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Abstract. The proof theory and semantics of intuitionistic modal logics
have been studied by Simpson in terms of Prawitz-style labelled natural
deduction systems and Kripke models. An alternative to model-theoretic
semantics is provided by proof-theoretic semantics, which is a logical re-
alization of inferentialism, in which the meaning of constructs is under-
stood through their use. The key idea in proof-theoretic semantics is that
of a base of atomic rules, all of which refer only to propositional atoms
and involve no logical connectives. A specific form of proof-theoretic se-
mantics, known as base-extension semantics, is concerned with the valid-
ity of formulae and provides a direct counterpart to Kripke models that
is grounded in the provability of atomic formulae in a base. We estab-
lish, systematically, base-extension semantics for Simpson’s intuitionistic
modal logics and, also systematically, obtain soundness and completeness
theorems with respect to Simpson’s natural deduction systems.
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1 Introduction

Simpson, in [23], introduces a family of natural deduction systems for a number of
different intuitionistic modal logics (iMLs). These natural deduction systems are
shown to be both sound and complete with respect to meta-logical derivations in
the intuitionistic first-order meta-theory that is assumed. This result is shown by
defining a bidirectional translation of modal formulae to intuitionistic first-order
formulae and showing that theorems of the natural deduction systems, under
the translation, correspond to a particular type of (intuitionistic) first-order
derivation. Simpson however also defines a Kripke semantics for his intuitionistic
modal logics based how first-order expressions are interpreted in intuitionistic
first-order Kripke semantics. The resultant modal models are then used to the
establish soundness and completeness of his natural deduction systems.
Proof-theoretic semantics is an alternative conception of a semantic theory
that is grounded in the philosophical position known as inferentialism, in which
the meanings of language constructs are considered to be determined by their
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use. In proof-theoretic semantics, which may be seen as a logical realization of
the inferentialism position, meaning is given to a logical language through proof,
rather than truth. This idea has deep roots in the works of Wittgenstein, with
his principle that the meaning of a word should be reflected in its use [24], but
also more recently in works such as those of Dummett [5] and Brandom [TI2/14].

Proof-theoretic semantics can usefully be seen as having two main branches.
On the one hand, proof-theoretic validity (P-tV) is concerned — in a sense
articulated by Prawitz [19], Dummett [5], and Schroeder-Heister [21I22/T7IT6] —
with what constitutes a valid proof. On the other hand, base-extension semantics
(B-eS) is concerned with what constitutes a valid formula. This is the focus of
this paper: we provide a uniform base-extension semantics for the iMLs studied
by Simpson [23].

Sandqvist, in [20], obtains a sound and complete base-extension semantics for
intuitionistic propositional logic (IPL). This is achieved by defining the concept
of an atomic rule as an inference figure such as R in Figure [1| (which we may
write linearly as ((Py = ¢1),...,(Pn = ¢n)) = 7)), and then defining a relation
of atomic derivability -4 over sets of atomic rules %, between sets of atoms and
an atom. Crucially, the rules can only make mention of atoms and the relation
of atomic derivability, as the name suggests, is thus only capable of observing
judgements between sets of atoms and individual atoms. One can imagine the
P as being a natural deduction like construct whose elements are not schemas
but in fact, instances of rules. Thus, in the same way that NJ can be viewed as
generating the consequence relation Fyy, the relation 4 can be understood as
the consequence relation generated by Z. Sandqvist then conservatively extends
this relation to a relation of support I, over a base % which relates sets of IPL
formulae to an IPL formula.

(] [P

f) P,p kg
g ... Gn (Re) yPTaz P

R (Appg) if (P1 = q1),...,(Pn = ¢n)) = ) and,

" for all ¢ € [1,n], P, P; -9 qi, then PlFg r
(At) for atomic p, IFz piff Fg p (V) Ik ¢V iff, for every atomic p and every
C2A, if ¢l pand ¢ Ik p, then IF4 p
DO)Frz oDV iff ¢lrzg ¢ (L) k& L iff, for all atomic p, -2 p

(A g d A iff g ¢ and Ik ¢ (Inf) for © £ 0, O kg ¢ iff, for every € D B,
if k¢ 0, for every 6 € O, then IF¢ ¢

Fig. 1. Sandqvist’s B-eS for Intuitionistic Propositional Logic

The need to consider base extensions, of the form € O %, in entailments
defined by Ik is analogous to the need to consider accessible worlds in Kripke
models of intuitionistic implication. As Prawitz [19] explains, we wish the se-
mantics to yield a construction of an implication ¢ D ), say, as a construction of
1 from ¢ that, together with a construction of ¢, yields a construction of 1. For
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a fixed base 4, the condition as formulated above would be vacuously satisfied
in the absence of a construction of ¢ relative to %. This would be a rather weak
condition and, unsurprisingly, the semantics requires that all base-extensions
% D P be used. See also [§] to explore further some related issues.

It is a support relation of this form that provides our main semantic tool in
giving a uniform base-extension semantics for iMLs.

We note that the semantics as defined in Figure [I]is indeed sound and com-
plete for IPL. In this framework, an IPL sequent (I": ¢) is deemed valid iff for
all bases %, we have that I' Ik, ¢ (where I' is a set of IPL formulae and ¢ is
an IPL formula). This is somewhat analogous to what one might expect in a
Kripke-like semantics, where one would say something like ¢ is valid iff for all
models M we have that M F ¢. It is crucial to note, though, that bases are not
the same as models and that this difference is easily observed in the fact that the
meanings of the connectives — that is, the semantic clauses — are very different
in some cases from the familiar Kripke semantics for IPL (cf. also Beth’s seman-
tics; e.g., [I5] provides an illuminating discussion). That said, the treatment of
1 follows, for example, Dummett [5]. Sandqvist proves, in [20], soundness and
completeness of the base-extension semantics relative to NJ [18]. We sketch the
arguments below.

Theorem 1 (IPL Soundness). If I' Fnj ¢, then I'IF ¢. O

In this case, by the inductive definition of Fyy, it is sufficient to simply consider
every rule of NJ as a series of meta-logical expressions with us assuming the
hypothesis of every rule is valid and showing that the conclusion of every rule
is also valid. For example, for D we show that if I',¢ |-y ¢, then I' IFg ¢ D ¥
(note, using the base ) is equivalent to the validity condition mentioned above).

Theorem 2 (IPL Completeness). If I' - ¢, then I' by ¢. O

The proof of completeness is more involved, but amounts to showing that, for
any valid sequent, we can always construct a base .4~ whose rules simulate NJ.
Since 4" does not contain schemas, every NJ rule must be simulated for every
subformula of the valid sequent. Since the valid sequent is indeed valid, we can
therefore construct an NJ proof of the sequent using the rules of .4#” and then
translate it faithfully to give us an NJ proof of the valid sequent.

For our study of base-extension semantics for iMLs, we take Simpson [23]
and Sandqvist [20] as our starting points. We combine them to give a proof-
theoretic semantics for the iMLs with natural deduction systems defined by
Simpson in [23]. We do this in a very similar fashion to what has already been
described for IPL [20]. Crucially, however, more organizational structure within
the formulation of bases is necessary.

As mentioned at the start of this section, Simpson [23] shows that there is a
translation, the standard translation, between intuitionistic first-order formulae
and the modal formulae which he considers for his proof systems. The modal
formulae would be better described as being ‘labelled’ modal formulae, indeed
has a label, whose intuitive reading is as being the ‘world’ at which that formula
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holds in. Similarly, Simpson allows additionally for a special type of non-logical
object to be present in the hypothesis of any rules in his natural deduction
systems; that of relations between the worlds.

These objects are, in the inferentialist spirit of bases, inherently non-logical
— they simply describe which labels are related to one other and do not in-
volve logical constants. Accordingly, we consider these objects alongside atomic
propositions (to which we now also attach a label) to be ‘first-class citizens’ in
bases. Consequently, our notion of atomic rule can contain both world relations
and labelled atoms. However, in keeping with the spirit of the natural deduction
systems of Simpson, we do not generally allow for a rule to conclude such rela-
tions. That is to say, whereas it might be desirable to be able to directly express
rules of the form

zRy yRz
zRz R

we can, and will instead express them as

[zRz]
xRy yRz p* R
p’U

where p¥ is an atom. Doing so allows us to build bases whose proof structures
mimic those of the natural deduction systems of Simpson. Thus, soundness and,
especially, completeness are proven exactly as in [20], however extra care is taken
with respect to the modal connectives.

Building on all this, we give a brief summary of the organization of the paper.
Section [2| introduces natural deduction systems for intuitionistic modal logics in
the sense of Simpson [23]. Section[3|introduces the notion of derivability in a base,
extending the work of Sandqvist [20] to include labelled atoms and relations on
labels. This notion of derivability is extended to incorporate labelled formulae
and to give a conception of a semantic theory through relational, or ‘frame’,
properties. Building on this, a base-extension semantics in the sense of Sandqvist
[20] is given for the family of modal logics described by the relational properties.
Sections [4 and [f] then establish that this semantics is, respectively, sound and
complete with respect to the natural deduction systems given by Simpson for
their respective logics — some of the details of the proofs are deferred to [?]. We
conclude, in Section[6] with a summary of our contribution and a brief discussion
of directions for further research.

In recent work by Gheorghiu, Gu, and Pym [I0] on inferentialist semantics
for substructural logics — and also work by Eckhardt and Pym [6l7] on classical
modal logics — it has been shown that B-eS has significant potential as a mod-
elling tool. As well as being a fundamental contribution in logic, demonstrating
the scope of proof-theoretic semantics, the work presented herein adds to the
collection of logics that are available to support that line of enquiry.
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2 Intuitionistic Modal Logics

We begin now by fixing some definitions that are required throughout the paper.
Discussions and motivations for these definitions can be found in Simpson’s some-
what comprehensive ‘The Proof Theory and Semantics of Intuitionistic Modal
Logics’ [23].

Fix a countable set of variables W which we call labels, and propositional
letters A.

Definition 1 (Modal formulae). Propositional modal formulae are defined by
the grammar: ¢, :i=p EA|GAY [PV Y|P DY |0p|Od| L] T O

We enrich the notion of formula to that of labelled formula. The intuitive
reading of such objects is that they express the ‘locale’ at which the formula
holds true.

Definition 2 (Labelled formula). A labelled formula is an ordered pair (z, ¢),
which we write as ¢, where x € W and ¢ is a propositional modal formula. O

Definition 3 (Sequent). An intuitionistic modal sequent is an ordered pair
(I, $*) which we write as (I" : ¢*), where I' is a (finite) set of labelled formulae
and ¢* is a labelled formula. O

We now introduce a new type of object, that of the relational assumption,
which we will treat similarly to propositional atoms.

Definition 4 (Relational assumption). A relational assumption is an or-
dered pair (x,y) where x,y € W, though we will write this as xRy. O

Relational assumptions act like edges of a directed graph. This intuition will
be useful for understanding the proof theory of the intuitionistic modal logics.
To make this precise, recall the definition of a graph.

Definition 5 (Graph). A graph is a pair G = (X,R) where X CW is a non-
empty set of labels and R is a binary relation on X. We write xRy to mean that
xRy € R. O

Given a graph G = (X,), we can require that the relations be subject
to different global properties (i.e., properties on all x € X) such as those in
Figure 2] The properties in Figure 2] are conventionally called frame conditions
in the context of modal logic and we adopt this terminology herein. We denote a
(possibly empty) subset of these frame conditions and represent this by a letter
v, which should be understood as v C {vp, yr, VB, V4,75, Y2} By fixing such a
~, we fixing a particular intuitionistic modal logic, with the empty subset v = ()
denoting the modal logic iK.

Definition 6 (Intuitionistic modal derivability). Given a set of frame con-
ditions v, a sequent (I : ¢*), and a graph G = (X,R) whose vertex set X con-
tains at least every label of the elements of I' and =, whose edge-set R satisfies
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Axiom Schema Label Name Relational property

OT vp Seriality Vz.dy. xRy

¢ D¢ yr Reflexivity Vz.zRzx

¢ D OO0 vB Symmetry Vz.Vy.xRy = yRz

O¢ D Od¢ v4 Transitivity Vz.Vy.Vz.zRy & yRz = xRz

0o D O0¢ ~vs  Euclidean Vr.Vy.Vz. 2Ry & xRz = yRz

OU¢ D OO 2 Directed Vr.Vy.Vz. xRy & yRz = Jw. yRw & zRw

Fig. 2. Frame conditions

the conditions vy, then the relation of derivability for the specific intuitionistic
modal logic satisfying the modal axioms corresponding to the frame conditions -y
is defined by the schemas of Figure[3 and the schemas corresponding to the frame
conditions of Figure . The resulting consequence relation is written I’ l—g o*.

The schemas of Figure [3|form the base natural deduction system N, which
corresponds to a natural deduction system for the logic iK. We extend this nat-
ural deduction system to other intuitionistic modal logics by adding to Np
additional inference figures from Figure [4] which represent the necessary rela-
tional properties of those logics. That this is justified is shown by Simpson in [23].
We write Ngg (7) to denote the natural deduction system Np¢ extended by the
rules that correspond to the frame conditions . Thus, the consequence rela-
tion I' }—g ¢® should be read as saying that there is a derivation in Np(7)
of ¢* from open assumptions I' and R, where § = (X,R), recalling that
X = {z|¢® € I'U{¢”}}. The trivial graph 7 is of particular interest and is
defined as T = (z, 0).

The soundness and completeness of the natural deduction systems Noe(7)
with respect to their intuitionistic modal logics is proven in [23].

Definition 7 (Theorem of Ny (7)). A labelled formula ¢* is called a theorem
of Noo () if FY ¢® holds. We write this as FY ¢*. O

With these preliminaries established, we can now set up the base-extension

semantics.

3 Derivability in a Base and Base-extension Semantics

Following the approach of Sandqvist [20], we start by defining a notion of atomic
derivability, which is the basis of the base-extension semantics.

Definition 8 (Basic sentence). A basic sentence is either a labelled proposi-
tional letter or a relational assumption on labels. B denotes the set of all basic
sentences. U
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(<>¢)z | ,(pz E
x The label y is different to x and xx The label y is different to = and z
the labels of any open assumptions. and the labels of any open assumptions.

Fig. 3. The natural deduction system N, for intuitionistic modal logic iK

For the remainder of this paper, we adopt the convention that lower case
Latin letters refer to basic sentences, except for the variable letters v, w, z, vy, z, a, b.
Lower case Greek letters, except for v, will refer to intuitionistic modal formulae
and uppercase Latin and Greek letters, except for the relation symbol R, will
refer to finite sets thereof. If a basic sentence is written without a superscript, it
is taken to mean either a labelled propositional letter or a relational assumption.
We also henceforth use the word atom to mean labelled propositional letter.

Definition 9 (Basic sequent). A basic sequent is an ordered pair (P, p) where
P is a (finite) set of basic sentences and p is a labelled atom if P # 0. Else p is
a basic sentence. We write this pair as P = p and omit the P if it is empty. O

Definition 10 (Basic rule). A basic rule is an ordered pair (Q,r) where Q is
a (finite) set of basic sequents and v is a labelled atom if Q # 0. Else, r is a basic

sentence. We write this as (Py = p1,..., P, = py) = r where each P, = p; € Q
and omit the (P = p1,..., P, = p,) if Q is empty. O
Definition 11 (Base). A base is a set of basic rules. O

Definition 12 (Basic derivability relation). Given a set of frame conditions
v and a base B, we can inductively define a relation of derivability on atomic
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Fig. 4. Rules which extend N, that express the properties of the relational assump-
tions

sequents as follows:

(Ref)  S,ptp
(App) If (P1=p1,...,Pn=pn) = 1) € B and
S, P, F, pi for each i, then S+, r

v

D) If~p € and there exists a y such that S,zRy >, p?, then S, p
2 2

(T) Ifvyr €~ and S,xRx V), p¥, then S+, p¥

(B) Ifyp €~, Sty xRy and S,yRx 1, p*, then S+, p*

(4) Ifva€n, SHy xRy, SEy yRz, and S,zRz 1, p¥, then S+, p»

(5) Ifvs€n, Sy xRy, Sy xRz, and S,yRz 1, p, then S+, p»

(2) Ify2€n, SHy xRy, Sty xRz, and there exists a w such that
S,yRw, zRw ), p*, then S, p*.

The last six cases we call the modal cases of the derivability relation. In the case
of (D), the label y cannot appear as the label of any s € S nor be equal to x or
z. In the case of (2), the label w cannot appear as the label of any s € S nor be
equal to x,y, 2, v. O

Lemma 1. If U F, u, then T,U t, u.

Proof. We start noting that, in the modal cases, we are immediately done. So now
consider when U F}, u holds by (Ref), in which case v € U. Therefore, v € T,U
and thus T,U F, u holds again by (Ref). Otherwise, consider when U H, u®
holds by (App). In this case, there must exist a rule ((Py = p1,..., Pn = pn) =
u) € % such that U, P; F},; p; holds for each i. By the inductive hypothesis, we
therefore obtain that T, U, P; F, p; for each 4, from which we conclude by (App)
that T, U +, u. O
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Lemma 2. TV, u if and only if, for all € 2 A such that if, for allt € T, we
have V2, t, then E, u.

Proof. Going left to right, we suppose the hypothesis and consider how T+, u
holds. We consider just the non-modal cases as the modal cases are immediate.
If it holds by (Ref), then u € T and thus we are immediately done. Else, it
must hold by (App) in which case we have that there exists a rule (P, =
Py Pn = pn) = u) € B and T,P; b, p; for each i. By the inductive
hypothesis, we therefore have that P; =, p; for each ¢, from which it follows by
(App) that F, u.

Going right to left, we consider whether v € T or not. If it is, then we
immediately have by (Ref) that T, v and we are done. So suppose not. We
begin this case by making the observation that if for any base 2~ we have that
@ F,- ¢ holds by (Ref) then it must be the case that Q I, ¢ and by Lemma
we have that T, Q t, q.

Now consider the base . = ZU{= t|t € T} O ZB. We deduce that F, u
holds and that it must hold by (App) or if w is a labelled formula it can hold by
a modal case. Starting with (App), since u ¢ T, there must be a rule concluding
u in . Let this rule be (P; = p1,..., P, = p,) = u. Thus, we have by (App)
that P; F, p; for all i. Thus, by the inductive hypothesis, taking our initial
observation as our base case, we have that T', P; F, p; from which, by (App), we
conclude T' ), u, as required.

We now show just one of the modal cases — all the others go similarly.
Suppose v = p” and that we have that -, p® holds by (D). Thus, we have
that vp € 7 and that there exists a y such that xRy F, p*. By the inductive
hypothesis, possibly by renaming the variable y, we therefore have that there
exists a y such that T, xRy 2, p®, and by (D) we obtain T, p”, as required. O

Lemma 3 (Monotonicity). If S, p, then, for all € O %, S =, p. O

To prove this, it suffices to consider how S ), p holds. Intuitively, we understand
that by extending our base, the original atomic derivation still remains a valid
argument for p from S.

With these preliminary notions established, we can extend the notion of
basic derivability to give a support relation, in the sense of Sandqvist [20]. First,
must extend the notion of sequent to allow for relational assumptions or, in the
presence of no assumptions, concluding a relation.

Definition 13 (Extended sequent). An extended sequent is a pair (I, ¢) that
we write (I' : ¢) where I is a set of intuitionistic modal formulae and relational
assumptions and ¢ is an intuitionistic modal formula or, if I' is empty, also
possibly a relational assumption. O

The support relation, Definition [I4]is core to the base-extension semantics.
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Definition 14 (Support). Given a set of frame conditions v and a base B,
we can inductively define a relation of support on extended sequents as follows:

(At) I, p* iff Fy p*
(Rel) K, xRy iff H, xRy
(A) 1, (D AD)T iff 15y ¢° and I, ¢
(V) 1By (@ V)* iff for all € O A and p?,
if 9 &, p* and ¥” &, p*, then I, p?

\Y

(D) I (6 D) iff ¢ I, ¥*
(@) I, (O¢)* iff xRy, ¢¥, for all labels y
(0) I, (0d)* iff for all € 2 A and p?,
if xRy, ¢¥ IE, p* for all labels y, then I, p*

(L) IH, L aff IV, p*, for all p*

(T) 1B, T* always

(Inf) I"IE, ¢ iff for all € 2 A such that |, 1, for each € I',
implies |, ¢ 0

Definition 15 (Validity). The sequent (I" : ¢*) is said to be valid if and only
if for all bases BB, it is the case that I' I, ¢* holds. O

We start with an ostensibly useful observation.

Lemma 4. The sequent (I" : ¢*) is valid if and only if I’ Il-a ok

Proof. Going left to right, we have that for all bases 4, it is the case that
I' I, ¢”. Thus, we can pick Z = (. Going right to left, we obtain the result by
monotonicity as the empty base is the smallest subset of every base. O

So, we are justified in writing a valid sequent as I" P ¢*. Before moving on, a
brief discussion of the clause for () is in order. One would perhaps wish to see a
clause for (¢) that says something along the lines of I, (¢¢)* iff Jy(IF, xRy and
I, ¢¥). Doing so, however, quickly presents problems in proving both soundness
and completeness. If we understand the presence of the existential as an infinite,
meta-level disjunction, then we can understand this problem as being of the same
kind faced by Sandqvist [20] in trying to define disjunction. In fact, the clause
for () amounts to an infinitary version of Sandqvist’s clause for disjunction.

More specifically, suppose one gives a naive Kripke-like definition for intu-
itionistic disjunction; that is, IFg ¢ V ¢ iff k5 ¢ or IFg 1. One could instead
write this definition as Iy € A s.t. k% x, where A = {¢,¢}. This definition, as
shown by de Campos Sanz and Piecha in [4], doesn’t work.

Instead, the clause V€ O %,Vp,Vx € A, x k¢ p implies Ik p — corre-
sponding to the second-order definition of V or to the elimination rule in NJ —
does (again, see [§] for more discussion). Something similar follows for (¢). If
one attempts to give (¢) a Kripke-like definition, that is, IF, (0¢)” iff Jy s.t.
(I, xRy and I, ¢V), then, similarly to before, this definition fails to be sound
and complete. Instead, as demonstrated below, the clause V¢ 2 %,Vp*,Vy €
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W(¢¥, xRy IF¢ p*) implies I p?, again based on the elimination rule, is sound
and complete. We note that, in both cases, we have taken definitions that are
meta-level disjunctive in the Kripke semantics, and turned them around into
meta-level conjunctive in their proof-theoretic semantics.

4 Soundness

The soundness of the base-extension semantics we have given with respect to
natural deduction system Npog () is stated as follows:

if I'F7 ¢, then I' IFP ¢

By the inductive definition of derivability in Npg(7), it suffices to show the
following:

(R) I,¢" I ¢

(AI) If ' I ¢ and I' I ¢, then I' I (¢ A )™

(AE) If I'IP (¢ A9p)®, then I' IF ¢* and ' IF p®

(VI) TP ¢* or TP 4%, then I' P (¢ V ¢)*

(VE) TP (¢ V)® and I, " P x¥ and I, 4" P x¥, then I' IF ¥

(OI) U I, ¢* I ¢®, then I'IF (¢ D ¢)*

YU TP (¢ DY)* and I'' P ¢*, then ' IF

(LE) f I L® then I' I x¥

(OI) If Iz Ry I @Y for y different to x and not a label of any element of I', then
I'iP (de)*.

(OE) I I'P (d¢)* and I' IV xRy, then I' I ¢Y

(OI) f I'IP ¢¥ and I' IP xRw, then ' I (Od)*

(OE) If I' P (0¢p)* and I, ¢*, xRa I 1% for a different to x and z and not a label

of any element of I', then I" I 9>,

E
1

E

I
OE
E

Additionally, if v # () we must show the following:

(Rp) If yp € v and I',xRa P ¢, for a different to z and z and not a label of any
element of I', then I' IF ¢*

)
) If yg € yand I' ¥ xRy and I',yRx I ¢* then I' P ¢*
1) lf y4 €yand I'P 2Ry and I' IP yRz and I',zRz I ¢* then I' IF ¢¥

) If vs € yand I' P 2Ry and ' IF 2Rz and I yRz I ¢* then I' I ¢¥

) Ifvo €vyand I' P zRy and I' 1P xRz and I, yRw, zRw P ¢*, for w different
to x,y, z,v and not a label of any element of I', then I' IF ¢".

Theorem 3 (Soundness). If I'FY ¢, then I' I ¢*.

Proof. We proceed by proving each of the cases listed above, under the additional
hypothesis that we are in an arbitrary base % such that for all # € I" we have
that I, 6.

(R) ¢" I, ¢®. This case is immediate by (Inf).
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If IE, ¢* and I, )", then I, (¢ A¢)*. This case follows immediately by the
definition of (A).

If I, (¢ A4)*, then IE, ¢ and I, ¢*. This case also follows immediately
by the definition of (A).

If IE, ¢ or I, ¥®, then I, (¢ V4)®. To show this case we suppose we have,
for all ¥ O % and basic sentences p?, that ¢* I, p¥ and ¢ IE, p¥. We
must show that I, p. From the hypothesis, we have that I, ¢* or I, ¥*,
which, by monotonicity, gives that I, ¢ or I, 4. In either case, by (Inf),
we therefore obtain that I, p¥, as required.

If IF, (¢ V4)* and ¢* I, x¥ and ¢* I, x¥, then I, x¥. We proceed by an
inductive argument over the structure of the labelled formula Y.

- x = p. In this case, we have sufficient hypotheses by the definition of (V)
to conclude I, p¥, as required.

- x = a A . In this case, by the definition of (A), we have that ¢* I, a¥
and ¢* IH, 4Y, and similarly for ¢*. Thus, by the inductive hypothesis, we
have that IH, a¥ and I, 8Y, and so we are done.

- x = aV (. In this case, we start by further supposing that we are in a base
% 2 % and that we have, for all atoms p*, that o¥ I, p* and Y IE, p*.
Our goal will be to show that I, p*. We want to show that ¢* I, p
and * Il—jg p?, which will give us sufficient grounds to then use our first
hypothesis to give us our conclusion. We will only show ¢* I, p* as the
argument is similar for the other case. We start by observing that we have,
by hypothesis, ¢* I, (aV 8)¥. By monotonicity, this is ¢ I, (aV )¥. By
(Inf), this gives that, for all 2 D €, I, ¢* implies I, (a V B)Y. Since we
have that oY Il-?g p* and BY I, p*, by hypothesis, then we conclude that
we have, for all 2 D €, if I, ¢*, then IF, p*. By (Inf), this gives ¢* I, p*,
as required.

- x =« D . In this case, we further suppose we are in a base ¢ 2 % such
that I, a¥. Our goal will be to show that I, Y. We start by considering
the hypothesis ¢* I, (o D £)¥. By monotonicity, we have that ¢* I,
(a D B)Y and that, by (Inf), for all 2 2 €, if I}, ¢, then I, (a D B)Y.
Since we have that I, a¥ by hypothesis, then, by monotonicity and (Inf),
we conclude that we have for all 7 2 €, if I, ¢*, then I}, Y, which gives
us ¢ Ik, BY. Similarly for ¢)*, at which point, by the inductive hypothesis,
we can conclude that I, 57, as required.

- x = L. This case is immediate by the definition of L*.

- x = Oa. Our goal will be to show that, yRa I, a® holds, for all labels
a. With this in mind, we fix an arbitrary label a and consider all bases
¢ 2 A, where I, yRa holds. We are left with showing I, a®. To this
end, consider the hypothesis ¢* I, (Oa)Y. We immediately have that
¢ I, (Oa)¥ by monotonicity. This is equivalent to considering all bases
2 2 € for which I, ¢* implies I, (Cc)¥. The consequent of the previous
implication is equivalent to considering all labels b such that yRb I, al
which implies that in particular yRa I, a®. Since, by hypothesis, we have
that I, yRa and 2 D €, then it is the case that I}, a®. It thus follows that



(=)

O E)

B-eS for Intuitionistic Modal Logics 13

¢" I, a®. The same argument gives that ¢” I, o, so, by the inductive
hypothesis, we can therefore obtain I, a®, as required.

- x = Qa. We start by fixing a base ¥ 2 % and an atom pY, where
yRz, o I, p¥, for all z. We must show that I, p*. The second hy-
pothesis, by monotonicity, gives ¢* I, (Qa)¥. This equivalently gives us
that, for all bases 2 2 ¢, I}, ¢” implies that, for all bases & 2 2 and
atoms p?, if yRz,a* I, p®, for all z, then I, p®. Thus, we can conclude
that I, p* and therefore ¢* I, p*. Similarly, we obtain ¥* Ik, p*, and
so, by the first hypothesis, we conclude I, p*, as required.

If ¢* IF, ®, then IE, (¢ D ¢)*. This case follows immediately by the
definition of (D).

If I, (¢ D ¥)” and IF, ¢* then I, ¥*. In this case, the first hypothesis,
by (Inf), is equivalent to saying that for all bases ¢ 2 4, if I, ¢ then
I, 1)*. By hypothesis, we have that I}, ¢* and thus it follows that I, 7,
as required.

If I, L, then I, x¥. Since we have IJ, p*, for all atoms p*, then by a simple
inductive argument over the structure of x¥, we obtain I}, x¥, as required.
If xRy I, ¢¥ for y different to z, then IF, (O¢$)*. To show the conclusion, it
suffices, by the definition of ((J), to show that, for all z, we have zRz IF, ¢~
Thus, it is required to show that zRv IE, ¢¥, for some v not equal to z,
which we have, by hypothesis, by setting v = y.

If IF, (O¢)* and I, xRy, then I, ¢¥. This case is immediate, since we
consider the definition of I, (O¢)” at the label y to obtain the result.

If I, ¢” and I, zRwv, then I, (0¢)*. To show I, (0¢)*, we start by
additionally fixing a ¢ 2 % and a p" such that xRy, ¢" I, p* holds for
all y and show that I, p*. We have, by monotonicity, that both Ik, ¢"
and I, Rv hold. Furthermore, since zRy, ¢¥ Ik, p* holds for all y, then in
particular, we have that xRv, ¢" I, p*. Therefore, we conclude I, p*, as
required.

If I, (0¢)* and ¢%, xRa I, ¢* for a different to z and z, then I, ¢*. We
break the proof into a case analysis over the structure of 1~.

- 1 = p. We start by considering the second hypothesis. Since a is a label
different to z and z and didn’t appear in any open assumptions, we con-
clude that zRy, ¢ I}, p* for all labels y. We thus have sufficient grounds
to conclude, by the first hypothesis, that I, p*, as required.

- ¢ = a D f. In this case, we start by fixing a ¥ 2 4 such that IE, o*. We
want to show that I, 5. By monotonicity, the second hypothesis therefore
gives that ¢*, xRa I, £* from which it follows that ¢¥, xRy I, 5* for all
labels y. Since, by monotonicity, we have that I, (0¢)*, by applying the
inductive hypothesis, we therefore obtain that I, 8%, as required.

- ¢ = a A B. In this case, the second hypothesis gives that ¢* zRa IF,
(a A B)?, which equivalently gives ¢*, zRa I, o and ¢*, xRa I}, 5%, and
therefore, by the arbitrariness of a, that ¢¥, xRy IF, o* and ¢V, xRy I, 7,
for all y. Thus, by the inductive hypothesis, we obtain that I, o* and
I, 7, which gives IE, (A )%, as required.
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- Y = aV 8. In this case, further fix a base ¥ O £ and an atom p¥
such that o I, p* and B* I, p*. We want to show that I, p*. By
monotonicity, taking the second hypothesis is equivalent to considering all
2 2 € such that I, ¢* and I}, xRa implies I, (o vV §)*. By definition,
this is equivalent to considering all bases & O & and atoms p” such that
o® I, p* and % I, p* implies IF, p®. Since we have that o I, p* and
B I, p*, then we can conclude that we have I, p. Thus we have that
zRa, ¢* I, p*, which implies that xRy, ¢V I, p®, for all y. Hence, by the
first hypothesis, we get Ik, p*, as required.

- ¢ = L. In this case, it suffices to show that I, p®, for an arbitrary atoms
p°. We note that the second hypothesis implies that zRa, ¢® [pA p? from
which we conclude, by the arbitrariness of a, that xRy, ¢¥ I, p*, for all
y. Hence, by the first hypothesis, we conclude It p®, as required.

- ¢ = Oa. In this case, further fix a label v and a base ¥ 2 %, such
that I, zRv. We are left to show that I, o”. By monotonicity, the sec-
ond hypothesis gives, for all 2 2 €, that I}, zRa and I, ¢* implies
that, for all y, we have zRy I}, a¥. Therefore, in particular, we have that
zRv IF, . Since IE, zRv, we therefore conclude that zRa, ¢* I, o*. By
the arbitrariness of a, we therefore have that zRa,¢® I, o, for all y.
Since, by monotonicity, we have that I, (0¢)”, by applying the inductive
hypothesis, we therefore obtain I, a”, as required.

- Y = Qa. In this case, further fix a base ¥ O % and an atom p“ for
which zRv, ¢ I, p* holds for all v. We want to show that I, p*. By
monotonicity, the second hypothesis gives that, for all 2 2 €, I, ¢°
and I}, 2 Ra implies I, (Oa)?. The conclusion of the previous implication
is equivalent to considering all bases & O 2 and atoms p® such that if
zRv, ¢ I, p® for all v, then I}, p°. Thus we conclude that I}, p* and so
that zRa, ¢* I, p*. Therefore, we have that zRy, ¢V I, p* for all y from
which, by the first hypothesis, we conclude that I, p*, as required.

Now we consider the cases where v # (). In each case, we assume that v contains
that particular condition. We leave the proofs of all cases except for one as an
exercise as they all follow exactly the same pattern.

(Rp) If xRa I, ¢, for a different to x, then I, ¢*. We proceed by induction on
the structure of ¢*.

- If ¢ = p, then we start by observing that there exists a y such that xRy I,
¢*. Thus, we are immediately done by the definition of H,.

- If ¢ = aApB, then we have that Ra IF, o and zRa I}, 7. By the inductive
hypothesis, it follows that IF, o* and I}, 5%, and so we can conclude I,
(o A B)?, as required.

- If ¢ = a D B3, then we have that zRa I, (a O )*. We must show that I,
(a D B)*. With this in mind, we fix a base ¥ 2 %, where I, o*, and show
that I, 5% holds. By monotonicity, we have that zRa IE, (o D 3)*, which is
equivalent to having, for all Z O % with I% zRa, that o H—Zj [3%. But since
2 2 €, where I, o, we therefore have that I}, 5%, and thus zRa IE, 7,
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from which we conclude that there exists a y such that xRy IE, %. By the
inductive hypothesis, we therefore have that I, 5%, as required.

- If ¢ = aVf, then we have that zRa I, (aV3)?. Given a base ¢ O % and an
atom p* such that ¢* I, p* and ¥* I, p*, we want to show that I, p*. We
start by considering that, by monotonicity, we have xRa I, (a'V §)*, which
is equivalent to considering all bases ¥ 2 % for which I% rRa implies
I, (a Vv B)*. The conclusion of the previous implication is equivalent to
considering all bases & 2 2 and atoms ¢¥, where ¢* I, ¢” and ¥* IF}, ¢"
implies I, ¢”. Since we have by hypothesis that ¢* I, p*, ¢* I, p*, and
& 2 %, we therefore conclude that zRa I, p¥, and thus that there exists a
y such that zRa I, p¥. Then, by the definition of ,, we obtain IF, p, as
desired.

- If ¢ = L, then we have that zRa IF, 1* and we must show that IF, L.
By definition, for each p*, there exists a y such that xRy I, p* for any
p*, and so, by the definition of ,, we obtain I, p*, for all p*. Therefore
B, 1=,

- If ¢ = Oa, then we have that xRa IF, (Oa)® and we must show, given
a base € 2 % such that I, zRw for an arbitrary w, that I, o*. By
monotonicity, we have zRy I, (Oa)*, which is equivalent to considering
all bases 2 2 ¢ for which I, xRy implies I}, (Oa)?. The conclusion of
the previous implication is equivalent to considering all labels v such that
zRv I, a’. Since we have I, zRw, then we have, in particular, that I, o
and thus zRa I, o. We therefore have that there exists a y such that
zRa I, o® from which, by the inductive hypothesis, we obtain IF, o, as
required.

- If ¢ = Qa, then we have that 2 Ra IF, (O«)?. To show this, we begin by fixing
a base ¢ 2 # and an atom p* such that zRa,a® I, p* for all a, with the
goal of showing that I, p*. By monotonicity, we have that zRa I, (0a)?,
which gives that, for all 2 D ¢, we have that I, xRy implies, for all
& 2 2 and all atoms ¢°, if 2Rb, o’ It ¢V for all b, then I}, ¢*. Since we have
zRa,a® |, p*, we therefore can obtain by monotonicity that I, p* and
therefore zRa I, p*, and thus that there exists a y such that xRy IE, p™.
Thus, by the definition of =, we conclude I, p®, as desired.

If xRz IF, ¢V, then I, ¢¥.

If IF, xRy and yRx I, ¢, then I, ¢*.

If IF, xRy, It xRz, and yRz I}, ¢V, then I, ¢*.
If E, xRy, IF, yRz, and yRw, zRv IF, ¢, then I, ¢*, for w different to
x’ y’ Z’ v.

)
)
1) If 12, 2Ry, B, yRz, and xRz I, ¢*, then IF, ¢".
)
)

This concludes the proof of soundness. O

5 Completeness

We now show that, given an arbitrary valid sequent (I" : ¢*) there exists an
Noo () proof of it. To show this, we will construct a special base, called .4/,
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whose rules will mimic the natural deduction rules of Nge (), with basic sen-
tences playing the role of (or simulating) the subformulae of the arbitrary se-
quent. Since the base rules can only be in terms of basic sentences and not
formulae, we must be careful, as described below, about how we choose the as-
signment of basic sentences. We then show that our derivations in .4 directly
correspond to natural deduction derivations of the formulae being simulated.
Thus, in effect, we show that our sequent is provable in Ng¢ () by constructing
the proof.

To this end, we fix an arbitrary valid sequent & = (I" : ¢) and let = be
the set of generalized subformulae of the sequent. We define the generalized
subformulae of a formula ¢ as follows:

- if ¢* is an atom p®, then the only generalized subformula of p* is p* itself

- if ¢* is either T® or L7, then the only generalized subformula of ¢® is T7
or 17 respectively

- if ¢* is (a0 B)* for o € {A,V, D}, then the generalized subformulae of ¢*
are ¢*, o, and *

- if ¢ is (ocr)® for o € {0, O}, then the generalized subformulae of ¢* are ¢,
o?, and xRz, for all z € W.

Define the set Lab(Z) = {a|&* € E} U {a,b|aRb € =} as the set of labels of
each element of 5. We define an injection (-)" : & — W x A, called the flattening
map, such that:

- It is the identity map on atoms and on T% and 7.
- For non-atomic formulae, o, and relational assumptions vRw, it picks an
p®, where p® ¢ 5, and, for all o®, 8Y € 5, if o # (Y, then (a®)’ # (BY)".

()’ has a left inverse (-), defined by:

- The identity map on basic sentences and on T* and L*.
- The original labelled formula otherwise.

These functions are defined to be distributing over sets; that is, given a set of
labelled formulae I, we define I = {(v*)" |y* € I'} and I'% = {(v*)%|4* € T'}.

We can now define the simulation base .4 relative to = and (-)* according
to the rules of Figure [f] where

- p? ranges over all atoms,

- ¢%, 9%, and ¥ range over elements of =

- the formula ¢Y in the rule (D',’) ranges over all elements of = such that y # «
for each ((D¢)*)",

- the formula ¢¥ in the rule (ObE) ranges over all elements of = such that y # x
and y # z, for each ((0$)*)° and p*.

If v # 0, we must additionally add rules to .4 to express the frame conditions.
We do this by adding the rules (Ri)b from Figure |§| to 4, for each axiom ~y; €
as follows:
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J_:cb
(Tac)b Tr (pz) J—E
[(67)°]
Wy (620" (¢
(¢ D))" (¥*)° £
()" ") (pA9)")  (6A9)*)
(@neyy @y T ey
[(6°)°] ("))
ol R Ced SV (') 5 N S
(6 V1)) (6 V)*) v E
[(xRy)’]
@ (O09)*)" («Rz)"
x\b | 2\b E
(O9)") (¢%)
[(¢¥)"] [(zRy)"]
@) @R | ©ory
(0g)7) 'S €

Fig. 5. Simulation base A4

— If the rule does not contain a relation with the letter y, then we add to .4
the rule concluding each p®, where all labels range over Lab(%).

— If the rule contains a relation with the letter y, then we add to .4 the rule
concluding each p®, where the label y ranges over all W and all other labels
range over Lab(Z") with the condition that y is never equal to any of the
other labels in that rule, that is to say, y # x,a in the case of (RD)b and
y # ,2,v,w,a in the case of (Ry)’.

We prove completeness, making use of two lemmas that we will prove later
in this section.

Theorem 4 (Completeness). If I' I ¢%, then ' P ¢*.

Proof. Let (-)° be a flattening map with (-)? being its corresponding left inverse
and .4 be a simulation base the sequent (I' : ¢®). We start by considering
I' 1P ¢*, which, since it is valid, implies in particular that I" IF,, ¢* holds. By
Lemma this is equivalent to I 7, (¢%)°. By the (At) clause of the definition
of I’y and Lemma [2| we have that this is equivalent to (I")* P, (¢®)". Finally,
by Lemma@, this implies that (1) F ((¢%)?)!, which is I' ¥ ¢®, as desired. O

Proposition 1. The following hold for all B 2> N :
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[(xRay)b] [(m’Rax)b}
p p
o (Rp)’ o (Rr)’
[(zBRz)’] [(zR2)’]
GRS P o) (R 5
ey oap T ey (eRCR
e () = (R

Fig. 6. Rules which extend ./ to express the properties of the relational assumptions

2, (6 A0 ifF % (6 and 1y (47

By (6 V)®)° iff for all € 2 %’ and atoms p* if ¢* 1K, p* and Y* I, p*,
then \F p®

Hy (L ) zﬁl—;}p for all atoms p*.

it 2 (O¢)" ) iff for all labels y, we have (Q:Ry) Hy ((;5 ).

I—TY@ ((Op)* ) iff for all € 2 % and atoms p?, if (xRy)’, (¢¥)’ K, p* for all y,
then 1, p*.

Proof. We take each case in turn:

Left to right. From the hypothesis F, ((¢ A ¢)®)", we have, by (App) applied
to the rules (/\1%) and (/\zbE)7 that (¢%)° and , (V).

Right to left. From the hypotheses I, (¢%)” and I, (¢*)°, we have again, by
(App) applied to the rule (A}), that F, (¢ A )*)°.

Left to right. We obtain the conclusion immediately by (App) applied to the
(VE) rule.

Right to left. Consider the bases ¢ = %, and the case when p* = ((¢ V 1)*)°.
In this case, we have sufficient grounds, by (App) applied to either the (\/1|b)
rule or the (V2?) rule, to obtain , ((¢V 1)*), as required.

This case is immediate.

Left to right. We must show, given any label z, that (zRz)’ }—7@ (¢*)” holds.
To this end, we consider all bases ¢ O %, where k, (rRz)", and show
that ((;52) Since we have , ((0¢)%), by monotommty, we have that K,
(Do)~ ) Therefore, by (App) applied to the (O2) rule, we obtain (gbz)

Right to left. We have that, for all labels y, (zRy)’ F X (#Y)°. Consider a
label y that is different to . Then, by (App) applied to the (CF}) rule, we
obtain F, ((0¢))".
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- Left to right. Start by fixing an arbitrary base 4 2 % and atom p® such
that (zRy), (¢¥)" I, p* for all y. Our goal will be to show that I, p*. To
this end, we note that, as we have (zRy)’, (¢¥)° H, p* for all y, we can pick
some y = a where a # ,z to obtain (zRa), (¢*)" I, p*. Furthermore, by
monotonicity, we also have that =, ((0$)*)". Therefore, by (App) applied to
the appropriate (()bE) rule which concludes p® (since there is one for each y
not equal to z or z), we obtain F, p?, as required.

Right to left. The hypothesis gives that for all ¥ O % and atoms p?, if
(zRy)°, (¢¥)" F, p* for all y, then I, p*. We start by considering ¢’ = % and
p® = ((0¢)®)". Given an arbitrary variable a, we know that (zRa)’, (¢%)° I,
(¢*)" and (zRa)’, (¢*)° I, (xRa)’ both hold by (Ref). Therefore, by (App)
applied to the appropriate (O7) rule, we have (vRa)’, (¢%)° H, ((0¢)®)" for
arbitrary a. Thus, (xRy)’, (¢¥)" F; ((0¢)*)” holds for all y, from which we
conclude, by the assumed implication, that ((()(b)“)b. O

Lemma 5. I, ¢® if and only if I, (¢*)".

Proof. We proceed by induction on the structure of ¢*. We give just one case
as all other cases follow similarly. Consider the case in which ¢ = a A 8. We
have, by the definition of (A), that I, (a A 8)* if and only if IE, o® and H—%g Bx.
By the inductive hypothesis, we have that this holds if and only if F, («*)” and
%, (8%)°. Thus, by Proposition |1, we know holds if and only if I, ((a A 8)*)",
which by (At) holds if and only if I, ((aw A 8)*)", as required. O

Lemma 6. If LV, p® then L% (p®)%, for any L C A and p € A.

Proof. We consider how L ), p” obtains. If it obtains by (Ref), then it is the
case that p® € L, and so we immediately have that L% F' (p®)¢. Else, it must
obtain by (App) or a modal case. In the case of (App), we argue by induction
on the structure of the derivation which concluded it, taking the previous case
as the base case. We thus have, by the inductive hypothesis, that if ((P; =
D1y Py = pp) = r) € A and for each ¢ that Sh,Piu =l pf, then S% P rb.
By letting the rule ((Py = p1,...,P, = p,) = r) range over all the rules of
A and noting that ((¢*)°)* = ¢*, whenever (¢*)° is defined, we see that we
indeed to recover the rules for N (y) and thus have the required deduction.
In the modal cases, we observe that we always have rules in the base which, in
effect, make the use of the modal cases of the derivability relation redundant.
That is to say, in .4/ we can always replace an instance of an application of a
“modal case” in a derivation, with an instance of an application of (App) using
a rule in 47, at which point, we argue as in the (App) case. However, we must
be careful in the modal cases (D) and (2). In these two cases, the fact that we
have by hypothesis that there exists a y (w respectfully), allows us to instantiate
the existential with a variable not appearing in the anywhere in the hypothesis.
This, combined with the way in which we have constructed .4, guarantees the
existence of an appropriate rule in .4 to allow us to argue as in the other modal
cases. U
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A question to ask is whether in the cases of [J; and Qg, the side-conditions are
actually being adhered to? This is indeed the case because of the way in which
A is defined. Recall that the schemas [J; and Qg are simulated by ensuring
that the base .4 contains an instance of the rule for every possible allowed
combination of labels. That this always guarantees the existence of the rule with
the right kind of label, is due to the way we add rules to the base. Recall that
if our sequent contains a modal formula, say ((p)*, then our set of generalized
subformulae = will contain (Op)* but also p¥ and xRy for all y € W. Thus, the
only rules in .4 that allow introduction of (((Jp)*)” are those which satisfy the
side-conditions. Similar reasoning holds for {g. Therefore, when translating our
proofs in .4 under (~)h, we always obtain a valid Ngg () proof.

6 Conclusion

We have provided an inferentialist interpretation of a core family intuitionistic
modal logics, as defined by Simpson [23], through a base-extension semantics
that uniformly and conservatively extends Sandqvist’s base-extension semantics
for IPL. Soundness and completeness properties have been established. This
work makes essential use of the idea of labelling in proof systems that is familiar
in work on tableaux systems and sequent calculi.

The approach here stands in contrast to the work of Eckhardt and Pym
on proof-theoretic semantics for classical modal logics [6l7] in which ‘modal re-
lations’ are imposed on bases. Further work to understand the relationships
between the two approaches would be valuable.

Base-extension semantics has also been developed for substructural logics, in-
cluding intuitionistic multiplicative linear logic [QUTT], linear logic with additives
and exponentials [3], and the bunched logic BI [I3].

These logics typically come along with a ‘resource interpretation’ or ‘resource
semantics’. For example, in linear logic propositions occurring in proofs can be
interpreted as resources that can be consumed in the construction described by
proof. Alternatively, in the logic of bunched implications (BI) [I2/10], a resource
semantics resides in its Kripke-style models, with the intuitionistic connectives
characterizing the sharing of resources and the multiplicative connectives char-
acterizing the separation of resources. BI’s resource semantics gives rise to Sep-
aration Logic, which is significant in program analysis and verification.

Gheorghiu, Gu, and Pym, [I0], have shown that BI’s base-extension seman-
tics provides a unifying framework for the resource readings described above.
Furthermore, they show how base-extension semantics can be deployed as a
system-modelling technology. Such a technology would be very much enriched
by the inclusion of modal operators of the kind treated here and in [6I7]. The
use of base-extension semantics in system modelling appears to be a promising
line of enquiry. This suggests that it would be worthwhile to explore automated
reasoning tools for base-extension semantics for modal and substructural logics,
though such a programme is beyond the scope of this paper.
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