditional embedded/pervasive and distributed systems.
CPES are ecosystems of networked CPS, meaning that
they are systems of CPS (CPSoS) provided with an inter-
action activity between them and with their environment.
Alternatively, we may call them cyber-physical infras-
tructures. Examples are smart grid, autonomous vehicles
and maritime ships, autonomous swarm robotics. From
the computer science perspective and systems theory, we
can understand cyber-physical infrastructures within the
framework of distributed systems. In the computer science
field, the concept of a distributed system is the essential
assembling piece of the systems theory that supports the
technical architecture and operations of the CPSoS. For
distributed systems, the key concepts are as follows: ar-
chitecture (i.e., the location of the system component), re-
source (the nature of the system components) and process
(communication, interoperability, service).

When studying properties of such complex infrastructures
like security and safety, a chink in the armor of the inter-
acting mechanism is the design and modelling the inter-
faces. For CPS, these interfaces are complex and can be
described in a hierarchical manner: cyber — physical layer,
information layer, service layer, and so on. In this paper,
we set up a mathematical framework for CPES based on
the theoretical work described in Collinson et al. (2012);
Caulfield et al. (2022) and papers cited therein, which
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builds on a conceptualization of the essential structural
(locations, resources, interfaces) and dynamic (processes)
components of distributed systems, situated in stochastic
environments. Formally, we consider the architecture of
a CPSoS, the components (or CPS) in the system, and
the processes that are carried out by the system. The key
objects of such an architecture are location, resource, and
process — as well as environment. The locations will be
modelled as vertices of a network, resources will be implic-
itly modelled by the coefficients of equations that govern
the dynamics of the CPS components and eventually some
constraints, and processes will be characterized by a set of
physical and computational variables and their possible
trajectories. The behaviours of the components will be
modelled as trajectories of stochastic hybrid systems.

In this work, we are blending the distributed system
architecture approach with the behavioural approach for
dynamical systems Willems (2007). The first one allows us
to make zoom in and zoom out in the structure CPES. The
second one will enable us to use different control techniques
for cyber-physical infrastructures.

We assume that the reader is familiar the basic theory
of stochastic processes and stochastic processes. For a
detailed presentation we refer to Bujorianu (2012).The
notations are standard for the Markov process theory.

2. CPES MODELLING

2.1 Conceptual Modelling

Conceptually, we describe CPES as an infrastructure of
cyber-physical systems that are interconnected through
some interfaces/ports, change some information, inter-
operate to achieve some common goals.



Components In a nutshell, a CPS component can be
viewed as a tuple C = ⟨Loc,X, I,Beh⟩, where Loc is its
location, X is a finite set of variables (both computational
and physical), I represents its interface thought of as a set
of variables that can be observed by the other systems of
the CPES. Finally, Beh denotes the set of the component
behaviours that are, in fact, trajectories of the underlined
CPS (evolutions of its variables).

Due to the interaction with other components, some of
these parameters could be modified. For example, Loc can
be changed according to a Markov chain, or the equation
that governs the time evolution of X can be perturbed by
a stochastic disturbance coming from the environment.

In this paper, we will provide a modelling framework for
both local and global behaviour of a CPES. Any CPS
component will change continuously its behaviours evolv-
ing in parallel with the other components. Moreover, the
interactions through the interface states may change the
component internal behaviours. The global evolution of a
CPES will be modelled as the asynchronous parallel com-
position of its (interaction altered) component evolutions.
An interleaving semantics will be provided to describe the
overall CPES dynamics in different interaction scenarios.
For control and coordination purposes, an analytic syn-
chronization of the whole CPES will be assembled.

Composition Design In the context of cyber-physical
systems, the fingerprints for composition design have been
discussed in Tripakis (2016). In the following, we just
present at a conceptual level some of ideas adapted to
our setting. The CPS infrastructure can be thought of as
the result of composition of the constituent systems by
means of parallel composition or interconnection (interop-
erability) operators. At a high level, we can think that a
conceptual CPS infrastructure is defined as a SoS of N
CPS components; that is, (C1, C2, ..., CN ).

Two CPS components are compatible if their locations and
variables are disjoint (non-overlapping).

The synchronous parallel composition of the compatible
CPS components Ci1 and Ci2 is the interaction-free com-
ponent denoted by Ci1 ∥ Ci2 , defined as: Ci1 ∥ Ci2 =
⟨(Loci1 , Loci2), Xi1 ∪Xi2 , Ii1 ∪ Ii2 , Behi1 ×Behi2⟩.
To define the interoperability operator we need first to
have an interconnection relation. Let I = I1 ∪ I2 ∪ ...∪ IN
be the set of all interface states of the CPSoS. Then an
interconnection relation IR is defined as a relation on I;
that is, IR ⊂ I × I, which illustrates the coupling of the
SoS interfaces.

Using IR, we can define an interoperability operator Ψ as
a mapping that alters the structure of a CPS component
C when this interacts with other components. For a
system component C, we can define the external set of
interface states, which belong to the those systems that
are interaction with C as follows:

ExC
IR = {u ∈ I \ IC |∃v ∈ IC : (u, v) ∈ IR ∨ (v, u) ∈ IR}

By applying the operator Ψ to the component C we
obtained a new system Ψ(C) whose locations, variables
and behaviours might be altered due to the interactions
with the other systems: Ψ(C) = ⟨Loc′, X ′, I ′, Beh′⟩.

The modification of the location Loc and of the set of
variables X can be done following a specific protocol
using a logical reasoning on interface variables. As well,
as a result of interconnections, some interface states can
be removed by wiring. The operator Ψ has to provide a
methodology for the amendment of the behaviours.

Interoperability can be also result of an asynchronous par-
allel composition (by interleaving), where the interaction
between components is allowed through the interface vari-
ables. In this paper, we suppose that all the CPS compo-
nents are atomic and there is no integration into compound
components. So, the components have some autonomy and
their interoperability with the other components does not
produce the behavioural binding. To this end, here, the
CPES behaviour is the result of the asynchronous parallel
composition of its components.

2.2 Mathematical Modelling

The next step is to set up a mathematical framework where
the CPES objects and their relationships are described in
the language of mathematics. Our CPES model builds on
several well-known formalism like stochastic hybrid sys-
tems Bujorianu (2012) and the interface theory Caulfield
et al. (2022). Our framework provides support for physical
and digital modelling, and for both physical and computa-
tional interactions. Formally, we model CPES as a network
of stochastic hybrid agents, which captures the autonomy
of the CPS components. Each CPS is represented as an
agent, modelled as a hybrid dynamical system with prob-
abilistic discrete transitions between operation modes. In
each mode, the system evolution is continuous and can
be either deterministic or stochastic. The interactions are
realized through some interfaces and an interaction pro-
tocol. We can specify the mathematical description in the
language of distributed systems with locations, resources
and processes. Then we combine this language with the
mathematically powerful stochastic hybrid systems mod-
elling.

Stochastic Hybrid Network We model a CPES as a
network of stochastic hybrid agents. The locations of
the agents are the network vertices. The edges of the
network represent the interactions between agents. Note
that the network can evolve in time and interactions be-
tween agents can change. We consider agents with complex
nonlinear dynamics affected by randomness modelled as
stochastic hybrid systems with a specific type of interac-
tion. In these systems, the randomness may be present in
both continuous and discrete behaviors. Usually, the dis-
crete behaviour include: (i) spontaneous (event triggered)
transitions, which are generated by the appearance of
certain events; (ii) forced transitions, which are triggered
by specific conditions (guards) that are associated with the
internal structure of individual agents.

In this section, we consider stochastic hybrid systems with
both forced and spontaneous transitions. In the context
of SoS, spontaneous transitions can be also generated by
specific events like the inter-systems communication, or by
the perturbations coming from the environment.

Each system interchanges (incoming/outgoing) messages
with the other systems, following a specific communication



protocol. An outgoing message is released only when a
discrete transition is enabled. The incoming messages are
collected only during continuous evolution.

The hybrid agent evolution can be described by two
types of activities: (i) interface activity (interaction with
other agents); (ii) ‘internal working’ activity. Every input
message generates some new constraints on the working
activity of the agent, which can play the role of new
guards/rates that trigger new discrete jumps.

Formally, the overall activity of each agent is described as a
stochastic hybrid process: Hi = (qit, x

i
t, u

i
t). Usually, stan-

dard assumptions are imposed to ensure the Markovianity
of such a process.

Hybrid state space For eachHi, we define its hybrid state
space Xi × U i, where Xi = Qi × Xi, for i = 1, .., N . We
assume that for all i, the hybrid state spaces Xi can be
embedded in the Euclidean space Rd. The space Xi will
be equipped with its Borel σ-algebra B(Xi). Some ‘active’
guards will be defined later.

The hybrid state xi
t := (qit, x

i
t) will be called the internal

state of the agent i, which is not accessible to other agents.
The discrete state q corresponds to the computational
(control) part and the continuous state x describes the
physical part of the system.

The pair ui
t := (qit, u

i
t) is called interface state, and it

represents the observable state of the agent i, which is
visible to the other agents (U i will be defined later on).
The space U i will be divided into digital and physical com-
ponents. The interface states are ensuring the possibility
of communication between agents.

Guards The guards are defined as active boundaries or
sets Γi that trigger the forced jumps from the standard
definition of stochastic hybrid systems. More precisely, in
the absence of interactions, between the jump times, the
process follows the dynamics law given by some stochastic
differential equations. The jumping times are defined as
hitting times of the active boundaries, when the jumps
are forced, or exponentially distributed times (with rates
λi : Xi → R+) when the jumps are spontaneous. The
post jump locations are chosen according to a stochastic
kernel Ri : Xi × B(Xi) → [0, 1]. Therefore, the physical
behavior of such a hybrid system will be described by the
tuple (qit, x

i
t), t ≥ 0, which is a right continuous stochastic

process on the underlying probability space (Ω,F ,P).

For each agent i, the jumping times are: 0 < T i
1 < T i

2 <
... < T i

k < .... The discrete transitions might be:

(i) spontaneous, when xi
(T i

k
−)

∈ Xi\Γi and the sojourn

time is given by the survival function (multiplicative

functional): Ψi(t, ω) = exp(−
∫ t

0
λi(xi

s(ω))ds);

(ii) forced, when xi
(T i

k
−)

∈ Γi and the corresponding

multiplicative functional is I[t<ti∗(ω)], where ti∗(ω) is the

first exit time from Xi\Γi.

It is assumed that xi
t ∈ Xi\Γi, for all t ≥ 0, except for the

forced transition moments of time when xi
(T i

k
−)

∈ Γi.

The active boundary a static or a dynamic set that might
depend on the environment or on the other agents. The
jumping times are defined as the first hitting times of the
active boundary by the continuous process (xi

t).

Based on the hybrid nature of the underlying system,
in each operation mode, the active boundary could be
changed according to the communication/interaction with
other CPES components.

2.3 Infinitesimal Generator

Let us briefly recall the concept of infinitesimal generator.
Intuitively, the generator describes the movement of the
process in an infinitesimal time interval. Suppose that (Xt)
is a Markov process with an homogeneous transition prob-
ability function (pt)t≥0. For each t ≥ 0, define conditional
expectation operator by

Ptf(x) :=

∫
f(y)pt(x, dy) = Exf(xt),∀x ∈ X; (1)

where Ex is the expectation with respect to Px. Here,
f belongs to B(X), which is the lattice of all bounded
measurable real functions defined on X. The Chapman-
Kolmogorov equation guarantees that the linear operators
Pt satisfy the semigroup property: Pt+s = PtPs. This
suggests that the semigroup of (conditional expectation)
operators P = (Pt)t>0 can be considered as a sort of
parameterization for a Markov process.

Associated with the semigroup (Pt) is its infinitesimal
generator which, loosely speaking, is the derivative of Pt

at t = 0. Let D(L) ⊂ B(X) be the set of functions f for
which the following limit exists: limt↘0

1
t (Ptf − f), and

denote this limit Lf . The limit refers to convergence in
the supnorm ∥·∥ of the Banach space B(X); that is, for
f ∈ D(L) we have: limt↘0 || 1t (Ptf − f)− Lf || = 0.

The behaviour of a Markov process can be characterized,
in an implicit way, by the infinitesimal generator (through
the martingale problem Ethier and Kurtz (1986)). Most of
the analytical techniques for problems related to Markov
processes are described using solutions for different equa-
tions constructed using the infinitesimal generator.

For a stochastic hybrid agent i, the infinitesimal generator
can be written in a simplified version as follows:

Lif = Li
cf + Li

jf, ∀f ∈ B(Xi). (2)

We use the notation Li
c for the continuous part of the

generator, which corresponds to the continuous dynamics
of the process. This can be in the form of the Lie derivative
if this dynamics is deterministic (governed by an ordinary
differential equation), or in the form of the diffusion
generator if this dynamics is stochastic (governed by a
stochastic differential equation). The notation Li

j is used
to designate the discrete part of the generator, which
corresponds to the discrete dynamics of the process. This
is commonly expressed as the infinitesimal generator of a
jump process:

Li
jf(x) = λi(x)

∫
[f(y)− f(x)]Ri(x, dy). (3)

For each x in the active boundary, the boundary condition
should be satisfied:



f(x) =

∫
Xi

f(y)R(x, dy),∀f ∈ D(Li) (4)

In the previous formulas, some superscripts for x have been
omitted to improve readability.

2.4 Interaction and Interfaces

Each CPS has a physical behaviour which is independent
when the system evolves in isolation, or is changed by
the interaction with other systems of the CPES for the
purpose of inter-operability. The dynamics of each such a
system is modelled as stochastic hybrid system. Examples
of such CPES are the cars on the highway, or the fleet
of ships in port. More advanced models could include
the dynamics of an autonomous car and its interaction
with other traditional cars. We seek for applications of
this framework in intelligent transportation, where au-
tonomous vehicles communicate and cooperate with each
other via an effective real-time communication network.

The CPES behaviour modelling requires the description of
an interaction protocol between agents. The interaction of
a CPS agent with other through some sort of communica-
tion will lead to perturbations of the continuous dynamics
or will generate additional discrete transitions.

We can consider interactions at different levels: (i) Discrete
layer : inter-agent interaction influences the discrete mech-
anism. In this case, the guards and the rates of discrete
transitions are reconfigured. (ii) Physical layer : inter-agent
interaction influences influences the laws of the continuous
(the differential equations) behaviour.

The interaction at the discrete layer is done changing the
rates (for spontaneous transitions) or the guards (for the
forced transitions). Since the guards/rates of the discrete
transitions can be changed using the interface variables,
the interaction leads to the decrease of the sojourn times
and only then the internal physical behaviour is altered.

The interaction at the physical layer could be done implic-
itly, through some communication between agents when
they change information regarding the update of some
parameters. But it could be the case that the interaction is
done in an explicit way, through some direct actions when
one agent is changing its continuous trajectory as a result
of such interaction.

Interface parameters Suppose that the evolution of a
CPES component i can be modelled by a hybrid stochastic
system. When such a system is interacting with other com-
ponents, the discrete or the continuous behaviours suffer
changes. Mathematically, we formulate these interactions
defining the interface variables. Note these variables are
not necessarily state variables, but rather observation pa-
rameters or action labels. In the following, we define the
cyber and physical interface parameters.

Intensity rate Let the influence from the agent j towards
agent i be modelled by an intensity rate:

λij : Qi ×Qj → R; (qi, qj) 7→ λij(qi, qj) := λij
qiqj

that quantifies how the actions of j when its discrete state
is qj are perceived by the agent i when it works in the
mode qi. Convention: λii

qiqi := 0.

Possible intensity rates are: location awareness, distance
from an obstacle/objective, resource usage index, etc.

Edge weights We can define wij as some interface pa-
rameters between physical layer and digital layer, which
may affect the CPS agent interactions at different levels.
The concept is versatile enough to encapsulate different
interface variables. In this paper, we take just some simple
examples.

Sojourn local time For each agent i, let us define, for
t ≥ 0, t ∈ [T i

k, T
i
k+1)

Si
t := t− T i

k.

The time Si
t is part of the physical interface state of the

agent i and is thought of output variable (observable by
the other agents). This is the time elapsed since the last
discrete transition of the ith agent until the moment t.
Obviously, the discrete state remains constant between
discrete transitions; that is, qit = qi

T i
k

if t ∈ [T i
k, T

i
k+1).

When t ∈ [T i
k, T

i
k+1), the time Si

t(ω) can be thought of as a
local time random variable that describes the sojourn time
of the trajectory ω in the mode qi

T i
k

. The agent trajectories

are in one to one correspondence with the sojourn time
process trajectories.

Alterations of the (discrete) spontaneous transitions We

use the notation Nqi for the set of all agents that can
influence the agent i when its operational mode is qi; that

is, Nqi := {j : |λij
qiqj | ≥ γ}, where γ > 0 is a lower

bound that controls the agent interactions. Note that Nqi

is time dependent according to the evolution of the agent
population that has to achieve a specific objective.

The interaction with the agents from Nqi can affect
spontaneous jumps: we may choose a simple version of
interaction map

Ci
t :=

∑
j∈N

qi
t

(λij(qit, q
j
t ) · λ

j

qjt
), (5)

where λj

qjt
is an observation (a measurement) of the tran-

sition rate associated to the agent j when is operating
in mode qjt provided that λj

qjt
does not depend on the

continuous state. The functional Ci
t is thought of as the

total rate at which messages coming fromNqit are collected
by the agent i when its mode is qit.

The jumps of the agent i, when its discrete mode is qit, in-
duced by the communication with its vicinity are triggered
by the following “survivor” multiplicative functional:

M i
t (ω) := I[t<t∗i(ω)]F

i(t, ω)∆i(t, ω)

where F i(t, ω) = exp(−
∫ t

0
λi(xi

s(ω)ds and

∆i(t, ω) := exp(−
t∫

0

Ci
s(ω)ds)



is the interaction multiplicative functional.

Alterations of the (discrete) forced transitions The col-
lection of agents that interact with a given agent i may
affect also the forced transitions of this agent. To each
unidirectional edge between the agents i and j, we asso-
ciate a characteristic vector wij ∈ Rd. Formally, we can
define the ‘vicinity’ N i as N i := {j : |wij | ≥ w}, where
w > 0 is a lower bound for the strength of interaction.

We can think that the interaction between agents can be
done through the interface set ui

t := (qit,Υ
i), which will be

specified below.

Assume that the interface state contains a subset of states,
denoted by Υi, that is used to change the guard condition.
Initially, Υi

t is set to be 0. Let T
i be an horizon time associ-

ated to each agent thought of as time period after that the
ith agent is updating its interface data. Suppose that the
last jump of this agent is T i

k ∈ [pT i, (p + 1)T i). After the
update, the interface state becomes: Υi = ∪j∈N ′iχi(wij),

where N ′i = {j ∈ N i|Ei
[∑

k 1[pT i,(p+1)T i)(T
j
k )
]
> 0}; χi :

Rd → Rd is an adapting or interface function associated
to the agent i. Then the guard set becomes: Γi 7→ Γi \Υi.
After the guard set is updated, Υi has to be reset to 0.

The jumps of the agent i, when its discrete mode is qi, in-
duced by the communication with its vicinity are triggered
by the following “survivor” multiplicative functional:

M i
t (ω) := I[t<t∗i(ω)] exp

− t∫
0

λi(qis(ω), x
i
s(ω))ds)


where t∗i(ω) is the first hitting time of the new guard Γi.

3. BEHAVIOUR ISSUES

The third step is execution modelling stage where we study
the realization or behaviour of the CPES defined in this
paper. Here, we present a composition mechanism that
allows us to study the evolution of the CPES in the same
mathematical framework of stochastic hybrid systems. We
propose a modelling approach for CPES that is capable
to illustrate how the local properties of the components
are lifted to the global ones. The modelling framework
is versatile enough to help us proving that the emergent
properties of the whole CPES are just of the composition
of the constituent properties. The overall behaviour of
CPES when its constituents are modelled by stochastic
hybrid systems will be modelled also as a stochastic hybrid
system. The main analytical tool that will be used in both
micro and macro scales is the infinitesimal generator of a
stochastic process. Then the characterization of a specific
property (liveness, invariance, or reachability) for a single
system and for the whole infrastructure will be given using
different equations associated to these generators.

This section contribution is to characterize the emergent
behaviour of a CPES by its infinitesimal generator. This
will be the ‘composition’ of the infinitesimal generators of
its constituents. This analytical tool will allow us to link
local and global properties for the given CPES.

3.1 Modelling Ingredients

The state space (resp. location) of a CPES will be obtained
as the tensor product of the state spaces (resp. locations)
of its components. The interface of the whole CPES will be
again the tensor product of the component interfaces. Only
the CPES behaviour will be described by interleaving.
Moreover, an analytic synchronization concept (see Cao
et al. (2005)) can be introduced to study discrete tran-
sitions of the whole CPES. This technique will generate
a single synchronous process that will be employed to
show how the local properties of the (asynchronous) CPES
components induce the global properties of the CPES.

The overall CPES behaviour (realization) will be char-
acterized using the infinitesimal generator that can be
associated to the tensor product of the modified stochastic
hybrid processes that model the CPES components.

The CPES behavior is described by the asynchronous par-
allel composition of its hybrid components. For simplicity,
we will consider two cases: (1) The hybrid components
have only spontaneous jumps, and the interactions with
other components change the rates of these jumps. (2)
The hybrid components have only forced jumps and the
interactions with other components generate some partic-
ular spontaneous jumps. In both cases, we use the same
techniques to define the behavioural structure of CPES.

In the first case, we consider the CPS components as
hybrid processes together with their interface functionals:
(qit, x

i
t,Λ

i), i = 1, ..N . For simplicity, we suppose that the
discrete transition rates do not depend on the continuous
state. We define the interaction intensity matrix Λ as:

Λ = [Λ1,Λ2, ...,Λn]⊥,Λi = (Ci
qi)qi∈Qi .

Here, Λi is thought of as the interface of the component i.

The vicinity of i, denoted by N i =
⋃

qi∈Qi Nqi is the set
of all components that interact with it.

Formally, the CPES hybrid system is denoted by

H = ⊗N
i=1(x

i
t,Λ

i)

where xi
t = (qit, x

i
t) is the internal hybrid state associated

to the component i. The hybrid state of H is:

x =
(
(q1t , q

2
t , ..., q

N
t ), (x1

t , x
2
t , ..., x

N
t )

)
∈ Q×Rd×N ;

where Q = Q1 ×Q2 × ...QN .

In the second case, we consider the CPS components
as hybrid processes together with their interface local
times: (qit, x

i
t, S

i
t). Moreover, we suppose that for any

two agents i and j, there exists an intensity kij that
characterizes the strength of influence of agent j against
agent i. Let us denote the vector of such intensities by
ki = (ki1, ki2, ..., kiN ). The influence of the jth agent
towards agent i is via the information about the last
jumping time of the jth agent that arrives at the ith agent
in a Poisson style; i.e.: ξijt = exp(−kijSj

t ).

For each agent i, consider the overall changes in the
dynamics due to all communications with its neighbours
triggered by:

Ξi
t(ω) :=

∏
j∈Ni

t

ξijt (ω) (6)



where N i
t is given by: N i

t := {j|Sj
t < St

i}. Note that, in
this case, the interaction vicinity of the agent i is time
dependent. Ξi

t is a product of multiplicative functionals,
so it is also a multiplicative functional.

In this case, we define the CPES hybrid system as follows:

H = ⊗N
i=1(x

i
t, S

i
t ,Ξ

i
t)

where xi
t = (qit, x

i
t) is the internal hybrid state associated

to the component i and Ξi
t is the communication func-

tional. The hybrid state is defined as in the previous case.

3.2 Behaviour Characterization

For the process H, the initial probabilities Px and the
(survivor) multiplicative functionals Mt are obtained by
the product of the corresponding objects associated to
its components. These functionals are obtained by the
multiplication of the initial functionals (before interaction)
with the interaction functional, in the first case, and the
communication functional, in the second case.

The transition semigroup associated to H until the first
jumping time is defined as

Pt(

N∏
i=1

f i)(x) = Px

[
N∏
i=1

f i(xi
t)Mt

]
.

The analytic synchronization technique is merging all N
event time sequences into a single ordered sequence of
event times. Between two event times, all the components
of CPES evolve continuously governed by their local laws.
This technique consists of ordering the multi-clock

St := (S1
t , S

2
t , ..., S

N
t ). (7)

Therefore, this technique provides a global time axis, and
each event time is, in fact, a time for a local discrete
transition in one of the CPES components. One important
fact about the multi-clock (St) is that its realization is a
piecewise deterministic Markov process and it can play the
role of an abstraction for the CPES H.

The analytic synchronization and the fact that the be-
haviours of the CPES components are described by
stochastic processes obtained by subordination with re-
spect to the multiplicative functional Mi

t allow us to write
down the following:
Theorem 1. The behaviour of the CPES H is the real-
ization of a stochastic hybrid process.

Now, we are ready to write the main result of this section.
The infinitesimal generator of H will be obtained by the
composition of the component generators.

For the first case, when there are no forced transitions, we
denote the infinitesimal generator of the agent i after it
has interacted with other components, by Li∗; that is,

Li∗f i(·) = Li
cf

i(·) + λi∗
(·)
{∫

[f i(yi)Ri(·, dyi)− f i(·)
}

where λi∗
qi = λi

qi + Ci
qi is the transition rate changed by

the interaction.

For the second case, when the hybrid component i has
initially only forced jumps, and only after interaction with

other components, some spontaneous jumps may emerge,
the expression of the infinitesimal generator needs to
capture also the dynamics of Si

t . Therefore, we consider the
extended time-space stochastic process. The state space
will be extended with the time axis.

In order to give the generator expression, some nota-
tions are necessary: (i) The total communication rate is

ki :=
∑

j∈Ni kij . (ii) f̃ i represents a bounded measurable

function of the time and space for the component i; (iii)
The time-states will be denoted by Greek letters α, β, then
we have αi = (t,xi). (iv) The time-space reset kernel for

the component i is denoted by R̃i, and it is equal with
the tensor product of Ri with Rnull (corresponding to the
resetting to 0 of Si

t .

For each hybrid i, its infinitesimal generator altered ex-
pression after the interaction with other agents is given by:

L̃i∗f̃ i(αi) = ∂f̃i

∂t (α
i)+Li

cf̃
i(αi)+ki

[ ∫
f̃ i(βi)R̃i(αi, dβi)−

f̃ i(αi)
]
. As well, the boundary condition holds.

For the first case, when no forced jumps are enabled the
following result holds:
Theorem 2. The infinitesimal generator of H (with no
forced jumps) has the following formula:

L =

N∑
i=1

Li∗ ⊗ (⊗j ̸=iId
j),

where Idj is the identity operator corresponding to j.

Proof. The generator expression is a consequence of the
Trotter formula Ethier and Kurtz (1986) applied to H,
thought of as a superposition of stochastic processes.

For the second case, when the forced jumps are allowed,
formally the expression of generator is the same

L̃ =

N∑
i=1

L̃i∗ ⊗ (⊗j ̸=iĨd
j
),

where similar concepts are defined on the extended time-
space. The only difficulty comes into play, when we have
to write the boundary condition. Note that the boundary
of the whole CPS is, in fact, the superposition of the
component boundaries. Therefore, the boundary condition
for the CPES generator is the coupling of all boundary
conditions for the components. Due to the paper lack of
room, we are not going to write here all these conditions.

4. CPES CONTROL: COORDINATION AND
EMERGENT BEHAVIOUR

The contribution of this section will be to show that
invariant measures for the given CPES are local invariant
measures for its constituents.

4.1 Invariant Measure

Suppose that (Xt) is a Markov process with the transition
probability function (pt)t≥0 and state space X. A measure
µ on X is called invariant measure for (Xt) if:

µ(A) =

∫
X

pt(x,A)µ(dx),∀t ≥ 0, A ∈ B(X). (8)



If µ is a probability measure then it is called stationary
distribution of the process (Xt).

When µ is a probability on X, the following notations
are in force: ⟨µ, f⟩ =

∫
X
f(x)µ(dx),∀f ∈ B(X), and

Pµ(A) =
∫
X
Px(A)µ(dx),∀A ∈ B(X). Then µ is a

stationary distribution iff ⟨µ, Ptf⟩ = ⟨µ, f⟩,∀f ∈ B(X).

A class of functions D ⊆ B(X) is said to be separating
if for any two probability measures µ1 and µ2 on X if
⟨µ1, f⟩ = ⟨µ2, f⟩ for all f ∈ D then µ1 = µ2. A well-known
characterization of the stationary distribution states that
if D(L) ∩B(X) is separating, then µ is stationary distri-
bution if and only if

⟨µ,Lf⟩ = 0,∀f ∈ D(L). (9)

According to Davis (1993), for stochastic hybrid processes,
an invariant measure is, in fact a pair (µ, σ), where µ
is invariant for the interior of the state space, and σ is
invariant for the boundary.

Let ζ be the life time of the process (Xt) (i.e., the time
when the process hits an absorbing/cemetery state δ).
Connected to the concept of stationary distribution, we
have the concept of quasi-stationary distribution. A prob-
ability measure ν on (X,B(X)) is called quasi-stationary
distribution (QSD) if:

ν(A) = Pν(Xt ∈ A|t < ζ),∀A ∈ B(X). (10)

The condition (10) is equivalent with the following:

Pν(Xt ∈ A, t < ζ) = ν(A)Pν(t < ζ),∀A ∈ B(X). (11)

The meaning of the QSD definition is that if the initial
state x0 is distributed according to ν then the law of Xt

conditional to not reach δ is still ν for all time instants
that are less than ζ. For a stochastic hybrid system, we
can refine the concept of QSD asking that in the equation
(10), the time ζ to be replaced by the jumping times of
the underlying process. Therefore, instead to have a global
QSD, we will have a family of such measures, one for each
mode. We can write ν := {νq|q ∈ Q}.

4.2 Invariant Measures for CPES

Suppose that we have a probability measure µ on RN×d

given by µ = µ1 ⊗ µ2 ⊗ ...⊗ µN , where µi, i = 1, ..., N are
probability measures on Rd. The natural question to ask is
that if µ is an invariant measure for the CPES, are its com-
ponents µi somehow invariant for the individual agents?
Or, in other words, an emergent equilibrium regime for the
whole CPES is a resultant of the component equilibria?
The interaction mechanism is affecting the discrete transi-
tions and the jumping times of the components ofH. As we
have seen in the previous section, the infinitesimal genera-
tors of the component agents are perturbed in the discrete
part. Therefore, the invariant measures of agents are also
altered. Then, the synergetic behaviour of the CPES can
only be captured by the quasi-invariant distributions. The
following theorem can be easily proved.
Theorem 3. µ is a quasi-stationary distribution for H iff
µi with i = 1, .., N are quasi-stationary distributions for
its components.

The above theorem is basically a natural consequence
of the structure of CPES infinitesimal generator. It may

be derived, as well, from the expression of transition
semigroup of CPES. This is to be expected due to the fact
that, both, the infinitesimal generator and the transition
semigroup are equivalent ways to characterize a Markovian
process. To this end, we want to emphasis the importance
of this result: The global CPES invariance is the result of
its component invariance.

5. CONCLUSIONS

We have defined a unifying mathematical framework
for complex cyber-physical ecosystems. Conceptually, the
skeleton of this framework is provided by the theory of
distributed systems and their parallel composition. Then
the mathematics of stochastic hybrid systems is grafted on
this skeleton with the purpose of behaviour modelling of
CPS components. The emergent behaviour and emergent
properties of such complex systems are studied using the
global behaviour of CPES, which is again modelled by a
stochastic hybrid Markov process. Then the CPES prop-
erties are characterized employing the concept of infinites-
imal generator associated to this Markov process. The
main novelty of the paper is the cross-fertilization between
the distributed systems paradigm, which provides insides
about the CPES architecture and interface interactions
of the CPES components, and the behavioural approach,
which provides the main tool to study control problems.
The next step of this approach is to extend the result from
Bujorianu et al. (2021) in the framework of CPES.
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