
Causality and Decision-making: A Logical
Framework for Systems and Security Modelling

Pinaki Chakraborty1∗, Tristan Caulfield1∗, and David Pym1,2∗

1 University College London, England, UK {pinaki.chakraborty.22@ucl.ac.uk,
t.caulfield, d.pym@ucl.ac.uk}@ucl.ac.uk

2 Institute of Philosophy, University of London
England, UK david.pym@sas.ac.uk

∗ corresponding author

Abstract. Causal reasoning is essential for understanding decision-mak-
ing about the behaviour of complex ‘ecosystems’ of systems that under-
pin modern society, with security — including issues around correct-
ness, safety, resilience, etc. — typically providing critical examples. We
present a theory of strategic reasoning about system modelling based on
minimal structural assumptions and employing the methods of transi-
tion systems, supported by a modal logic of system states in the tra-
dition of van Benthem, Hennessy, and Milner, and validated through
equivalence theorems. Our framework introduces an intervention opera-
tor and a separating conjunction to capture actual causal relationships
between component systems of the ecosystem, aligning naturally with
Halpern and Pearl’s counterfactual approach based on Structural Causal
Models. We illustrate the applicability through examples of of decision-
making about microservices in distributed systems. We discuss localized
decision-making through a separating conjunction. This work unifies a
formal, minimalistic notion of system behaviour with a Halpern-Pearl-
compatible theory of counterfactual reasoning, providing a logical foun-
dation for studying decision making about causality in complex interact-
ing systems.

Keywords: Logic · Transition systems · Decision-making · Strategic
reasoning · System models · Causality · Influence · Interface · Separation
· Security · Microservices

1 Introduction

Causal modelling is a multidisciplinary field spanning computer science, econo-
metrics, epidemiology, philosophy, and statistics, providing a robust framework
for understanding and reasoning about cause-and-effect relationships in systems.
Such reasoning is of particular significance in things like root-cause analysis and
strategy formulation for security.

One influential approach to understanding causality is counterfactual analy-
sis [26], which stipulates that an event qualifies as a cause if, counterfactually,
its absence would prevent the effect from occurring. In many counterfactual

2 P. Chakraborty, T. Caulfield, and D. Pym

theories of causation, directed graphs have emerged as a powerful tool for repre-
senting causal relationships, as exemplified by seminal contributions from Judea
Pearl [30], Hitchcock [21], and Spirtes et al. [38]. A formal representation of
these causal relationships is provided by a set of equations known as struc-
tural equations (SE), which explicitly encode how each variable depends on its
causal predecessors. These can be visualised as directed acyclic graphs in which
vertices correspond to variables, while directed edges signify direct causal de-
pendencies. Building on this foundation, Halpern and Pearl [20] use structural
equations to define a rigorous notion of actual causation, capturing conditions
under which specific events can be identified as causes of given outcomes. Al-
though actual causality — the objective mechanism linking causes and effects
— is distinct from our knowledge of it, which is built incrementally through
observation, intervention, and counterfactual reasoning, both perspectives are
deeply intertwined. This interplay motivates our system modelling approach, in
which we formalize causation through precise structural and dynamic relations
aligning with Halpern and Pearl’s axioms of actual causation.

In particular, our work leverages Pearl’s Structural Equations approach [20,31]
(a detailed discussion is deferred to 4) and its subsequent extension by Halpern
[18], integrating modal logic to enable rigorous causal analysis across applica-
tions, such as mitigating risks and analysing incidents in complex systems like
cyber infrastructure, where interactions among software, hardware, and human
actions drive outcomes.

It should be noted that we differ from the setting of do-calculus [30] in the
sense that stochastic interpretation of variables, which is essential to ‘type causal-
ity’ (see Section 4.1), are not involved. Also, we introduce a uniform syntactic
treatment of interventions in the logical language itself unlike the setting of Pearl
who formalised interventions on a semantic level. And lastly unlike the setting of
Structural Equations in which interventions only change the value of a variable,
we allow interventions to alter the structural equation relation.

It is also well established that game-based strategic reasoning about systems
can be modelled using the formal technology of transition systems and, conse-
quently, can employ the methods of process algebra — for example, see [39] for an
elegant exposition of this relationship, [40] for a reflective overview, and [41] for
a discussion of ‘dynamic agent organizations’, noting that ‘agent organizations’
can be described algebraically as systems of process terms — allowing access
to the expressivity required to capture decentralized/distributed and concur-
rent systems. These approaches are well adapted to supporting decision-making
about such systems because they naturally support a rich logical theory that is
tightly integrated with the structure of processes. Here we employ this approach
in the setting of a minimalistic, behaviour-based model to discuss actual causal-
ity in ‘ecosystems’ of interacting systems (see also [10,17]), providing tools for
reasoning — that is, decision-making — about causation and influence between
system configurations.

We illustrate our approach with systems’ security examples based on the
problems involving root-cause analysis — see, for example, [22,27,42,32] — that

Causality and Decision-making for Systems and Security 3

are concerned with mitigating faults arising within distributed microservice ar-
chitectures in large-scale software systems (cf. [1]). (See also [2] for a sketch of a
different approach.)

We also draw inspiration from cybernetics — particularly Simon’s work
[37,36] — which emphasizes that simple, local rules and interactions can govern
complex system behaviours and dynamics. As Simon notes in [37], ‘All behaviour
involves conscious or unconscious selection of particular actions out of all those
which are physically possible to the actor and to those persons over whom he
exercises influence and authority.’ This observation highlights the pivotal role
of ‘influence’ in propagating effects throughout a system. By adopting the term
‘influence’ to describe the rules governing our system’s components, we align
with Simon’s cybernetic tradition, viewing systems as entities shaped by local
interactions.

At its core, our approach treats a system as a set of vertices — each rep-
resenting a component with observable behaviours — whose dynamics emerges
solely from a set of rules called influence. This echoes the cybernetic insight that
local interactions drive broader system dynamics, and also provides a robust
platform for exploring (actual) causality in interactive environments.

Section 1 outlines the scope and necessity of causal reasoning in system mod-
elling. Section 2 introduces a minimalist approach to system modelling, followed
by Section 3, which develops the logical framework used to describe system mod-
els. In Section 4, we demonstrate how this logic formalizes actual causation and
captures causal structures. Section 5 explores a substantial example of how we
can model decision-making about the dependencies between microservices in dis-
tributed systems. Section 6 discusses the logical metatheory of our framework,
showing how bisimulation characterizes equivalence. Finally, Section 7 situates
our work within the broader landscape of causal modelling and strategic decision-
making.

2 The system modelling framework

In this section, we adopt a deliberately minimalist view: instead of tabulating
every internal state, we specify a component only by the interactions (called its
behaviour) an external observer can witness and the concrete influence those
interactions have on other components. This choice is not superficial in that
it draws a line between state (unobservable, intensional details) and behaviour
(observable, extensional facts).

Existing literature offers various frameworks for modelling system interac-
tions, particularly in distributed systems — for example, [10,3,11,13,35], with
extensive relevant bibliographies, are pertinent here. Our work builds on this
foundation by drawing inspiration from a recent abstraction [17] that adopts a
behaviour-centric perspective, though we incorporate dynamic aspects that ex-
tend beyond their static view. Our terms component, influence, configuration
are inspired from the foundational work by Winskel on event structures [43] and
by Simon [37].

4 P. Chakraborty, T. Caulfield, and D. Pym

Formally, let C be the set of components and B the set of all possible be-
haviours. A function B : C → 2B assigns to each component c ∈ C its set of
allowable behaviours, B(c). The complete state of a system is described by a
configuration that specifies each component’s behaviour at a particular instant.

Definition 1 (Configuration). Let C be a set of components, and let B : C →
2B assign to each component c ∈ C a set B(c) of allowable behaviours.

A configuration over C is a total function f : C → B such that f(c) ∈ B(c)
for all c ∈ C. The set of all configurations over C is denoted by FC. When C is
understood from the context, we write F for brevity. □

To model how components in a system evolve, we introduce influence rules
that specify how component behaviours are determined — formally, functions
that, given the current behaviour of a component and the behaviours of selected
components in the system, determine its next behaviour.

Definition 2 (Influence rules and contexts). Let C be the global set of
components. For each component c ∈ C, let Inf(c) ⊆ C \ {c} be the influence
context for c. Inf(c) is the subset of components whose behaviours are relevant
for determining the behaviour of c. An influence rule for c is then a function
Ic : B(c)×

∏
d∈Inf(c) B(d)→ B(c), specifying how the behaviour of c evolves from

its current behaviour and the behaviours of components in its influence context.
The family of all such functions relative to a set of components C is called IC. □

We often omit the subscript when the referenced set of components is clear
from the context. In our framework, a system is defined by its space of possi-
ble configurations, the transition dynamics governing their evolution, and the
propositions that hold in each configuration. This view is captured by a system
model, which encapsulates the set of configurations, the transitions induced by
influence rules, and the mapping of configurations to the atomic propositions
that hold within them. First, we define the transition relation which is induced
by a family of influence rules.

Definition 3 (Transition relation). Given a component set C, a behaviour
mapping B, and a family of influence rules I = {Ic}c∈C where each Ic : B(c)×∏

d∈Inf(c) B(d)→ B(c), the transition relation ∆I ⊆ F ×F is defined as (f, f ′) ∈
∆I iff there exists c ∈ C such that f ′(c) = Ic(f(c), (f(d))d∈Inf(c)), and, f ′(d) =
f(d) for all d ̸= c. That is, f transitions to f ′ when exactly one component c
updates its behaviour according to its local influence rule, while all other compo-
nents remain unchanged. □

The definition of a system model follows:

Definition 4 (System model). For each c ∈ C, define ∆c =
{
(f, f ′) ∈ F × F

such that f ′(c) = Ic
(
f(c), (f(d))d∈Inf(c)

)
. Here, ∀d ̸= c, f ′(d) = f(d). Let ∆I =⋃

c∈C ∆c. A system model M is a tuple (C,B, I, F,∆I , Γ), where F is the set
of all possible configurations of the system given a set of components C, a set
of possible behaviours B, and a family of rules I govern the behaviour change

Causality and Decision-making for Systems and Security 5

of the components. Γ : P → 2F is a valuation function that assigns a subset of
the configurations to each atomic proposition from the set of atomic propositions
(from a set of atomic propositions P).

For brevity, we often omit the full notation, and write M = (F,∆I , Γ). The
transition relation ∆I may be viewed as the edge relation of a directed graph
over the configuration space F , where configurations are vertices and transitions
form edges. □

Example 1. Let C = {c1, c2, c3}, B = {b11, b12, b13, b21, b22, b31}, and an assign-
ment of behaviours be B(c1) = {b11, b12, b13}, B(c2) = {b21, b22}, and B(c3) =
{b31}. A configuration f1 in this context is {(c1, b11), (c3, b31)}. One possible
choice of the influence rules is Ic1(b11) = b12, Ic1(b12) = b13, Ic1(b13) = b11,
and Ic2(b21) = b22, Ic2(b22) = b22. Another configuration f2 which is ‘reachable’
using these rules can be {(c1, b12), (c3, b31)}, and so on. □

To analyse subsystems within a system model, we establish conditions un-
der which a system can be meaningfully decomposed. This requires identifying
an interface that mediate dependencies between subsystems. In order to define
subsystems we begin with a partial configuration, which is the assignment of be-
haviours to only a subset of the components that constitute a full configuration.

Definition 5 (Partial configuration). Let C′ ⊆ C be a subset of components.
A partial configuration over C′ is a function f ′ : C′ →

⋃
c∈C′ B(c), where B(c) is

the set of possible behaviours for component c. While a full configuration f ∈ F
assigns behaviours to all components in C, a partial configuration f ′ assigns
behaviours only to a chosen subset C′, leaving the rest undefined. Given a full
configuration f ∈ F , its restriction to C′ is denoted by f ↾C′ . □

The following defines an interface among the components by imposing con-
straints on the influence relationships among components:

Definition 6 (Interface-admitting system model). A system model M =
(F,∆I , Γ) over a global component set C is said to admit an interface if there
exist subsets C1, C2 ⊆ C satisfying C1 ∪ C2 = C such that for every component
c ∈ Ci \ (C1 ∩ C2) (with i ∈ {1, 2}), the influence context Inf(c) ⊆ Ci, and for
every component c ∈ (C1 ∩ C2), the influence context Inf(c) ⊆ (C1 ∩ C2). We
say thatM is interface-admitting if such subsets C1 and C2 exist with interface
(C1∩C2). The two conditions above ensure that non-interface components depend
only on other components within their own partition (including the interface),
and that interface components depend only on components in the interface. □

Remark 1. For each c ∈ Ci, its local influence rule is Iic : B(c)×
∏

d∈Inf(c) B(d)→
B(c). These rules are consistent with the constraints of influence locality spec-
ified above. The original influence rule Ic is recoverable from the local rules.
Specifically, for any b ∈ B(c) and any behaviour assignment (bd)d∈Inf(c), it holds
that Ic

(
b, (bd)d∈Inf(c)

)
= Iic

(
b, (bd)d∈Inf(c)

)
. □

6 P. Chakraborty, T. Caulfield, and D. Pym

Example 2 (Interface). Let C = {c1, c2, c3} and B(c1) = {b11, b12, b13}, B(c2) =
{b21, b22}, and, B(c3) = {b31}. The influence contexts are E(c1) = ∅,E(c2) =
{c1},E(c3) = ∅. The influence rules are, Ic1(b11) = b12, Ic1(b12) = b13, Ic1(b13) =
b11, Ic2(b21, b12) = b22, Ic2(b21,_) = b21, Ic2(b22,_) = b22,Ic3(b31) = b31. Thus
c1 cycles its behaviours autonomously, c2 switches from b21 to the b22 only when
c1 behaves b12, and c3 is inert. Take the partition C1 = {c1, c2}, C2 = {c2, c3},
and, I = C1 ∩ C2 = {c2}. The locality conditions of Definition 6 hold, and thus
{c2} constitutes an interface. □

A conjugate decomposition ensures that an interface-admitting system can be
partitioned into subsystems in a way that preserves the global system behaviour
through consistent interactions at the interface, with local transition dynamics
faithfully reflecting the overall system evolution.

Definition 7 (Conjugate decomposition). LetM = (F,∆I , Γ) be an inter-
face-admitting system model over a global component set C. In particular, let
C1 ∩ C2 (C1, C2 ⊆ C) form an interface in M. A conjugate decomposition
of M with respect to the interface I = C1 ∩ C2 is a pair of partial system
models (F1, ∆I1

, Γ1) over C1, and (F2, ∆I2
, Γ2) over C2, such that, the following

conditions are satisfied:

1. F1 and F2 are the sets of partial configurations over C1 and C2, respectively,
with Γ1 and Γ2 being the restrictions of the global valuation Γ to F1 and F2.

2. The global transition relation ∆I is recoverable from the partial transition
relations ∆I1 and ∆I2 ; that is, for any full configuration f ∈ F with re-
strictions f ↾C1

= f1 and f ↾C2
= f2, if f∆If

′, the corresponding restrictions
satisfy f1∆I1

f ′1 and f2∆I2
f ′2, and on the interface, I, the partial configura-

tions agree. □

A system can intervened on by triggering changes in how its component’s
behaviours are altered. This is formalized via interventions which are one-time
modifications applied to a specific subset of components replacing their existing
influence rules with new ones. After the intervention, the system continues to
operate under the new rules.

Definition 8 (Intervention). Consider a system model M = (F,∆I , Γ). An
intervention θC′ consists of a pair (C ′, I ′C′), where C ′ ⊆ C is the subset of compo-
nents targeted by the intervention, and I ′C′ = {I ′c}c∈C′ is a new set of influence
rules for the components in C ′. Each rule I ′c : B(c) ×

∏
d∈Inf(c) B(d) → B(c)

respects the original influence context Inf(c).
An intervention is atomic and one-time: it modifies the influence rules in-

stantaneously and irreversibly at the point of application, after which the system
evolves using the new rules. When the intervention θ is applied, the system model
transforms into Mθ = (F,∆θ

I , Γ), where the modified influence rules are given
by, Iθc = I ′c if c ∈ C ′; otherwise it does not change. The transition relation ∆θ

I
is the smallest relation closed under these revised rules, while F and Γ remain
unchanged. □

Causality and Decision-making for Systems and Security 7

Example 3 (Intervention). Let the component set be C = {c1, c2, c3} and the
behaviour domains be B(c1) = {b11, b12, b13}, B(c2) = {b21, b22},and B(c3) =
{b31}. The influence contexts be, Inf(c1) = ∅, Inf(c2) = {c1}, and, Inf(c3) =
∅. The influence rules before intervention are, Ic1(b11) = b12, Ic1(b12) = b13,
Ic1(b13) = b11, Ic2(b21, b12) = b22, Ic2(b21,_) = b21, Ic2(b22,_) = b22, Ic3(b31) =
b31. Thus c1 cycles through three states independently, c2 switches from b21 to
b22 only if c1 currently shows b12, and c3 is inert. Apply the atomic intervention
θ = ({c1}, I ′c1) with I ′c1(b11) = I

′
c1(b12) = I

′
c1(b13) = b11, leaving all other rules

unchanged. After θ every reachable configuration f of the intervened model
satisfies f(c1) = b11. Because c2 can behave b22 only when b12 is in its influence
context, the reset freezes c2’s behaviour as b21. □

Remark 2. If the original systemM is decomposable via an interface-dependent
decomposition, then the intervened modelMθ remains decomposable under the
same decomposition structure, as interventions do not alter the influence con-
texts, which govern the decomposition. □

In the sequel, a pointed system model is a pair consisting of a system model
M and a chosen configuration f in the model.

Remark 3. Consider an intervention θ = (C ′, I ′C′), where C ′ ⊆ C is the subset
of components targeted by the intervention and I ′C′ = {I ′c | c ∈ C ′} is a set of
new influence rules. For two pointed system models (M1, f) = (F,∆I1

, Γ, f) and
(M2, f) = (F,∆I2

, Γ, f), we say that M1RθM2 holds if, for every component
c ∈ C, I2(c) = I ′c if c ∈ C ′, and I2(c) = I1(c) if c /∈ C ′, so that the intervention
changes only the influence rules for components in C ′. The transition relation
∆I2 is then induced by these updated influence rules. We denote the union of
all such relations with RΘ. □

Our terms component, influence, configuration are inspired from the founda-
tional work by Winskel on event structures [43] and by Simon [37].

3 A logic for minimal system models

In this section, we introduce a logical language, denoted by L(⟨θ⟩, ∗), tailored
to capture the dynamic and structural aspects of minimal system models. Our
language integrates standard modal operators □ and ♢ (with ♢ as the dual of
□), a dynamic operator ⟨θ⟩ that reflects interventions on a set of components,
and a structural separation operator, ∗ — similar in spirit to the multiplicative
connective as in, for example, [28,23,16], itself in the long tradition of relevance
logic (e.g., in a vast literature, [34]) — which enables the decomposition of system
configurations.

3.1 Syntax and semantics

The language L(⟨θ⟩, ∗) is given by φ ::= p | ¬φ | φ ∧ φ | □φ | ♢φ | ⟨θ⟩φ | φ ∗ φ,
where p ranges over atomic propositions. Implication, →, and disjunction, ∨,

8 P. Chakraborty, T. Caulfield, and D. Pym

are defined in the usual (classical) way. We denote the subset consisting of ∗-free
formulae by L(⟨θ⟩).

The semantics is defined relative to a system model M = (F,∆I , Γ) over a
set of components C. Here, F is the set of full configurations, each assigning a
behaviour to every component in C, ∆I is a transition relation based on influence
rules I, Γ is a valuation assigning propositions to configurations.

Definition 9 (Semantics). Given a system modelM = (F,∆I , Γ) and a con-
figuration f ∈ F , the satisfaction relation |= is defined as follows:

(M, f) |= p iff f ∈ Γ (p)
(M, f) |= ¬φ iff (M, f) ̸|= φ

(M, f) |= φ ∧ ψ iff (M, f) |= φ and (M, f) |= ψ
(M, f) |= □φ iff for every f ′ ∈ F with f∆If

′, it holds that (M, f ′) |= φ
(M, f) |= ♢φ iff there exists some f ′ ∈ F with f∆If

′ such that (M, f ′) |= φ
(M, f) |= ⟨θ⟩φ iff there exists some intervention θC′ (with C′ ⊆ C) and a

configuration f ′ satisfying f∆θ
If

′ such that (MθC′ , f
′) |= φ,

where MθC′ = (F,∆
θC′
I , Γ) is the updated model

(M, f) |= φ ∗ ψ iff there exist C1, C2 ⊆ C such that C1 ∩ C2 constitutes
an interface, and both (MC1 , f |C1) |= φ and
(MC2 , f |C2) |= ψ, where MC1 is the partial model over C1,
and MC2 is the partial model over C2

A model M satisfies a formula φ at a configuration f iff (M, f) |= φ. □

A formula □φ is read as ‘necessarily φ’, meaning that in every configuration ac-
cessible from the current configuration via ∆I , the formula φ holds. A formula
♢φ is read as ‘possibly φ’, meaning that there exists a configuration accessi-
ble from the current configuration via ∆I in which the formula φ holds. The
separating conjunction ∗ is introduced to partition the system into overlapping
subsystems, via a shared interface, enabling modular reasoning about distinct
parts of the system. A formula φ ∗ψ is read as ‘φ separating-conjoined with ψ’,
meaning that the system can be partitioned into two overlapping subsystems —
with their shared interface mediating external influences — such that one sub-
system satisfies φ and the other satisfies ψ. The intervention operator ⟨θ⟩ allows
us to formally represent and evaluate counterfactual modifications. A formula
⟨θ⟩φ is read as ‘there exists an intervention θ such that after its application, the
formula φ holds in the resultant model’.

Remark 4. Each configuration f is associated with a characteristic formula χf =∧
c∈C pc,f(c), such that (M, f ′) |= χf if and only if f ′ = f . This formula uniquely

identifies f . □

4 Causal models

While there are other counterfactual approaches to causal modelling (cf. [25]),
we align with Pearl and Halpern’s framework because it provides a robust, ma-
nipulable framework based on structural equations that clearly formalizes coun-
terfactual reasoning, making it especially well-suited for complex systems.

Causality and Decision-making for Systems and Security 9

4.1 The Halpern-Pearl Framework

Pearl’s account [31] formalizes a causal model as a tuple M = ⟨U, V, F ⟩, where
U is a set of exogenous variables capturing external influences, V is a set of
endogenous variables representing the internal state, and F is a family of func-
tions (structural equations) of the form vi = fi(pai, ui) for i = 1, . . . , n, with
pai ⊆ V \ {Vi} being the minimal set of parent variables that determine Vi, and
ui ⊆ U the corresponding exogenous inputs. For any fixed assignment U := u,
these equations yield a unique solution that defines a distinct causal scenario.
Structural equations encode causal relationship by setting the left-hand vari-
able as the effect and right-hand variables as causes, with equality signalling a
directional ‘determined by’ relationship.

Building on Pearl’s approach, Halpern extends this foundation [19] by fo-
cusing on an event-centric perspective, distinguishing between type causality
(general patterns) and token causality (specific instances). While our system
modelling framework naturally aligns with Halpern’s analytical framework on
actual causality. Since we do not model causality using random variables, we
focus on actual causality rather than type causality among configurations.

Actual causation concerns retrospective causal claims — asserting that an
event C was a cause of an effect E. Halpern’s extended framework distinguishes
between endogenous and exogenous variables, where a causal model M = (S, F)
consists of a signature S specifying variables and their possible values, and a
set of structural equations F governing their interactions [20]. A causal setting
is a pair (M, u⃗), where u⃗ assigns values to exogenous variables, determining the
behaviour of endogenous ones. In this framework, an event A (encoded by some
formula φ) is an actual cause of E (encoded by another formula ψ if (i) both
A and E occur in the actual world, (ii) in a counterfactual world where A is
absent but all else remains fixed, E does not occur, and (iii) A is minimal,
meaning no proper subset of A suffices to bring about E. The Halpern-Pearl
(HP) definition of actual causation [19] formalizes these three criteria of actual
causal relationships via three clauses — AC1, AC2, and AC3 (see the appendix
for details). In a similar manner, we introduce our notion of cause within the
context of system models, aligning our approach with the HP criteria while
adapting it to the dynamics of configuration-based systems. We use a variant of
AC2(am) clause introduced in [18].

Definition 10 (Cause). Let M = (F,∆I , Γ) be a system model, and f1, f2 ∈
F be configurations over components C. Let ψE =

∧
c∈CE

pc=f2(c) be the effect
formula, where CE ⊆ C is the set of components relevant for determining the
outcome. A subset of components C′ ⊆ C, whose behaviours are fixed as in f1 (i.e.,
χC =

∧
c∈C′ pc=f1(c)), is called a cause of f2 from f1 (denoted Cause(f1, f2)) if

the following conditions hold:

1. There exists a sequence of transitions such that f1∆+
I f2, where ∆+

I is the
transitive closure of ∆I , and f1(c) = f2(c) for all c ∈ C′. This is expressed
as ♢+(ψE ∧ χC), and is an actuality condition (analogous to AC1 in HP
definitions [19]).

10 P. Chakraborty, T. Caulfield, and D. Pym

2. There exists a witness set W ⊆ C such that for any configuration f ′1 where
f ′1(c) = f1(c) for all c ∈ W, but f ′1(c) ̸= f1(c) for some c ∈ C′\W, if f ′1∆If

′
2,

then f ′2 ̸= f2. This is the counterfactuality condition analogous to AC2. in
HP definitions [19]).
Let χC =

∧
c∈C pc=f1(c), χW =

∧
c∈W pc=f1(c). Also let

χ′
C\W =

∨
c∈C\W

¬pc=f1(c)

be the formula expressing that at least one component in C \W has changed
relative to f1 after an intervention. The counterfactual condition can be ex-
pressed as ⟨θ⟩(χW ∗ χ′

C\W)→ □+¬(ψE ∧ χC)
3. There is no proper subset C′′ ⊂ C′ that satisfies both the above conditions.

This is the Minimality condition analogous to AC3 in HP [19]). □

The invariance of the candidate cause’s behaviours across a transition from
configuration f1 to f2, expressed as f1(c) = f2(c) for all c ∈ C′, aligns with
Halpern and Pearl’s AC1 condition, which requires that both the candidate
cause and the effect hold in the actual world. It confirms the candidate cause’s
presence in the actual system evolution, enabling counterfactual analysis: by al-
tering the candidate cause in a hypothetical scenario and observing the effect’s
absence, we isolate its causal role. The second condition helps isolate the subset
of components which constitute a cause. The third conditions ensures no proper
subset of the candidate cause suffices as an actual cause — by enforcing that ev-
ery component in C′ is essential; restricting to any proper subset C′′ ⊂ C′ disrupts
either the invariance in the actual transition or the counterfactual dependence,
thus preventing over-attribution.

Understanding how changes propagate through a system is essential for
analysing causality. A causal chain captures this progression by linking configu-
rations through causal dependencies (refer to the definition of cause), ensuring
that each transition satisfies the established criteria of causal relationships.

Definition 11 (Causal chain). A causal chain in a given system modelM =
(F,∆I , Γ) is a finite sequence of configurations (f1, f2, . . . , fn) with n ≥ 2 and
each fi ∈ F , satisfying the following conditions:

1. For each consecutive pair (fi, fi+1), there exists a subset of components Ci ⊆
C such that Ci is a cause of fi+1 from fi according to the three criteria
(actuality, counterfactuality, minimality).

2. For each i, it holds true that (fi, fi+1) ∈ ∆+
I , meaning that the causal influ-

ence is realizable through one or more transitions in the system.
3. The chain is minimal in the sense that no configuration fk can be removed

without violating sequential causality. This ensures that the chain does not
include superfluous steps.

We denote the set of all causal chains in M by Chain(M). □

Causality and Decision-making for Systems and Security 11

Definition 12 (Causal system model). A causal projection of a system model
M = (F,∆I , Γ) is a tuple (F c, ∆c, Γ c) such that F c ⊆ F consists of con-
figurations that appear in at least one causal chain in Chain(M), and, ∆c

and Γ c are the restrictions of ∆I and Γ respectively to F c. The system model
M = (F,∆I , Γ) is called a causal system model if it has a causal projection. □

If the graph (F c, ∆c) is acyclic, i.e., ∆c is a partial order then there are no ‘causal
loops’ (a ‘causal loop’ is formed when for any two configurations f1 and f2, both
f1 and f2 are causes of each other).

Lemma 1, below, characterizes how interventions affect causal chains by de-
lineating conditions under which such chains are either preserved or disrupted.
It is proved in [12].

Lemma 1 (Characterization of Interventions in Causal System Mod-
els). LetM = (F,∆I , Γ) be a causal system model with causal projectionMc =
(F c, ∆c

I , Γ
c). Let θ = (C ′, I ′C′) be an intervention yielding the intervened system

Mθ = (F,∆Iθ
, Γ). If a causal chain (f1, . . . , fn) ∈ Chain(M) does not involve

any component in C ′ as part of the cause for any transition, then this chain is
preserved under intervention θ. Formally, ∀i(1 ≤ i < n), C ′ ∩ Cause(fi, fi+1) =
∅ ⇒ (f1, . . . , fn) ∈ Chain(Mθ). Otherwise if (f1, . . . , fn) contains a configura-
tion fi whose cause involves components in C ′, and the intervention θ modifies
the influence rules such that the causal transition to fi+1 is invalidated, then
the chain is disrupted. Formally, ∃i(1 ≤ i < n) such that C ′ ∩Cause(fi, fi+1) ̸=
∅ and ⟨θ⟩¬(fi∆Iθ

fi+1). □

The following theorem, proved in the appendix, relates our approach to mod-
elling causes in systems with the HP framework [19]:

Theorem 1. Let M = (F,∆I , Γ) be a causal system model over a finite com-
ponent set C, where causes are defined via causal chains satisfying actuality,
counterfactual dependence, and minimality (cf. Definition 10). Construct a cor-
responding HP causal model M = ⟨U, V, F ⟩, where V = {Vc | c ∈ C} with
dom(Vc) = B(c) and the structural equations in F are induced by the influ-
ence rules I of M. For any configuration f2 ∈ F , define the effect formula
φf2 =

∧
c∈C(Vc = f2(c)). Then, if there exists a causal chain in M from an

initial configuration f1 to f2, one can extract a candidate cause; that is, a subset
X⃗ ⊆ V and an assignment x⃗ (with a corresponding context u⃗) such that the as-
signment X⃗ = x⃗ satisfies the HP criteria (AC1–AC3) for being an actual cause
of φf2 in (M, u⃗). In other words, the existence of a causal chain from f1 to f2
in M implies that there is a corresponding actual cause in the HP model. □

5 Security examples

Modern cloud-native applications often decompose functionality into indepen-
dently deployable microservices consisting of a very large number of services.
Microservices architecture promotes cost optimization and sustainability by en-
abling selective scaling of components based on demand, minimizing resource use

12 P. Chakraborty, T. Caulfield, and D. Pym

and waste. It also allows for smaller, independent updates, reducing the need for
extensive end-to-end testing compared to monolithic systems. This shift from
monolithic to microservice-based architectures has transformed how software is
designed, deployed, and maintained [45] (cf. refer to this whiteppaer from Ama-
zon Web Services [1] for technical details).

This evolution has also intensified the need for rigorous tools in forensic
analysis and audit. A framework for actual causation, grounded in Halpern’s
approach [19] but adapted to model system transitions, is well-suited as a first
step in addressing these challenges (see also [13,9] on model design perspectives).

5.1 Microservices

Since in microservice-based architecture, an application typically consists of a
large number of loosely coupled, fine-grained services, accurately reconstructing
inter-service call graphs is non-trivial. Dependencies evolve at runtime, and often
lack static configurations. [45]. These difficulties have motivated causal-discovery
techniques in industry-facing tools [22], stressing the need for a rigorous frame-
work such as the one proposed here.

Decomposition into loosely coupled services with explicit APIs (Application
Program Interface) mirrors our formal notions of components, configurations,
and interfaces, making microservices an ideal case study. Their ubiquity in large-
scale deployments ensures industrial relevance, failures often arise from identi-
fiable interactions among just a few services, and operational practice already
employs one-shot mitigations (rolling updates, circuit breakers, traffic re-routes)
that correspond to the atomic interventions in our logic. Since failures frequently
trace back to a small cluster of inter-service interactions, actual causality is a
useful notion in determining the precise chain of responsibility for post-incident
audits and forensic analysis in microservice deployments.

5.2 Graph-based paradigms

Several existing tools employ causal dependency graph to trace how anomalies
propagate through microservice ecosystems. For instance, Microscope [27] infers
service dependencies in real time to build a service impact graph, which it com-
bines with runtime anomalies to derive a causality graph. Groot [42], designed
for large-scale systems, constructs a global dependency graph and, upon alerts,
extracts a focused subgraph around affected services. It aggregates events (e.g.,
CPU spikes, HTTP errors, code changes) and uses domain-specific rules to as-
semble an event causality graph. While effective for diagnostics, such tools treat
causality observationally and do not support formal reasoning about interven-
tions or counterfactuals [5].

Collectively, these systems illustrate the power of graph-based methods in
heuristically localizing root causes. Yet, they fall short of providing a rigorous
foundation for actual causation; that is, a precise characterization of ‘which
component state (or event) truly caused the observable failure’, in the sense of
Halpern–Pearl counterfactual dependence [20].

Causality and Decision-making for Systems and Security 13

We argue that, in the absence of a formal specification language for express-
ing actual causality in dynamic systems (in contrast to do-calculus, which is
designed for causal inference), such approaches remain inadequate for purposes
of audit. This limitation is particularly acute in high-stakes scenarios, such as
microservice-based infrastructures in financial exchanges, where root cause anal-
ysis is often conducted through ad hoc means. For instance, the consultation
paper issued by the UK Financial Conduct Authority [15] exemplifies the use of
informal causal chain-based analysis for forensics and audit.

While full empirical validation is beyond the scope of this theoretical devel-
opment, our framework is conceptually compatible with existing microservice
monitoring tools (such as [27,42]), where detected anomalies correspond to par-
ticular configurations or behaviour assignments in our model. Future empirical
work could involve systematically translating observed anomalies and perfor-
mance metrics into formal configurations and causal chains.

MAYBE DROP NEXT SECTION TO MAKE SPACE FOR EXAMPLES
ABOVE?

5.3 Modelling microservices

In this section, we illustrate how to apply the system-modelling framework to
a small microservice deployment. We then show how to decompose the system
into subsystems with a shared interface. We also show how strategic queries can
be formulated in this approach using conterfactuals. For the sake of brevity we
defer a thorough discussion of formally identifying an actual cause of a failure
(by invoking Definition 10) to [12].

Components and behaviours In a typical web application using the mi-
croservices architecture, the following design pattern is often used: Auth handles
user authentication, UserDB manages credential storage and lookup, ProfileSvc
provides user profile information, Logger records system events and requests, and
FrontEnd serves as the user-facing component coordinating interactions among
the back-end services.

In our framework, this corresponds to a set of components

C = {Auth,UserDB,ProfileSvc, Logger,FrontEnd}

Each component c ∈ C is associated with a set of permissible behaviours (the
behaviour names are self-explanatory):

B(Auth) = {idle, authSucc, authFail}
B(UserDB) = {idle, dbOK , dbError}

B(ProfileSvc) = {idle, profileOK ,TimeOut}
B(Logger) = {idle, logged , logFail}
B(FrontEnd) = {idle, serving , error}

A configuration f ∈F is a function f :C →
⋃

c∈C B(c), with f(c)∈B(c) for each c.

We now specify, for each component c ∈ C, an influence context Inf(c) (the
subset of other components whose behaviours can affect c), and then give a local
influence rule Ic as in Definition 2:

14 P. Chakraborty, T. Caulfield, and D. Pym

1. E(Auth) = {FrontEnd,UserDB}. The authentication service first receives a re-
quest from the front end; if it reaches out to the user database for credentials,
then UserDB’s state may induce a success or failure.

2. E(UserDB) = {Auth}. The database processes queries only when the auth
service requests it.

3. E(ProfileSvc) = {Auth,UserDB}. The profile service fetches user data only
after successful authentication and a database read.

4. E(Logger) = {Auth,ProfileSvc,FrontEnd}. The logger records each request,
authentication attempt, and profile lookup.

5. E(FrontEnd) = {Auth,ProfileSvc, Logger}. The front-end serves pages only
after successful authentication and profile data, and logs its own error or
serving state.

Accordingly, we define local influence rules Ic : B(c)×
∏

d∈Inf(c) B(d)→ B(c)
for each c. Below, we write Ic(bc, (bd)d∈Inf(c)) for the output behaviour, given
current behaviour bc of c and behaviours bd of each d ∈ Inf(c). (We omit trivial
cases where a component remains idle if nothing relevant changes.)
Authentication service IAuth caters to all authentication activities required
for interaction with external users.

IAuth
(
idle, (serving , dbOK)

)
= authSucc

IAuth
(
idle, (serving , dbError)

)
= authFail

That is, when the front end issues a login request (modelled as FrontEnd =
serving) and the database is OK, then Auth transitions to authSucc; if the
database is in dbError , then Auth transitions to authFail .
User database IUserDB:

IUserDB

(
idle, (authSucc)

)
= dbOK

IUserDB

(
idle, (authFail)

)
= dbError

Thus, if Auth has just succeeded, the database returns dbOK ; if Auth failed, the
database reports dbError .
Profile service IProfileSvc:

IProfileSvc
(
idle, (authSucc, dbOK)

)
= profileOK

IProfileSvc
(
idle, (authFail ,_)

)
= TimeOut ,

where _ denotes ‘any database state’. In other words, if authentication succeeds
and the database is OK, the profile lookup succeeds; if authentication fails, the
profile request times out.
Logger ILogger acts as a shared interface between other components.

ILogger
(
idle, (bAuth, bProfileSvc, serving)

)
= logged ,

whenever bAuth ∈ {authSucc, authFail}, bProfileSvc ∈ {profileOK ,TimeOut}

ILogger
(
idle, (bAuth, error)

)
= logFail

Causality and Decision-making for Systems and Security 15

Thus, if the front end is serving and both Auth and ProfileSvc have transitioned
to some success/failure state, the logger records it (logged). If the front end itself
is in error , the logger may fail to log (logFail).
Front-end IFrontEnd: IFrontEnd

(
idle, (bAuth, bProfileSvc, bLogger)

)
= serving , if bAuth =

authSucc and bProfileSvc = profileOK and bLogger = logged . Otherwise, it equals
error if bAuth = authFail ∨ bProfileSvc = TimeOut ∨ bLogger = logFail . In other
words, the front end will serve the requested page only if authentication and
profile lookup succeed and the logger has recorded those events; otherwise it
enters an error state.
The system model Collecting everything, we obtain a system model M =(
C,B, I, F,∆I , Γ

)
, where

1. C is the component set above,
2. B =

⋃
c∈C B(c) is the union of all behaviour sets,

3. I = {Ic | c ∈ C} is the family of influence rules just defined.
4. F is the set of all full configurations f : C →

⋃
c B(c),

5. ∆I ⊆ F × F is the one-step transition relation induced by I,

(f, f ′) ∈ ∆I iff ∀c ∈ C, f ′(c) = Ic
(
f(c), (f(d))d∈Inf(c)

)
6. Γ : P → 2F is a valuation that assigns, for each atomic proposition in

a chosen propositional vocabulary P, the set of configurations in which it
holds. For example, Γ (pFrontEnd=error) = {f ∈ F | f(FrontEnd) = error}, and
similarly for propositions like pAuth=authFail , and so on.

To show that M admits a non-trivial interface decomposition, partition C
into C1 = {Auth,UserDB, Logger} and C2 = {ProfileSvc,FrontEnd, Logger. Note
that C1 ∪C2 = C and I = C1 ∩C2 = {Logger} is the interface. We can check the
two conditions of Definition 4 (Interface-admitting System Model).

5.4 Strategic decision queries

We now show how to formalize decision-making questions in the microservice
example without developing a full game-theoretic apparatus. Note that it could
have been formulated in the setting of a multi-agent game.

Notation Recall φfail = pFrontEnd=error , and the three candidate interventions:

θ1 =
(
{UserDB}, {I ′UserDB}

)
, I ′UserDB(·) := dbOK

θ2 =
(
{FrontEnd}, {I ′FrontEnd}

)
, I ′FrontEnd(_,_) := servingCache

θ3 =
(
{ProfileSvc}, {I ′ProfileSvc}

)
, I ′ProfileSvc(_,_) := profileStale

Guaranteed recovery Which interventions θi guarantee ¬φfail from configu-
ration f2? Formally, (M, f2) |= ⟨θi⟩□¬φfail. In our example,

(M, f2) |= ⟨θ1⟩□¬φfail, M, f2) |= ⟨θ2⟩□¬φfail, and (M, f2) ̸|= ⟨θ3⟩□¬φfail

16 P. Chakraborty, T. Caulfield, and D. Pym

Thus θ1 (repairing the DB) and θ2 (cache-serve) are valid recovery policies, while
θ3 is not.

Minimal-cost intervention Suppose we assign costs to each θi: Cost(θ1) = 10,
Cost(θ2) = 5, Cost(θ3) = 2, where, for example, repairing the database is more
expensive than re-routing to the cache. We wish to choose the θi that (i) satisfies
⟨θi⟩□¬φfail and (ii) minimizes Cost(θi). The corresponding formula might be

(M, f2) |= ⟨θi⟩□¬φfail and (M, f2) |= ⟨ζj⟩□¬φfail implies (Cost(θi) ≤ Cost(ζj))

for some θi and for all ζj (a predicate version of the logic could be used to
internalize the quantifications). In our setting, θ2 is chosen, since Cost(θ2) = 5
is the lowest cost among {θ1, θ2} that guarantee recovery.

Fallback vs. repair trade-off If Utility(θi) combines cost and the user-satis-
faction penalty (e.g., stale data penalty), we can write Utility(θi) = −Cost(θi)−
Penalty(θi), and ask for (M, f2) |= ⟨θi⟩□¬φfail and (M, f2) |= ⟨ζj⟩□¬φfail im-
plies (Utility(θi) ≥ Utility(θj)), for some θi and for all ζj . This yields the ‘best
trade-off’ policy under a combined cost-penalty metric.

Localized decision-making though separation (using ∗) In this example,
using the interface {Logger}, we can ensure that an intervention on one subsys-
tem does not violate invariants in the other. For instance, when applying θ2, we
require

(M, f2) |= ⟨θ2⟩(φC1
∗ φC2

)

where φC1
= pUserDB=dbError ∧ pLogger=logged and φC2

= pFrontEnd=servingCache ∧
pLogger=logged . This asserts that after forcing the front-end to servingCache, the
C1-subsystem (DB–Auth–Logger) can continue with Logger = logged and UserDB
= dbError , while the C2-subsystem (ProfileSvc–FrontEnd–Logger) enters a safe
‘cache’ configuration. Thus the intervention respects subsystem locality and pre-
vents cross-subsystem side-effects.

Strategic perspective. This framework could have been enriched by view-
ing an orchestrator (defender) and external failures (attackers) as players: the
defender’s strategy set would be {θ1, θ2, θ3, . . . }, while the adversary’s ‘strat-
egy’ is the choice of which component fails next. A natural payoff function re-
wards the absence of failures minus the cost of interventions. While our logical
intervention–queries already suffice to guide practical decision-making without
constructing a full game model, the framework naturally suggests a fuller game-
theoretic treatment; we therefore leave the explicit formulation of full strategy
spaces, payoff functions, and equilibrium concepts to future work.

5.5 Example Configurations and an Actual Cause

Given two configurations, f1, f2 ∈ F , We now exhibit how to identify a set of
components C′ as a cause of f2 from f1 per Definition 10. Intuitively, f1 will be
read as a normal ‘no-error" configuration, while f2 exhibits a front-end error.
We show that a misconfiguration in UserDB (in C1) is the actual cause of f2.

Causality and Decision-making for Systems and Security 17

Configuration f1: All components are idle or behave in a successful manner.
All services await incoming requests.

f1(Auth) = idle f1(Logger) = idle
f1(UserDB) = idle f1(FrontEnd) = idle
f1(ProfileSvc) = idle

Configuration f2: (A front-end error due to a database fault.)

f2(Auth) = authFail f2(Logger) = logged

f2(UserDB) = dbError f2(FrontEnd) = error

f2(ProfileSvc) = profileTimeout

Here, the request reached the front end, Auth attempted to authenticate, but
UserDB returned dbError , leading to Auth = authFail , ProfileSvc = profileTimeout ,
the logger recorded the events, and finally the front end transitioned to error .
Effect Formula ψE. We consider the observable failure ‘FrontEnd is in error’
as the effect, ψE = pFrontEnd=error . Thus ψE holds exactly in those configurations
where f(FrontEnd) = error .
Candidate Cause C′ = {UserDB}. We claim that fixing UserDB in state
dbError (as in f2) is an actual cause of f2 from f1. To check Definition 10,
we let χC = pUserDB=dbError Intuitively, ‘UserDB is stuck in dbError ’ is our
cause candidate.

(i) Actuality. We must show that there is a sequence of transitions from f1
to f2 in which UserDB remains dbError . Indeed, consider the following one-step
transitions (written f∆If

′):

f1
FrontEnd: idle→serving−−−−−−−−−−−−−−→ f ′1, where f ′1(FrontEnd) = serving , others

unchanged.
f ′1

UserDB: idle→dbError−−−−−−−−−−−−−−→ f ′2, (misconfiguration injected).

f ′2
Auth: idle→authFail−−−−−−−−−−−−−→ f ′3, since E(Auth) = (serving , dbError).

f ′3
ProfileSvc: idle→profileTimeout−−−−−−−−−−−−−−−−−−−−→ f ′4, since E(ProfileSvc) =

(authFail , dbError).
f ′4

Logger: idle→logged−−−−−−−−−−−−→ f ′5, since it sees
(authFail , profileTimeout , serving).

f ′5
FrontEnd: serving→error−−−−−−−−−−−−−−−→ f2, since E(FrontEnd) =

(authFail , profileTimeout , logged).

Throughout this run, once UserDB transitions to dbError , it stays in that
state. Hence UserDB = dbError in all intermediate configurations, and eventually
f2(FrontEnd) = error . Thus ♢+(ψE ∧χC) holds. Moreover, in f1 we indeed have
f1(UserDB) = idle ̸= dbError , so the cause condition “UserDB is set to dbError"
is nontrivial.

18 P. Chakraborty, T. Caulfield, and D. Pym

(ii) Counterfactual. We must exhibit a witness set W ⊆ C and show that if
UserDB were not set to dbError (while keeping W fixed), then no run leads to
f2 exactly. Take W = {Auth, ProfileSvc, Logger, FrontEnd}. In other words, we
hold all other components at their post-failure states (in f2) except UserDB. To
apply Definition 10, we consider an intervention θ that forces all components in
W to their f2 values but does not force UserDB, allowing it to vary, θ = (W, {I ′c :
c ∈ W}), I ′c simply sets c to f2(c) immediately and stably.

Under this intervention, UserDB is free, and all other components behave ex-
actly as in f2. Now, if we keep Auth = authFail , ProfileSvc = profileTimeout , Logger =
logged , FrontEnd = error but let UserDB deviate from dbError (i.e. f ′1(UserDB) =
idle or dbOK), then Auth could not have arrived at authFail via IAuth as defined,
nor could ProfileSvc reach profileTimeout , nor could FrontEnd become error un-
der the same influence rules. Concretely, with UserDB = dbOK , one would get
Auth = authSuccess and ProfileSvc = profileOK , forcing FrontEnd = serving .
Hence no run (f ′1)∆If

′
2 can yield f ′2(FrontEnd) = error . This establishes

⟨θ⟩
(
χW ∗ χ′

{UserDB}\W
)
−→ □+¬

(
ψE ∧ χC

)
,

verifying the counterfactual condition (AC2) of Definition 10.

(iii) Minimality. Finally, no proper subset of {UserDB} is nonempty, so mini-
mality holds vacuously. Thus C′ = {UserDB} is indeed an actual cause of f2 from
f1.
Interpretation. This formal analysis shows how a single misbehaving compo-
nent in C1 (the database) sufficed to produce the end-user failure “FrontEnd
error" in C2, via the shared interface component “Logger." Because Logger me-
diates all observable events between subsystems, we can decompose the global
system without losing information and still identify UserDB = dbError as the
minimal actual cause of FrontEnd = error .

6 Logical metatheory

In this section, it is established that our constructions obey a flavour of some
well-established theorems that relate structural and behavioural properties of the
logic. In particular, we establish two van Benthem-Bergstra-Hennessy-Milner [6]
theorems. Inspired by sabotage logic [4], we use a model-changing notion of
bisimulation under intervention that extends the standard back-and-forth (zig
and zag) conditions (cf. [7]) to account for structural modifications induced by
interventions. Further details are given in [12].

Theorem 2 establishes that two bisimulation equivalent interface-admitting
system models are logically equivalent with respect to L(⟨θ⟩, ∗). Theorem 3 es-
tablishes the converse under specific restrictions on the language and for the
subclass of interface-admitting system models with finitely many components
and behaviours.

Causality and Decision-making for Systems and Security 19

Theorem 2. If two interface-admitting pointed system models, (M1, f1) and
(M2, f2) are bisimilar under intervention then for all formulae φ ∈ L(⟨θ⟩, ∗), if
(M1, f1) |= φ then (M2, f2) |= φ. □

Theorem 3. Given a formula φ ∈ L(⟨θ⟩), for any two interface-admitting
pointed system models (M1, f1) and (M2, f2) with finitely many components
and behaviours, if (M1, f1) |= φ implies (M2, f1) |= φ then there exists a bisim-
ulation under intervention relating (M1, f1) and (M2, f2). □

Proofs of Theorems 2 and 3 are provided in [12].

7 Discussion

One key distinguishing feature of our modelling approach, compared to tradi-
tional Structural Causal Models (SCMs), is the use of interventions as explicit
mechanisms to enact rule changes, rather than merely altering variable assign-
ments or fixed structural equations. Standard SCM approaches typically assume
stable causal mechanisms represented by structural equations that remain con-
stant throughout analysis. In contrast, our intervention modality directly modi-
fies influence rules governing component behaviour, offering greater flexibility in
modelling scenarios involving dynamic system evolution, adaptation, or deliber-
ate operational changes.

It provides a means for decomposing and modularly reasoning about system
configurations and their causal interactions, making it particularly advantageous
for forensic and audit scenarios as exemplified by the microservice-based architec-
tures example. Beyond microservice deployments, the combination of rule-based
influence modelling and substructural logic applies naturally to several high-
stakes domains that demand post-incident accountability. In industrial control
systems, programmable-logic controllers, sensors, and safety interlocks already
expose explicit control rules; atomic overrides map conceptually to our interven-
tion operator, while separating conjunction models isolated mixing subsystems
that interact only through shared pressure signals.

In large-scale payment and trading platforms gateways, atomic update to
the codebase can be treated as interventions (in some suitable localised context)
letting auditors trace a settlement outage to the precise validation rule that
triggered it. Similarly in the context of blockchain-based Decentralised Finance
Lending, root cause of flash-crashes (a sudden drop in the price of the underlying
asset) can be traced back.

Finally, smart-grid demand-response systems feature distributed energy re-
sources coordinated by tariff rules and load-shedding commands that also con-
ceptually map to interventions. A common feature across these settings is that
components exhibit explicit behavioural boundaries, interventions are applied as
discrete, auditable actions, and attributing causal accountability is required.

However, these strengths come with certain limitations. For instance, the
abstraction level chosen deliberately omits detailed timing or continuous-time
dynamics, potentially restricting the granularity of analyses in cyber-physical

20 P. Chakraborty, T. Caulfield, and D. Pym

contexts. Furthermore, empirical validation through direct mappings from real-
world events or operational logs to formal configurations remains a challenge.

Some directions for future work may include, an integration with explicit
probabilistic reasoning or uncertainty quantification to enhance applicability
to real-world scenarios, and extension of the framework toward game-theoretic
analyses, explicitly incorporating strategic decision-making and equilibrium con-
cepts. Such extensions would significantly broaden the practical utility and the-
oretical robustness of our framework.

Furthermore the present work deliberately leaves the question of substruc-
turality, how resource constraints, local perspectives and non-duplicable assump-
tions shape causal relations, for future study. Our longer-term goal is to refine
the counterfactual semantics so that an intervention is admissible only when
permitted by a subsystem’s resource frame. Such a substructural extension will
align naturally with our separating conjunction (capturing locality of influence)
and will let us reason about responsibility and control in settings where data,
authority or physical access cannot be copied, discarded or globally modified.

Finally, we remark that it would evidently be both interesting and challenging
to explore the ideas presented here in the context of learning-enabled AI systems
(and by extension cyber-physical systems), where questions of causality, correct-
ness, and security are of increasing prominence: this would be a substantial
programme of research in exploring a substructural approach to causal-strategic
modelling.

Acknowledgements Chakraborty is supported by UKRI through the Cen-
tre for Doctoral Training in Cybersecurity at UCL. Caulfield and Pym ac-
knowledge the partial support of UKRI Research Grants EP/R006865/1 and
EP/S013008/1.

References

1. Amazon Web Services: Implementing Microservices on AWS (2023), https:
//docs.aws.amazon.com/pdfs/whitepapers/latest/microservices-on-aws/
microservices-on-aws.pdf, Accessed 9 June 2025

2. Anderson, G., McCusker, G., Pym, D.: A logic for the compliance budget. In: Zhu,
Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) Decision and Game
Theory for Security [GameSec 2016]. pp. 370–381. Springer (2016)

3. Anderson, G., Pym, D.: A calculus and logic of bunched resources and processes.
TCS 614, 63–96 (2016). https://doi.org/10.1016/j.tcs.2015.11.035

4. Aucher, G., van Benthem, J., Grossi, D.: Modal logics of sabotage revisited. J. Log.
Computat. 28(2), 269–303 (2017). https://doi.org/10.1093/logcom/exx034

5. Baier, Christel et al. : From verification to causality-based explications. In: LIPIcs
198: 48th Int. Colloq. Automata, Languages, and Programming (ICALP 2021). pp.
1:1–1:20 (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.1

6. van Benthem, J., Bergstra, J.: Logic of transition systems. J. Log. Lang. Inf. 3(4),
247–283 (1994). https://doi.org/10.1007/bf01160018

7. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. CUP (2001)
8. Brookes, S.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida,

N. (eds.) CONCUR 2004. pp. 16–34. Springer (2004)

https://docs.aws.amazon.com/pdfs/whitepapers/latest/microservices-on-aws/microservices-on-aws.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/microservices-on-aws/microservices-on-aws.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/microservices-on-aws/microservices-on-aws.pdf
https://doi.org/10.1016/j.tcs.2015.11.035
https://doi.org/10.1016/j.tcs.2015.11.035
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.1093/logcom/exx034
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.4230/LIPIcs.ICALP.2021.1
https://doi.org/10.1007/bf01160018
https://doi.org/10.1007/bf01160018

Causality and Decision-making for Systems and Security 21

9. Bujorianu, M., Caulfield, T., Ilau, M.C., Pym, D.: Interfaces in ecosystems: Con-
cepts, form, and implementation. In: Simulation Tools and Techniques. pp. 27–47.
Springer (2025)

10. Caulfield, T., Ilau, M.C., Pym, D.: Engineering Ecosystem Models: Semantics and
Pragmatics. In: Simulation Tools and Techniques. pp. 236–258. Springer (2022)

11. Caulfield, T., Pym, D.: Modelling and Simulating Systems Security Policy. EAI
Endorsed Trans. Sec. Safety (Proc. SIMUtools 2016, Prague) 3(8), e3–e3 (2016)

12. Chakraborty, P., Caulfield, T., Pym, D.: Logic for decision-making about causality
and influence in behavioural models of ecosystems of systems: with applications to
safety and security (Accessed 5 June 2025), http://www.cs.ucl.ac.uk/staff/D.
Pym/CCP2025full.pdf

13. Collinson, M., Monahan, B., Pym, D.: A Discipline of Mathematical Systems Mod-
elling. College Publications (2012)

14. Demers, Alan et al.: Epidemic algorithms for replicated database maintenance. In:
Proc. 6th Ann. ACM Symp. on Principles of Distributed Computing. pp. 1–12.
ACM (1987). https://doi.org/10.1145/41840.41841

15. Financial Conduct Authority: General insurance pricing practices market study:
Consultation on handbook changes, consultation Paper CP20/19***. September
2020 (Updated December 2020)

16. Galmiche, D., Lang, T., Méry, D., Pym, D.: Bifurcation Logic: Separation Through
Ordering, To appear, Proc. TARK XX. EPTCS 2025, Manuscript: https://www.
cantab.net/users/david.pym/current.html

17. Galmiche, D., Lang, T., Pym, D.: Minimalistic system modelling: Behaviours, in-
terfaces, and local reasoning, in press, Proc 16th EAI International Conference on
Simulation Tools and Techniques (SIMUtools 2024), Springer, 2024. Manuscript:
https://doi.org/10.48550/arXiv.2401.16109, accessed 23/03/2025

18. Halpern, J.Y.: A modification of the halpern-pearl definition of causality. In: Proc.
24th Int. Conf. on Artif. Intel. (IJCAI ’15). pp. 3022–3033. AAAI Press (2015)

19. Halpern, J.Y.: Actual Causality. The MIT Press (2016). https://doi.org/10.
7551/mitpress/10809.001.0001

20. Halpern, J.Y., Pearl, J.: Causes and Explanations: A Structural-Model Approach.
Part I: Causes. Brit. J. Phil. Sci. 56(4), 843–887 (2005)

21. Hitchcock, C.: The intransitivity of causation revealed in equations and graphs.
Journal of Philosophy 98(6), 273 (2001). https://doi.org/10.2307/2678432

22. Ikram, Azam et al.: Root cause analysis of failures in microservices through causal
discovery. In: Adv. in Neural Inf. Proc. Sys. vol. 35, pp. 31158–31170 (2022)

23. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Proc. 28th ACM Symp. on Principles of Programming Languages. pp.
14–26. ACM (2001). https://doi.org/10.1145/360204.375719

24. Jain, M., Pita, J., Tambe, M., Ordóñez, F., Paruchuri, P., Kraus, S.: Bayesian stack-
elberg games and their application for security at los angeles international airport.
SIGecom Exch. 7(2) (Jun 2008). https://doi.org/10.1145/1399589.1399599

25. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving
games. Games and Economic Behavior 45(1), 181–221 (2003). https://doi.org/
doi.org/10.1016/S0899-8256(02)00544-4

26. Lewis, D.: Causation. Journal of Philosophy 70(17), 556–567 (1973). https://
doi.org/10.2307/2025310

27. Lin, J., Chen, P., Zheng, Z.: Microscope: Pinpoint performance issues with causal
graphs in micro-service environments. In: Service-Oriented Computing: 16th Int.
Conf., ICSOC 2018, Hangzhou, China, November 12–15, 2018, Proceedings. pp.
3–20. Springer-Verlag (2018). https://doi.org/10.1007/978-3-030-03596-9_1

http://www.cs.ucl.ac.uk/staff/D.Pym/CCP2025full.pdf
http://www.cs.ucl.ac.uk/staff/D.Pym/CCP2025full.pdf
https://doi.org/10.1145/41840.41841
https://doi.org/10.1145/41840.41841
https://www.cantab.net/users/david.pym/current.html
https://www.cantab.net/users/david.pym/current.html
https://doi.org/10.48550/arXiv.2401.16109
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.7551/mitpress/10809.001.0001
https://doi.org/10.2307/2678432
https://doi.org/10.2307/2678432
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/360204.375719
https://doi.org/10.1145/1399589.1399599
https://doi.org/10.1145/1399589.1399599
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/doi.org/10.1016/S0899-8256(02)00544-4
https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.2307/2025310
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1

22 P. Chakraborty, T. Caulfield, and D. Pym

28. O’Hearn, P.W., Pym, D.J.: The Logic of Bunched Implications. Bulletin of Sym-
bolic Logic 5(2), 215–244 (1999). https://doi.org/10.2307/421090

29. Pardon, G., Pautasso, C., Zimmermann, O.: Consistent Disaster Recovery for Mi-
croservices: the BAC Theorem. IEEE Cloud Computing 5(1), 49–59 (2018)

30. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press,
USA, 2nd edn. (2009)

31. Pearl, J.: The Causal Foundations of Structural Equation Modeling. Handbook of
Structural Equation Modeling (12 2010)

32. Pham, Luan et al.: Root cause analysis for microservice system based on causal
inference: How far are we? In: Proc. 39th IEEE/ACM Int. Conf. Autom. Soft. Eng.
pp. 706—-715. ACM, New York, NY, USA (2024)

33. van de Poel, I.: The Relation Between Forward-Looking and Backward-Looking
Responsibility, pp. 37–52. Springer Netherlands, Dordrecht (2011). https://doi.
org/10.1007/978-94-007-1878-4_3

34. Read, S.: Relevant Logic. Blackwell (1988)
35. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press (2008)
36. Simon, H.A.: The Sciences of the Artificial (3rd ed.). MIT Press (1996)
37. Simon, H.A., Barnard, C.I.: Administrative behavior: a study of decision-making

processes in administrative organization. Macmillan Co., New York (1947)
38. Spirtes, P., Glymour, C., N., S., Richard: Causation, Prediction, and Search. MIT

Press (1993)
39. Stirling, C.: Modal and Temporal properties of Processes. Springer (2001)
40. Sulis, W.: Mathematics of a process algebra inspired by whitehead’s process and re-

ality: A review. Mathematics 12 (2024), https://doi.org/10.3390/math12131988
41. Tambe, M.e.a.: Building dynamic agent organizations in cyberspace. IEEE Internet

Computing 4(2), 65–73 (2000). https://doi.org/10.1109/4236.832948
42. Wang, Hanzhang et al.: Groot. In: Proc. 36th IEEE/ACM Int. Conf. Autom.

Soft. Eng. pp. 419–429. IEEE (2022). https://doi.org/10.1109/ASE51524.2021.
9678708

43. Winskel, G.: Events, causality and symmetry. The Computer Journal 54(1), 42–57
(06 2009). https://doi.org/10.1093/comjnl/bxp052

44. Yao, Zhenhe et al.: Chain-of-event: Interpretable root cause analysis for mi-
croservices through automatically learning weighted event causal graph. In: Com-
pan. Proc. 32nd ACM Int. Conf. Found. Soft. Eng. pp. 50–61. ACM (2024).
https://doi.org/10.1145/3663529.3663827

45. Yousif, M.: Microservices. IEEE Cloud Computing 3(5), 4–5 (2016). https://
doi.org/10.1109/MCC.2016.101

8 Appendix

First, the proofs of the results required to establish the operational–logical equiv-
alence — van Benthem-Bergstra-Hennessy-Milner — properties are given. Then,
the results are extended to causal notions over systems (such as actual causality)
and the corresponding metatheoretical framework. Halpern’s three criteria for
characterizing actual causal relationship are also mentioned.

https://doi.org/10.2307/421090
https://doi.org/10.2307/421090
https://doi.org/10.1007/978-94-007-1878-4_3
https://doi.org/10.1007/978-94-007-1878-4_3
https://doi.org/10.1007/978-94-007-1878-4_3
https://doi.org/10.1007/978-94-007-1878-4_3
https://doi.org/10.3390/ math12131988
https://doi.org/10.1109/4236.832948
https://doi.org/10.1109/4236.832948
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1109/ASE51524.2021.9678708
https://doi.org/10.1093/comjnl/bxp052
https://doi.org/10.1093/comjnl/bxp052
https://doi.org/10.1145/3663529.3663827
https://doi.org/10.1145/3663529.3663827
https://doi.org/10.1109/MCC.2016.101
https://doi.org/10.1109/MCC.2016.101
https://doi.org/10.1109/MCC.2016.101
https://doi.org/10.1109/MCC.2016.101

Causality and Decision-making for Systems and Security 23

8.1 Equivalence

We first present the full definition of our model-changing notion of bisimulation.
Recall that a pointed system model is a pair (M, f), whereM is a system model
and f is a configuration inM. Moreover as mentioned in remark 3, RΘ denotes
a relation on the class of pointed system models that relates two such models
when one is derived from the other through the application of an intervention
operation θ.

Definition 13. Two interface-admitting pointed system models,

(M1, f1) = (F1, ∆I1
, Γ, f1) and (M2, f2) = (F2, ∆I2

, Γ2, f2),

are bisimilar under intervention if the following conditions are satisfied:

1. (Atom): For any atomic proposition p,

(M1, f1) |= pif and only if(M2, f2) |= p

2. (Zig): If f1∆I1
f ′1, then there exists f ′2 ∈ F2 such that f2∆I2

f ′2 and (M1, f
′
1)

and (M2, f
′
2) are bisimilar.

3. (Zag): If f2∆I2
f ′2, then there exists f ′1 ∈ F1 such that f1∆I1

f ′1 and (M2, f
′
2)

and (M1, f
′
1) are bisimilar.

4. (ZigΘ): If (M1, f1)RΘ(M′
1, f1) then there exists (M′

2, f2) such that

(M2, f2)RΘ(M′
2, f2) and (M′

1, f1) and (M′
2, f2)

are bisimilar under intervention.
5. (ZagΘ): If (M2, f2)RΘ(M′

2, f2), then there exists (M′
1, f1) such that

(M1, f1)RΘ(M′
1, f1) and (M′

2, f2) andM′
1, f1)

are bisimilar under intervention. □

The two van Benthem-Bergstra-Hennessy-Milner completeness theorems men-
tioned in 6 are proved below. We provide a proof sketch omitting tedious details.

Theorem 4. If two interface-admitting pointed system models, (M1, f1) and
(M2, f2) are bisimilar under intervention, then for all formulae φ ∈ L(⟨θ⟩, ∗),
if (M1, f1) |= φ, then (M2, f2) |= φ.

Proof. Let φ ∈ L(⟨θ⟩, ∗). The proof is by induction on the syntax of φ. First sup-
pose that φ contains no connectives. The atom clause in definition of bisimulation
under intervention covers the atomic propositions. Our induction hypothesis is
that the implication holds for all formulae containing at most n(n ≥ 0) boolean
connectives and modal operators. We must now show that the implication holds
for all formulae φ containing n+1 connectives and operators. Consider the case
when φ contains no modal operators. If φ is of the form ¬ψ then by the induction

24 P. Chakraborty, T. Caulfield, and D. Pym

hypothesis the implication is immediate. If φ = ψ1 ∧ ψ2, then, by the induction
hypothesis, both (M2, f2) |= ψ1 and (M2, f2) |= ψ2, and thereby (M2, f2) |= φ.

Consider the case when φ = ♢ψ. Assume that (M1, f1) |= ♢ψ. By the
semantics of ♢, there exists f1∆I1f

′
1 such that (M1, f

′
1) |= ψ. By clause Zig♢ in

the definition of bisimulation under intervention, it follows that there exists f ′2
such that f2∆I2

f ′2, and (M1, f
′
1) and (M2, f

′
2) are bisimilar under intervention.

By the induction hypothesis, we conclude that (M2, f
′
2) |= ψ, and consequently

(M2, f2) |= φ. Similarly, from (M2, f2) |= ♢ψ we conclude (M1, f1) |= ♢ψ by
the Zag♢ clause. The case when φ = □ψ is similar.

Now, consider φ = ψ1 ∗ ψ2 where ψ1 and ψ2 are star-free formulae. Assume
(M1, f1) |= φ. Then there exists a pair of pointed partial models (Ma

1 , f
a
1)

and, (Mb
2, f

b
1) s.t. (Ma

1 , f
a
1) |= ψ1 and (Mb

1, f
b
1) |= ψ2. By the premiss of this

theorem and since the models admit of interface, we have that there exist two
bisimulations under intervention such that the pairs (Ma

1 , f
a
1), (Ma

2 , f
a
2) and

(Mb
1, f

b
1), (Mb

2, f
b
2) each are bisimilar, and the pair {(Ma

2 , f
a
2) , (Mb

2, f
b
2)} is a

conjugate decomposition of (M2, f2). Since ψ1 and ψ2 are star-free, it follows
that (Ma

2 , f
a
2) |= ψ1 and (Mb

2, f
b
2) |= ψ2, and consequently (M2, f2) |= φ.

Consider the case when φ = ⟨θ⟩ψ. Assume (M1, f1) |= φ. By the semantics
of intervention operator there exists (M′

1, f1) such that (M′
1, f1) |= ψ, and

(M1, f1)Rθ(M′
1, f1) for some intervention θ. From the ZigΘ clause, it follows

that there existsM′
2 such that (M2, f2)Rθ(M′

2, f2), and (M′
1, f1) and (M′

2, f2)
are bisimilar under intervention. By the induction hypothesis, we conclude that
(M′

2, f2) |= ψ, and thence (M2, f2) |= φ. The converse follows similarly via
ZagΘ clause. □

The other theorem establishes the converse under specific restrictions on the
language and for the subclass of interface-admitting system models with finitely
many components and behaviours.

Theorem 5. Given a formula φ ∈ L(⟨θ⟩), for any two interface-admitting
pointed system models (M1, f1) and (M2, f2) with finitely many components
and behaviours, if (M1, f1) |= φ implies (M2, f1) |= φ, then there exists a
bisimulation under intervention relating (M1, f1) and (M2, f2).

Proof. Let (M1, f1) = (F1, ∆I1
, Γ, f1) and (M2, f2) = (F2, ∆I2

, Γ2, f2) be the
two pointed models over a set of components C. Since |C| is finite, there are
only finitely many f ′1 and f ′2 such that f1∆I1

f ′1, and f2∆I2
f ′2. Similarly, there

are only finitely many interventions θ possible over the subsets of C. Therefore
given a pointed model (M, f), there will be only finitely many (M′, f) such that
(M, f)RΘ(M′, f) for some intervention θ.

For all φ ∈ L(⟨θ⟩), (M1, f1) |= φ iff (M2, f2) |= φ (by assumption), and in
particular, for all atomic propositions p, (M1, f1) |= p iff (M2, f2) |= p.

We show the following contradiction: Let (M1, f1)RΘ(M′
1, f1). Assume that

there is no M′
2 such that for all φ, (M′

1, f1) |= φ iff (M′
2, f2) |= φ. Let

S = {N2|(M2, f2)RΘ(N2, f2)}. S is neither non-empty nor infinite (since there
are only finitely many interventions possible). Thus S = {N 1

2 , · · · ,Nn
2 }. By as-

sumption, for every N i
2 ∈ S, there exists a formula ψi such that (M′

1, f1) |= ψi

Causality and Decision-making for Systems and Security 25

and (N i
2, f2) ̸|= ψi. But then there is a formula ψi for each N i

2 such that
(M1, f1) |=

∧
i∈{1,··· ,n}⟨θ⟩ψi, but (M2, f2) ̸|=

∧
i∈{1,··· ,n}⟨θ⟩ψi which is a con-

tradiction.
Similarly, the converse clause can be shown. Moreover, two similar contradic-

tions with regards to the corresponding ∆ relations, establish the standard zig
and zag clauses (which follows from the fact there are only finitely many f ′1 and
f ′2 such that f1∆I1

f ′1 and f2∆I2
f ′2). Thus if for all φ ∈ L(⟨θ⟩), (M1, f1) |= φ iff

(M2, f2) |= φ, then (M1, f1) and (M2, f2) are bisimilar under intervention. □

8.2 Actual cause

In the sequel, we provide the definition of actual cause as found in Chapter 2 of
Halpern’s Actual Causality [19]. As mentioned previously, we used the AC2(am)
clause.

Definition 14. Given a causal setting (M, u⃗), X⃗ = x⃗ is an actual cause of φ if
the following three conditions hold:

AC1. (M, u⃗) |= (X⃗ = x⃗) and (M, u⃗) |= φ.
AC2(am). There is a set W⃗ of variables in V and a setting x⃗ of the variables
in X⃗ such that if (M, u⃗) |= W⃗ = w⃗∗, then (M, u⃗) |= [X⃗ ← x⃗, W⃗ ← w⃗∗]¬φ
AC3. X⃗ is minimal; there is no strict subset X⃗ ′ of X⃗ such that X⃗ ′ = x⃗′

satisfies conditions AC1 and AC2, where x⃗′ is the restriction of x⃗ to the
variables in X⃗ ′. □

We now give the proof of Lemma 1 which relates interventions in Causal
System Models:

Lemma 2 (Characterization of Interventions in Causal System Mod-
els). Let M = (F,∆I , Γ) be a causal system model with causal projection
Mc = (F c, ∆c

I , Γ
c). Let θ = (C ′, I ′C′) be an intervention yielding the intervened

system Mθ = (F,∆Iθ
, Γ). The following holds:

1. Causal Preservation Criterion: If a causal chain (f1, . . . , fn)∈Chain(M)
does not involve any component in C ′ as part of the cause for any transition,
then this chain is preserved under intervention θ. Formally, we have that
∀i(1 ≤ i < n), C ′ ∩ Cause(fi, fi+1) = ∅ ⇒ (f1, . . . , fn) ∈ Chain(Mθ).

2. Causal Disruption Criterion: If a causal chain (f1, . . . , fn) ∈ Chain(M)
contains a configuration fi whose cause involves components in C ′, and the
intervention θ modifies the influence rules such that the causal transition
to fi+1 is invalidated, then the chain is disrupted. Formally, we have that
∃i(1 ≤ i < n) such that C ′ ∩ Cause(fi, fi+1) ̸= ∅ and ⟨θ⟩¬(fi∆Iθ

fi+1).

Proof. Let M = (F,∆I , Γ) be a causal system with causal projection Mc =
(F c, ∆c

I , Γ
c), and let θ = (C ′, I ′C′) be an intervention yielding the intervened

system Mθ = (F,∆Iθ
, Γ).

Let (f1, . . . , fn) ∈ Chain(M) be an arbitrary causal chain in the original
system. Assume that none of the configurations in the chain (f1, . . . , fn) involve

26 P. Chakraborty, T. Caulfield, and D. Pym

any component from C ′ as part of their cause. By the definition of intervention,
if C ′ is disjoint from the cause set of every transition in the chain, the influence
rules governing those transitions remain unchanged. Consequently, the transition
relation ∆Iθ

remains identical to ∆I for these configurations. Therefore, the
transitions (fi, fi+1) are preserved, meaning the entire chain (f1, . . . , fn) persists
in Mθ. Thus, the causal chain is preserved under the intervention.

Now assume that the chain (f1, . . . , fn) involves a configuration fi whose
cause depends on components in C ′. Suppose the intervention θ modifies the
influence rules such that the cause of fi+1 is invalidated. By the definition of
intervention, the updated influence rule I ′C′ modifies how components in C ′ con-
tribute to transitions. If the intervention disrupts the causal condition required
for fi to transition to fi+1, then the transition (fi, fi+1) no longer exists in ∆Iθ

.
Formally, this is captured by ⟨θ⟩¬(fi∆Iθ

fi+1). Consequently, the entire causal
chain (f1, . . . , fn) is disrupted, as the sequence of causally linked configurations
is broken. Thus, the causal disruption criterion holds. □

We now prove Theorem 1. As before, we omit the tedious details.

Theorem 6. Let M = (F,∆I , Γ) be a causal system model over a finite com-
ponent set C. Construct a corresponding HP causal model M = ⟨U, V, F ⟩, where
V = {Vc | c ∈ C} with dom(Vc) = B(c) and the structural equations in F are
induced by the influence rules I of M. For any configuration f2 ∈ F , define the
effect formula φf2 =

∧
c∈C(Vc = f2(c)). Then, if there exists a causal chain in

M from an initial configuration f1 to f2, one can extract a candidate cause, that
is, a subset X⃗ ⊆ V and an assignment x⃗ (with a corresponding context u⃗) such
that the assignment X⃗ = x⃗ satisfies the HP criteria (AC1–AC3) for being an
actual cause of φf2 in (M, u⃗). In other words, the existence of a causal chain
from f1 to f2 inM implies that there is a corresponding actual cause in the HP
model.

Proof. Let M = (F,∆I , Γ) be a causal system model over a finite component
set C and assume there exists a causal chain (f1, f2, . . . , fn) inM with f1 as the
initial configuration and fn = f2 as the outcome. By definition of a causal chain,
each transition fi∆Ifi+1 is justified by the fact that some subset Ci ⊆ C acts
as a cause for the change from fi to fi+1, while remaining unchanged, and such
that altering that subset prevents the transition (counterfactual dependence),
with minimality ensured by discarding any superfluous components.

We now construct a corresponding HP model M = ⟨U, V, F ⟩, where the set
of endogenous variables is V = {Vc | c ∈ C}, with dom(Vc) = B(c), and the
structural equations in F are induced directly by the influence rules I (i.e., for
each c, the equation for Vc is given by a function fc reflecting Ic and depending
on the values of the variables corresponding to the influence context Inf(c)).
Choose U so that a fixed initial assignment u⃗ yields the starting configuration
f1.

By the premiss of this theorem, we define the effect formula φf2 =
∧

c∈C(Vc =
f2(c)). Since the causal chain in M guarantees that f2 is reached from f1 via
a series of transitions that satisfy the regularity, counterfactual, and minimality

Causality and Decision-making for Systems and Security 27

conditions, we can extract a candidate cause. In particular, there exists some
subset X⃗ ⊆ V , corresponding to the union of the causal subsets Ci from each
transition (or a minimal such subset), and an assignment x⃗ such that:

1. In the causal setting (M, u⃗), the assignment X⃗ = x⃗ holds, and M under u⃗
satisfies φf2 .

2. If we intervene to alter the values of X⃗ (while keeping the values for a
suitable witness set fixed), then the structural equations in F imply that
the effect φf2 would not obtain (i.e., for every configuration reachable under
the intervention, φf2 fails). This follows directly from the counterfactual
condition in the causal chain.

3. By the minimality condition in the causal chain, no strict subset of X⃗ would
suffice to guarantee the effect under the counterfactual analysis.

Therefore, the candidate cause (X⃗ = x⃗) extracted from the causal chain in
M satisfies the HP conditions (AC1–AC3) for being an actual cause of φf2 in
the HP model (M, u⃗). This completes the proof that the existence of a causal
chain from f1 to f2 in M implies the existence of a corresponding actual cause
in M . □

	Causality and Decision-making: A Logical Framework for Systems and Security Modelling

