
To appear in EPTCS.

Bifurcation Logic: Separation Through Ordering

Didier Galmiche
Université de Lorraine, CNRS, LORIA

F-54000 Nancy, France
didier.galmiche@loria.fr

Timo Lang
University College London

London, UK
timo.lang@ucl.ac.uk

Daniel Méry
Université de Lorraine, CNRS, LORIA

F-54000 Nancy, France
daniel.mery@loria.fr

David Pym
UCL and Institute of Philosophy

University of London, UK
d.pym@ucl.ac.uk, david.pym@sas.ac.uk

We introduce Bifurcation Logic, BL, which combines a basic classical modality with sepa-
rating conjunction, ∗, together with its naturally associated multiplicative implication, −∗,
that is defined using the modal ordering. Specifically, a formula ϕ1 ∗ ϕ2 is true at a world
w if and only if each ϕi holds at worlds wi that are each above w, on separate branches
of the order, and have no common upper bound. We provide a labelled tableaux calculus
for BL and establish soundness and completeness relative to its relational semantics. The
standard finite model property fails for BL. However, we show that, in the absence of −∗,
but in the presence of ∗, every model has an equivalent finite representation and that this is
sufficient to obtain decidability. We illustrate the use of BL through an example of modelling
multi-agent access control that is quite generic in its form, suggesting many applications.

1 Introduction

We introduce Bifurcation Logic, BL, which combines a basic classical modality with separating
conjunction, ∗, together with its naturally associated multiplicative implication, −∗, that is
defined using the modal ordering. We provide a relational semantics and a labelled tableaux
calculus for BL and establish soundness and completeness relative to BL’s relational semantics.
The standard finite model property fails for BL. However, we show that, in the absence of
−∗, but in the presence of ∗, every model has a finite representation and that this is sufficient
to obtain decidability. We illustrate the use of BL in logical modelling through an example of
multi-agent access control.

The key property of interest in BL is the semantics of its multiplicatives, the ‘separating’ ∗
and −∗, which is given in terms of the ordering that is used to define the classical modality. This
stands in contrast to the set-up in, say, bunched implications (BI — e.g., [16, 18, 12]) in which
specific relational structure is used for their definition — see [13] for a through discussion of
BI’s semantics. Kamide’s account of Kripke semantics for modal substructural logics [15] also
employs a binary operation on worlds to give a treatment of the multiplicative conjunction that
is similar to that of BI’s elementary semantics (e.g., [16, 18, 12, 13]). Galmiche, Kimmel, and
Pym [10] consider an epistemic modal extension of boolean BI in which the semantics of the
multiplicative conjunction employs a monoidal product on worlds. Došen [7] considers a range
of issues in the relationship between modal and substructural logics from the perspective of
translations between proof systems, and Ono [17] has also considered the proof theory of modal
and substructural logics.

2 Bifurcation Logic

The basic idea in BL is that a formula ϕ1 ∗ ϕ2 is true at a world w if and only if each ϕi holds
at worlds wi that are each above w, on separate branches of the order, and have no common
upper bound — that is, they are bifurcated. Consequently, the semantics of the multiplicative
implication has the property that the implicational formula ϕ−∗ψ and its subformula ϕ are
required to hold at bifurcated worlds above the world at which ψ holds. This use of this feature
is illustrated in a substantive modelling example given in Section 3. The semantics of the
classical connectives and modality is standard.

In Section 2, we introduce the language of Bifurcation Logic and its models, based on frames
with a ternary relation structure for the bifurcation semantics. In Section 3, we give an ex-
tended, quite generic — i.e., evidently mappable to other settings — example of the use of BL
in modelling access control, suggesting wider application in knowledge representation and rea-
soning. This example, albeit somewhat idealized, illustrates the interaction between the classical
modality and the multiplicative connectives, especially the somewhat unusual semantic form of
the implication, in a simple and direct way. We also discuss some related work in this section.

In Section 4, we give a system of labelled tableaux for BL. The form of the calculus fol-
lows the pattern established in, for example, [12, 10] and allows, in Section 5, soundness and
completeness results to be established (cf. [12, 10]). The proofs are provided in the appendix.

While the usual finite model property fails for BL, a modified form of it does hold. Section 6
explains, through a counterexample, why the standard form fails and introduces a modified form
through the concept of ‘model with back links’. Intuitively, BL is a logic with the subformula
property — in the sense evident from the tableaux system — and is about paths in finitely
branching trees. Back links describe how the paths go back to already-seen configurations (see
Section 6 for a formal explanation). Using this modified finite model property, the decidability
of BL is obtained.

Finally, before proceeding to our formal development, we consider a few interesting out-
standing questions, among many others, for further work:

– we would aim to give a (Hilbert-type) axiomatization of BL;
– we would explore natural deduction and sequent calculus presentations of BL;
– we would seek to establish the complexity of deciding BL;
– we would seek to explore the addition to BL of multi-agent and epistemic modalities, as well

as quantifiers, so extending its potential as a modelling tool (cf. [10], for example).

The question of whether there is an interesting intuitionistic version of BL seems quite chal-
lenging, as it would combine the difficulties of intuitionistic modal logics [21] with the need to
handle the multiplicatives in a coherent way.

2 Bifurcation Logic

In this section, we introduce Bifurcation Logic, BL, by giving a definition in terms of ternary
relational semantics in the style of Routley-Meyer [20], with some similarity to the work of
Fuhrmann and Mares [9].

Definition 1 (Language). Let P be a countable set of propositional letters. The formulae of BL,
the set of which is denoted by Φ, are given by the following grammar:

ϕ ::= p(∈ P) | ¬ϕ | ϕ∧ϕ | □ϕ | ϕ∗ϕ | ϕ−∗ϕ

D. Galmiche, T. Lang, D. Méry, and D. Pym 3

The connectives ∨, →, ↔, □ and the units ⊤, ⊥ are defined as follows: ϕ∨ψ = ¬(¬ϕ∧ ¬ψ),
ϕ→ψ = ¬ϕ∨ψ, ϕ↔ψ = (ϕ→ψ)∧ (ψ→ϕ), ⊤ = ϕ∨¬ϕ, ⊥ = ϕ∧¬ϕ, ♢ϕ= ¬□¬ϕ. □

To minimize the use of parentheses; we use the following strict order of precedence (with
right associativity): □,♢,¬ > ∗ > ∧,∨ > −∗ > → > ↔.

Definition 2 (Tree). Let (W,≤) be a partial order. Two elements w1,w2 ∈ W are separated
(or disjoint), denoted w1⊥w2, if neither w1 ≤ w2 nor w2 ≤ w1. We call (W,≤) rooted if there
exists w ∈W such that w ≤ w′ for all w′ ∈W . (W,≤) has the persistent separation property if
it satisfies the following condition:

(P) for all w1,w2,w
′
1 ∈W, if w1⊥w2 and w1 ≤ w′

1, then w′
1⊥w2.

(W,≤) is called a tree if it is rooted and has the persistent separation property. □
Definition 3 (Frame). A BL frame is a structure F = (W,≤,R), where (W,≤) is a tree of
elements called worlds and R is the ternary relation on worlds defined as follows:

(B) for all w,w1,w2 ∈W, R(w,w1,w2) iff w ≤ w1,w ≤ w2 and w1⊥w2.

That is, w1 and w2 belong to distinct futures of w. □
Definition 4 (Model). A BL model is a triple M = (F ,V,⊩), where F is a BL frame and V
is a valuation function from W to ℘(P). The satisfaction relation ⊩ is inductively defined as
the smallest relation on W ×Φ such that

M,w⊩p iff p ∈ V (w), for all p ∈ P
M,w⊩¬ϕ iff M,w⊮ϕ

M,w⊩ϕ∧ψ iff M,w⊩ϕ and M,w⊩ψ
M,w⊩□ϕ iff for all w′ ∈W, if w ≤ w′ then M,w′ ⊩ϕ

M,w⊩ϕ∗ψ iff for some w1,w2 ∈W such that R(w,w1,w2),
M,w1 ⊩ϕ and M,w2 ⊩ψ

M,w⊩ϕ−∗ψ iff for all w1,w2 ∈W such that R(w2,w,w1),
if M,w1 ⊩ϕ then M,w2 ⊩ψ

A formula ϕ is satisfied in a model M, denoted M⊩ϕ, if M,w⊩ϕ for all worlds w in M. We
write w⊩ϕ instead of M,w⊩ϕ whenever the model is clear from the context. ϕ is satisfiable if
it is satisfied in some model M, and valid, denoted ⊩ϕ, if it is satisfied in all models. □

x♢ϕ

y♢ϕ

uϕ,♢ϕ

z ♢ϕ,ψ (ℓ 7→ a1)∗ (ℓ 7→ a2)

ℓ 7→ a1 ℓ 7→ a2

Figure 1: Examples of BL structures

BL uses frames that obey the persistent separation property as we believe that they better
correspond to an intuitive understanding of bifurcation. We then define non-persistent (or lax)

4 Bifurcation Logic

BL as the extension of BL that deals with frames that are not required to obey the persistent
separation property. For example, the formula φ= (♢ϕ∗ψ) ↔ (ϕ∗ψ) is valid in BL (a tableau
proof is given in Section 4), but it is not valid in lax BL as it can be falsified in the direct acyclic
graph (DAG) given on the left-hand side of Figure 1. Indeed, we have x⊩♢ϕ ∗ψ because we
have R(x,y,z), y⊩♢ϕ and z⊩ψ, but we do not have x⊩ϕ∗ψ because the only world satisfying ϕ
is u and u does not belong to a distinct future of z, which is the only world satisfying ψ.
Proposition 5. BL is a conservative extension of the modal logic S4.

Proof. This follows immediately from observing that the only conditions imposed on the order
relation are for the purpose of defining ∗ and −∗.

Although BL is a conservative extension of S4, it differs from both bunched and other
separating logics. First, we remark that since BL addresses separation as an ordering problem
rather than a resource composition problem (as in, for example, bunched logics, where ∗ usually
corresponds to a product in a monoid), we do not include a unit ⊤∗ for the multiplicative
conjunction ∗. Having the multiplicative unit ⊤∗ would unnecessarily complicate our definition
of the bifurcation relation or rule out many partial order structures. Indeed, we would need to
satisfy w⊩ϕ ∗ ⊤∗ iff w⊩ϕ for all worlds w and all formulae ϕ. Hence, by definition of ∗, we
would need worlds w1,w2 such that R(w,w1,w2), w1 ⊩ϕ and w2 ⊩⊤∗. In particular, consider a
BL frame with only one world w and set ϕ = ⊤. We have w⊩⊤, but not w⊩⊤ ∗ ⊤∗ because
R(w,w,w) is impossible to achieve as it would imply both w ≤ w and w ≰ w by definition of R.

Second, BL also differs from Separation Logic, as illustrated in the right-hand side of Fig-
ure 1. In Separation Logic [14, 19], the built-in points-to predicate (ℓ 7→ a) intuitively denotes a
memory heap with only one cell whose location (address) is ℓ and whose value is a. Heaps are
defined as partial functions from locations to values and composition of heaps is given by the
union of functions with disjoint domains. Therefore, the formula (ℓ 7→ a1)∗ (ℓ 7→ a2) is not satis-
fiable in Separation Logic as it denotes the disjoint composition of two one-cell heaps that share
the same location ℓ. In BL, as ∗ represents bifurcation, a node satisfying (ℓ 7→ a1) ∗ (ℓ 7→ a2)
simply implies that the location ℓ might have two distinct futures, one in which it points to the
value a1 and the other one in which it points to the value a2. More interestingly, the formula
□(ℓ 7→ a), when satisfied by some world w, would imply that in all possible futures of w, the
location ℓ should point to the same value a. This would be useful, for example, to state that an
interrupt vector always points to the address where its legitimate handler resides.

3 Modelling With Bifurcation Logic
Logics can be used not merely to describe reasoning itself, but also to describe reasoning about
systems. This use of logics as modelling tools has delivered significant advances in many areas
— too numerous to describe here — including program analysis and verification, with one lead-
ing example, making essential use of multiplicative conjunction, being Separation Logic [14, 19].
Another highly effective example in the same spirit is Context Logic [3, 4]. More abstractly, sub-
structural modal logics provide reasoning tools for models of systems in the ‘distributed systems
metaphor’ (e.g., [1, 5, 11]). Demri and Deter [6] have surveyed connections between modality
and separation, but they do not consider separating connectives defined through ordering. More
detailed connections with Separation Logic, as mentioned above, are beyond the scope of this
paper; so, instead of describing how connections with that might work, we give a quite generic

D. Galmiche, T. Lang, D. Méry, and D. Pym 5

<latexit sha1_base64="Ag6uCGEla+GBLwWpwFXyw2meQQo=">AAACFHicbVDLSgMxFM3UVx1fVZdugkWoCGWmSHVZ6sZlBfuATil30kwbmskMSUYspR/hxl9x40IRty7c+Tem0y5s64HLPZxzL8k9fsyZ0o7zY2XW1jc2t7Lb9s7u3v5B7vCooaJEElonEY9kywdFORO0rpnmtBVLCqHPadMf3kz95gOVikXiXo9i2gmhL1jACGgjdXMXtleNHnEBp80bQhxD18UeKL0glfA57ubyTtFJgVeJOyd5NEetm/v2ehFJQio04aBU23Vi3RmD1IxwOrG9RNEYyBD6tG2ogJCqzjg9aoLPjNLDQSRNCY1T9e/GGEKlRqFvJkPQA7XsTcX/vHaig+vOmIk40VSQ2UNBwrGO8DQh3GOSEs1HhgCRzPwVkwFIINrkaJsQ3OWTV0mjVHTLxfLdZb5SnceRRSfoFBWQi65QBd2iGqojgp7QC3pD79az9Wp9WJ+z0Yw13zlGC7C+fgFWnpvl</latexit>

⇤(⇤1 ⇤⇤2)

<latexit sha1_base64="PzvqE4kIAeo80w7YbsGUcFEDXFE=">AAACCnicbVDLSsNAFJ3UV42vqEs3o0VwVZIi1WWpG5cV7AOaEG6mk3bo5MHMRCyhazf+ihsXirj1C9z5N04fi9p64MLhnHu5954g5Uwq2/4xCmvrG5tbxW1zZ3dv/8A6PGrJJBOENknCE9EJQFLOYtpUTHHaSQWFKOC0HQxvJn77gQrJkvhejVLqRdCPWcgIKC351qnp1pNH7A4hTcF3sAtS4UWp4lslu2xPgVeJMyclNEfDt77dXkKyiMaKcJCy69ip8nIQihFOx6abSZoCGUKfdjWNIaLSy6evjPG5Vno4TISuWOGpujiRQyTlKAp0ZwRqIJe9ifif181UeO3lLE4zRWMyWxRmHKsET3LBPSYoUXykCRDB9K2YDEAAUTo9U4fgLL+8SlqVslMtV+8uS7X6PI4iOkFn6AI56ArV0C1qoCYi6Am9oDf0bjwbr8aH8TlrLRjzmWP0B8bXL+pfmSs=</latexit>⇤1 ⇤⇤2

<latexit sha1_base64="hglWy+k5WdXheCfFkEgZA8l+Cvk=">AAAB9XicbVBNSwMxEJ31s65fVY9egkXwVHZFqsdSLx4r2A9o15JNs21oNhuSrFqW/g8vHhTx6n/x5r8xbfegrQ8GHu/NMDMvlJxp43nfzsrq2vrGZmHL3d7Z3dsvHhw2dZIqQhsk4Ylqh1hTzgRtGGY4bUtFcRxy2gpH11O/9UCVZom4M2NJgxgPBIsYwcZK9263ljyh7ghLiXt+r1jyyt4MaJn4OSlBjnqv+NXtJySNqTCEY607vidNkGFlGOF04nZTTSUmIzygHUsFjqkOstnVE3RqlT6KEmVLGDRTf09kONZ6HIe2M8ZmqBe9qfif10lNdBVkTMjUUEHmi6KUI5OgaQSozxQlho8twUQxeysiQ6wwMTYo14bgL768TJrnZb9SrtxelKq1PI4CHMMJnIEPl1CFG6hDAwgoeIZXeHMenRfn3fmYt644+cwR/IHz+QM/lJG5</latexit>⇤1
<latexit sha1_base64="/vVuJdk0HjE0i50NTCdz1e+QqJQ=">AAAB9XicbVDLSgMxFM3UVx1fVZdugkVwVWaKVJelblxWsA/ojCWTZtrQTBKSjFqG/ocbF4q49V/c+Tem7Sy09cCFwzn3cu89kWRUG8/7dgpr6xubW8Vtd2d3b/+gdHjU1iJVmLSwYEJ1I6QJo5y0DDWMdKUiKIkY6UTj65nfeSBKU8HvzESSMEFDTmOKkbHSvRs0xBMMxkhK1K/2S2Wv4s0BV4mfkzLI0eyXvoKBwGlCuMEMad3zPWnCDClDMSNTN0g1kQiP0ZD0LOUoITrM5ldP4ZlVBjAWyhY3cK7+nshQovUkiWxngsxIL3sz8T+vl5r4Kswol6khHC8WxSmDRsBZBHBAFcGGTSxBWFF7K8QjpBA2NijXhuAvv7xK2tWKX6vUbi/K9UYeRxGcgFNwDnxwCergBjRBC2CgwDN4BW/Oo/PivDsfi9aCk88cgz9wPn8AQRiRug==</latexit>⇤2

<latexit sha1_base64="/zt0a+KFd/rd2yGfd5srTGCivfg=">AAAB8HicbVBNSwMxEM36WdevqkcvwSJ4KrtFqseiF48V7Ie0S5lNs21okg1JViilv8KLB0W8+nO8+W9M2z1o64OBx3szzMyLFWfGBsG3t7a+sbm1Xdjxd/f2Dw6LR8dNk2aa0AZJearbMRjKmaQNyyynbaUpiJjTVjy6nfmtJ6oNS+WDHSsaCRhIljAC1kmPfncESkGv0iuWgnIwB14lYU5KKEe9V/zq9lOSCSot4WBMJwyUjSagLSOcTv1uZqgCMoIB7TgqQVATTeYHT/G5U/o4SbUrafFc/T0xAWHMWMSuU4AdmmVvJv7ndTKbXEcTJlVmqSSLRUnGsU3x7HvcZ5oSy8eOANHM3YrJEDQQ6zLyXQjh8surpFkph9Vy9f6yVLvJ4yigU3SGLlCIrlAN3aE6aiCCBHpGr+jN096L9+59LFrXvHzmBP2B9/kD+QqP4w==</latexit>2
<latexit sha1_base64="byX75OKVhygTOZuWF0WDc2WcI4o=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BIvgqeyKVI9FLx4r2A9plzKbZtvQJBuSrFCW/govHhTx6s/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61TJJqQpsk4YnuRGAoZ5I2LbOcdpSmICJO29H4dua3n6g2LJEPdqJoKGAoWcwIWCc9lnpjUAr6Qb9c8av+HHiVBDmpoByNfvmrN0hIKqi0hIMx3cBXNsxAW0Y4nZZ6qaEKyBiGtOuoBEFNmM0PnuIzpwxwnGhX0uK5+nsiA2HMRESuU4AdmWVvJv7ndVMbX4cZkyq1VJLFojjl2CZ49j0eME2J5RNHgGjmbsVkBBqIdRmVXAjB8surpHVRDWrV2v1lpX6Tx1FEJ+gUnaMAXaE6ukMN1EQECfSMXtGbp70X7937WLQWvHzmGP2B9/kD94aP4g==</latexit>1

keys exist
independently

keys independently
authenticated

composition of
authenticated keys

composite key
authenticated

Figure 2: Joint access

example — many examples involving obtaining, representing, and verifying knowledge and in-
formation will be very similar — of how BL’s modality and multiplicatives interact through an
example in the context of multi-agent access control.
Example 6 (Crimson Tide [22] Part 1). The plot of the film Crimson Tide [22] takes place
mainly on board a United States Navy Ballistic Missile Submarine (the USS Alabama). During a
period of international tension, the submarine receives an order to launch nuclear-armed missiles.
For the release of the weapons to be authorized, a composite key must be authenticated:

1. An order to release weapons is received in a message that contains a code.
2. Two senior officers (neither the Captain nor the Executive Officer) must independently

authenticate the message by verifying the code against a local authentication device. Au-
thentication (think ‘necessarily correct’) is denoted using □.

3. This yields a composite — □κ1 ∗□κ2 in Figure 2 — of authenticated keys that is passed
(verbally) to the Executive Officer and the Captain.

4. The Executive Officer confirms that the correct protocol has been followed and so authen-
ticates the composite key, thereby yielding □(□κ1 ∗□κ2) in Figure 2.

5. The Captain then confirms the authentication and may order the release of the weapons.
This concludes the first part of our example. □

<latexit sha1_base64="Z6+4j1PfeF7zPaYPhFsZIUmk2AE=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR5LvXisYD+wu5Rsmm1Ds8mSZMWy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc38z8ziNVmklxbyYJDWI8FCxiBBsrPZT8hnxCfqJZv1xxq+4caJV4OalAjma//OUPJEljKgzhWOue5yYmyLAyjHA6LfmppgkmYzykPUsFjqkOsvnFU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Umug4yJpLUUEEWi6KUIyPR7H00YIoSwyeWYKKYvRWREVaYGBtSyYbgLb+8StoXVa9Wrd1dVuqNPI4inMApnIMHV1CHW2hCCwgIeIZXeHO08+K8Ox+L1oKTzxzDHzifP51OkEA=</latexit>⇤

<latexit sha1_base64="TG9qkY/qwn8DwK4ftdyKFBMSzgc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJr/RTIwbVmlt3FyB/iVeQGhRoDaqf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfHDsjZ1YZkijRthSShfpzIqexMdM4tJ0xxbFZ9ebif14vw+g6yIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2JD8FZf/kvaF3WvUW/cX9aaN0UcZTiBUzgHD66gCXfQAh8YCHiCF3h1lPPsvDnvy9aSU8wcwy84H99cC45p</latexit>

<latexit sha1_base64="bC6+0EQuhZKtb4vpnIRnRlGsM2o=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR5LvXisYD+wu5Rsmm1Ds8mSZMWy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc38z8ziNVmklxbyYJDWI8FCxiBBsrPZT8hnxCfjJi/XLFrbpzoFXi5aQCOZr98pc/kCSNqTCEY617npuYIMPKMMLptOSnmiaYjPGQ9iwVOKY6yOYXT9GZVQYoksqWMGiu/p7IcKz1JA5tZ4zNSC97M/E/r5ea6DrImEhSQwVZLIpSjoxEs/fRgClKDJ9Ygoli9lZERlhhYmxIJRuCt/zyKmlfVL1atXZ3Wak38jiKcAKncA4eXEEdbqEJLSAg4Ble4c3Rzovz7nwsWgtOPnMMf+B8/gCMl5A1</latexit>⇤�
<latexit sha1_base64="93opFeA5rkh2rYTny/jDvqat4NE=">AAACB3icbVDLSgMxFM3UVx1foy4FiRbBhZYZkeqy1I3LCvYBnaFk0kwbzCRDkhFL6c6Nv+LGhSJu/QV3/o3pdBbaei4XDufcS3JPmDCqtOt+W4WFxaXlleKqvba+sbnlbO80lUglJg0smJDtECnCKCcNTTUj7UQSFIeMtMK7q4nfuidSUcFv9TAhQYz6nEYUI22krrNv+zXxAP1kQOGpf5AVUhr6J0ZTtOuU3LKbAc4TLyclkKPedb78nsBpTLjGDCnV8dxEByMkNcWMjG0/VSRB+A71ScdQjmKiglF2xxgeGaUHIyFNcw0z9ffGCMVKDePQTMZID9SsNxH/8zqpji6DEeVJqgnH04eilEEt4CQU2KOSYM2GhiAsqfkrxAMkEdYmOtuE4M2ePE+aZ2WvUq7cnJeqtTyOItgDh+AYeOACVME1qIMGwOARPINX8GY9WS/Wu/UxHS1Y+c4u+APr8wc6OJcG</latexit>⇤��⇤

<latexit sha1_base64="V1EYOEbK4erkt0hk0qhXW+i7mw8=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemAqujet+OaW19Y3NrfJ2ZWd3b/+genjU1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5nfudR1SaJ/LBTFMMYjqSPOKMGiv5lX465oNqza27C5C/xCtIDQq0BtXP/jBhWYzSMEG17nluaoKcKsOZwFmln2lMKZvQEfYslTRGHeSLY2fkzCpDEiXKljRkof6cyGms9TQObWdMzVivenPxP6+Xmeg6yLlMM4OSLRdFmSAmIfPPyZArZEZMLaFMcXsrYWOqKDM2n4oNwVt9+S9pX9S9Rr1xf1lr3hRxlOEETuEcPLiCJtxBC3xgwOEJXuDVkc6z8+a8L1tLTjFzDL/gfHwDS1SOXg==</latexit>

� key exists

key authenticatedprotocol exists

key released

key authenticated

Figure 3: Protocol for obtaining a key

Example 7 (Crimson Tide [22] Part 2). The use of a protocol can also be represented in Bi-
furcation Logic. This is illustrated in Figure 3. Here the idea is that a protocol is modelled by
an implicational formula that, given an authenticated key, yields a key, which may then need
to be authenticated. (Informally, the implicational formula may be thought of as the type of a
function that returns a key.) We can see how in an inessential, slightly more detailed, variant
of the set-up, Figure 4 represents the use of protocols in Crimson Tide as follows:
1. In the discussion based on Figure 2, the role of protocols is suppressed.

6 Bifurcation Logic

<latexit sha1_base64="Z6+4j1PfeF7zPaYPhFsZIUmk2AE=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR5LvXisYD+wu5Rsmm1Ds8mSZMWy9F948aCIV/+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc38z8ziNVmklxbyYJDWI8FCxiBBsrPZT8hnxCfqJZv1xxq+4caJV4OalAjma//OUPJEljKgzhWOue5yYmyLAyjHA6LfmppgkmYzykPUsFjqkOsvnFU3RmlQGKpLIlDJqrvycyHGs9iUPbGWMz0sveTPzP66Umug4yJpLUUEEWi6KUIyPR7H00YIoSwyeWYKKYvRWREVaYGBtSyYbgLb+8StoXVa9Wrd1dVuqNPI4inMApnIMHV1CHW2hCCwgIeIZXeHO08+K8Ox+L1oKTzxzDHzifP51OkEA=</latexit>⇤

<latexit sha1_base64="TG9qkY/qwn8DwK4ftdyKFBMSzgc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJr/RTIwbVmlt3FyB/iVeQGhRoDaqf/WHCspgrZJIa0/PcFIOcahRM8lmlnxmeUjahI96zVNGYmyBfHDsjZ1YZkijRthSShfpzIqexMdM4tJ0xxbFZ9ebif14vw+g6yIVKM+SKLRdFmSSYkPnnZCg0ZyinllCmhb2VsDHVlKHNp2JD8FZf/kvaF3WvUW/cX9aaN0UcZTiBUzgHD66gCXfQAh8YCHiCF3h1lPPsvDnvy9aSU8wcwy84H99cC45p</latexit>

composite
key exists

key
authenticated

protocol
exists

key released

key authenticated

<latexit sha1_base64="tYQzLqM/fuqZyHLArowIyXOCVeQ=">AAACHnicbVDLSgMxFM3UV62vUZduokWooGWm+FqWunFZwT6gMwyZNNOGZh4kGbEM/RI3/oobF4oIrvRvzEwH0dYTEk7OuZfkHjdiVEjD+NIKC4tLyyvF1dLa+sbmlr690xZhzDFp4ZCFvOsiQRgNSEtSyUg34gT5LiMdd3SV+p07wgUNg1s5jojto0FAPYqRVJKjn1mN8B5W0tOKhtQxoYWEhD/32hE8sfazlenH0IoEdfSyUTUywHli5qQMcjQd/cPqhzj2SSAxQ0L0TCOSdoK4pJiRScmKBYkQHqEB6SkaIJ8IO8nGm8BDpfShF3K1Awkz9XdHgnwhxr6rKn0kh2LWS8X/vF4svUs7oUEUSxLg6UNezKAMYZoV7FNOsGRjRRDmVP0V4iHiCEuVaEmFYM6OPE/atap5Xq3dnJbrjTyOItgDB6ACTHAB6uAaNEELYPAAnsALeNUetWftTXuflha0vGcX/IH2+Q3mqZ/b</latexit>

⇤(⇤�1 ⇤⇤�2) �⇤

<latexit sha1_base64="ICJbuHGb3ms541Ludi8wycOmSJs=">AAACA3icbVDLSsNAFL3xWesr6k43g0VwVZIi6rLUjcsK9gFNCJPptB06yYSZiVhCwY2/4saFIm79CXf+jdM2iLYeuHDmnHuZe0+YcKa043xZS8srq2vrhY3i5tb2zq69t99UIpWENojgQrZDrChnMW1opjltJ5LiKOS0FQ6vJn7rjkrFRHyrRwn1I9yPWY8RrI0U2IdeTdx7yYAFLvKw0ujnXQnsklN2pkCLxM1JCXLUA/vT6wqSRjTWhGOlOq6TaD/DUjPC6bjopYommAxxn3YMjXFElZ9NbxijE6N0UU9IU7FGU/X3RIYjpUZRaDojrAdq3puI/3mdVPcu/YzFSappTGYf9VKOtECTQFCXSUo0HxmCiWRmV0QGWGKiTWxFE4I7f/IiaVbK7nm5cnNWqtbyOApwBMdwCi5cQBWuoQ4NIPAAT/ACr9aj9Wy9We+z1iUrnzmAP7A+vgHQxJb/</latexit>⇤�1 ⇤⇤�2

<latexit sha1_base64="dJ8FQJHw/MRTW3NkqB6X+PVWTv4=">AAACC3icbVDLSgMxFM34rPU16tJNaBHqpswUUZelblxWsA/oDEMmzbShmWRIMmIZunfjr7hxoYhbf8Cdf2OmLaKtBxJOzrmXm3vChFGlHefLWlldW9/YLGwVt3d29/btg8O2EqnEpIUFE7IbIkUY5aSlqWakm0iC4pCRTji6yv3OHZGKCn6rxwnxYzTgNKIYaSMFdslriHtYyW8vGdLAhR5SGv68a6cwsMtO1ZkCLhN3TspgjmZgf3p9gdOYcI0ZUqrnOon2MyQ1xYxMil6qSILwCA1Iz1COYqL8bLrLBJ4YpQ8jIc3hGk7V3x0ZipUax6GpjJEeqkUvF//zeqmOLv2M8iTVhOPZoChlUAuYBwP7VBKs2dgQhCU1f4V4iCTC2sRXNCG4iysvk3at6p5Xazdn5XpjHkcBHIMSqAAXXIA6uAZN0AIYPIAn8AJerUfr2Xqz3melK9a85wj8gfXxDW6fmWU=</latexit>

⇤(⇤�1 ⇤⇤�2)

Figure 4: Protocol for obtaining a composite key

2. Figure 3 illustrates the use of protocols in general.
3. In the case of our example, we represent the Captain’s key permitting the release of weapons

by ψ. For the key to be authenticated, it must have been released through the protocol.
4. The protocol is given, in Figure 4, by the implicational formula □(□ϕ1 ∗□ϕ2)−∗ψ. That is,

the authenticated composite key allows access to the Captain’s key, ψ, which, when authen-
ticated, allows the weapons to be released.

Here we use the modality □ to denote authentication, but what is the role of separation? The
role of ∗ should be clear: it enforces the independence of multiple authentications. But what of
−∗? It ensures that there is no interference between the authentication of the composite key and
its use to make available the Captain’s key, ψ (which must itself be authenticated for use). Note
the essential use of the semantics of −∗: first, the separation between worlds afforded by −∗, as
opposed to →, ensures no interference between the existence of the protocol and existence of the
(authenticated) key to which it applies. Second, the particular semantic form of this implication
— in that its application ‘looks back’ down the ordering — captures exactly the release of the
Captains’s key, ψ, through access to the authenticated composite key. □

4 A Tableaux Calculus for BL: TBL

The tableaux calculus for classical propositional logic [8] can be adapted systematically to calculi
for many non-classical logics by the addition of labelling. The basic idea is that the structure
of a Kripke model for a given non-classical logic is used to define a tableaux calculus for that
logic by reflecting its structure in an algebra of labels that is used to impose side-conditions
on the tableaux rules. Through this mechanism, the basic classical and/or tableaux figures are
modified to capture non-classical connectives.

TBL is presented in Figure 5. TBL has logical rules that capture the meaning of the con-
nectives, structural rules that capture the properties of BL models, and closure rules (whose
conclusion is a cross mark) that capture (logical or structural) inconsistencies. As usual, closure
rules put an end to the expansion of a branch. TBL can address either BL or its lax variant
depending on the inclusion or not of the optional persistency rule ∥P . Let us remark that all of
the results presented in this section for BL also hold for lax BL.

Definition 8. Let L be a countable set of symbols called labels. A labelled formula is a pair
(ϕ,x), written ϕ :x, where ϕ is a formula and x is a label. A label constraint is an expression
of the form x≺y, where x,y are labels. □

D. Galmiche, T. Lang, D. Méry, and D. Pym 7

Definition 9. Let Sg be the set {T,F } of signs. A signed labelled formula is a triple (S,ϕ,x),
written Sϕ :x, where S is a sign and ϕ :x is a labelled formula. Similarly, a signed label con-
straint is a label constraint prefixed with a sign. □

We define T x∼y as a shorthand for the expression T x≺y,T y≺x. Similarly, T x∥y is a
shorthand for F x≺y,F y≺x and T x≺y∥z is a shorthand for T x≺y,T x≺z,T y∥z.
Definition 10. A tableau for ϕ :x is a finitely branching rooted tree built inductively according
to the rules given in Figure 5 and the root node of which is the signed labelled formula F ϕ :x. □
Definition 11. A tableau branch b is closed if it ends with a closure rule. A tableau t is closed
if all of its branches are closed. □

Definition 12. Let ϕ :x be a labelled formula. A TBL-proof of ϕ :x is a closed tableau for ϕ :x.
We write ⊢ϕ :x if ϕ :x is provable in TBL, that is if there exists a TBL-proof of ϕ :x. Similarly,
a formula ϕ is provable in TBL, written ⊢ϕ, if ⊢ϕ :x for some label x. □

Example 13. The tableau depicted on the left-hand side of Figure 6 is a TBL-proof of ϕ∗ψ→
♢ϕ∧♢ψ. Step 3 is only given to improve readability and is not really necessary as it is just the
explicit expansion of the shorthand for T x≺y∥z. □
Example 14. A TBL-proof of φ≡ (♢ϕ∗ψ)↔ (ϕ∗ψ) is given in the tableau below.

F (♢ϕ∗ψ) ↔ (ϕ∗ψ) :x1

1 F ↔

F ♢ϕ∗ψ :x3

T ϕ∗ψ :x2

2 T ∗

T x≺y∥z 3

T ϕ :y 6

T ψ :z 7

3 F ∗

F ♢ϕ :y 4,5

4 ≺R

T y≺y 5

5 F♢
F ϕ :y 6

6 ×Φ
×

3

∣∣∣∣∣ F ψ :z 7

7 ×Φ
×

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T ♢ϕ∗ψ :x2

F ϕ∗ψ :x8

2 T ∗

T x≺y∥z 6,7,11

T ♢ϕ :y 3

T ψ :z 10

3 T♢
T y≺u5,7,12

T ϕ :u9

4 CD

T z≺u11 11 ∥P

T y∥u12

12 ×∥
×

 4

∣∣∣∣∣∣∣∣
T u≺z 5

5 ≺T

T y≺z 6

6 ×BS

×
4

∣∣∣∣∣∣∣∣∣∣∣

T u∥z 7

7 ≺T +B

T x≺u∥z 8

8 F ∗

F ϕ :u4,9

9 ×Φ
×

8

∣∣∣∣∣ F ψ :z 4,10

10 ×Φ
×

After Step 1, the tableau splits into two parts, the interesting one being the second one (on the
right-hand side of the first vertical rule) that eventually leads to four closed branches. Step 4
is an example of the case distinction rule. We remark that the first case only leads to a closed
branch when the optional rule ∥P is used (resulting in the optional steps Step 11 and Step 12).
Indeed, without persistence of separation, one can build a countermodel of φ as illustrated in
Figure 1. Hence, φ is a formula that distinguishes persistent from non-persistent BL. □

Example 15. The tableau depicted on the right-hand side of Figure 6 is an example of an
infinite open tableau for ¬□(⊤ ∗ ⊤). The signed formula T □(⊤ ∗ ⊤) :x introduced in Step 1
must be expanded for all labels u such that T x≺u occurs in the branch. The first such label
is x, so that T ⊤∗⊤ :x is introduced in Step 3. The expansion of T ⊤∗⊤ :x in Step 4 generates
two new successors of x, namely y1,z1, and then induces Step 5, where two new expansions of

8 Bifurcation Logic

Logical rules

F ¬ϕ :x
F ¬

T ϕ :x

T ¬ϕ :x
T ¬

F ϕ :x

T ϕ∧ψ :x
T ∧

T ϕ :x
T ψ :x

F ϕ∧ψ :x
F ∧

F ϕ :x
∣∣ F ψ :x

F □ϕ :x
F□

T x≺u
F ϕ :u

T □ϕ :x
T x≺y

T□
T ϕ :x

T ϕ∗ψ :x
T ∗

T x≺u∥v
T ϕ :u
T ψ :v

F ϕ∗ψ :x
T x≺y∥z

F ∗

F ϕ :y
∣∣ F ψ :z

T ϕ−∗ψ :x
T z≺x∥y

T −∗

F ϕ :y
∣∣ T ψ :z

F ϕ−∗ψ :x
F −∗

T v≺x∥u
T ϕ :u
F ψ :v

Sϕ :x
T x∼y

S∼

Sϕ :y

Structural rules

Sϕ :x, Sψ :y
CD

T x≺y
∣∣ T y≺x

∣∣ T x∥y

Sϕ :x
≺R

T x≺x

T x≺y
T y≺z

≺T

T x≺z

 T x1 ∥x2
T xi ≺y

∥P

T xj ∥y


T x∥z

∥

F x≺z, F z≺x

T x≺y∥z
B

T x≺y, T x≺z, T y∥z

T x≺y
T y≺x

∼

T x∼y

Closure rules

T ϕ :x
F ϕ :x

×Φ
×

T x≺y
F x≺y

×≺
×

Derivable rules

F ϕ∨ψ :x
T ∨

F ϕ :x
F ψ :x

T ϕ∨ψ :x
T ∨

T ϕ :x
∣∣ T ψ :x

T ϕ→ψ :x
T →

F ϕ :x
∣∣ T ψ :x

F ϕ→ψ :x
F →

T ϕ :x
F ψ :x

T ϕ↔ψ :x
T ↔

T ϕ :x
T ψ :x

∣∣∣∣ F ϕ :x
F ψ :x

F ϕ↔ψ :x
F ↔

F ϕ :x
T ψ :x

∣∣∣∣ T ϕ :x
F ψ :x

T ♢ϕ :x
T♢

T x≺u
T ϕ :u

F ♢ϕ :x
T x≺y

F♢
F ϕ :x

T x∥y
∥C

T y∥x

F ⊤ :x
×⊤

×

T ⊥ :x
×⊥

×

T x1 ∥x2
T xi ≺xj

×∥
×

T x≺y1 ∥y2
F x≺yi

×BA

×

T x≺y1 ∥y2
T yi ≺yj

×BS

×

Side-conditions and comments

• In rules introducing u and/or v, u and v are distinct labels that are fresh in the branch.
• In rules involving i and/or j, i ∈ {1,2} and j = 3 − i.
• Double lines indicate rules that can be used bottom-up or top-down.
• The brackets indicate that the rule is optional (included for BL, excluded for lax BL).

Figure 5: Rules of the TBL calculus

D. Galmiche, T. Lang, D. Méry, and D. Pym 9

F ϕ∗ψ→♢ϕ∧♢ψ :x1

1 F ∗

T ϕ∗ψ :x2

F ♢ϕ∧♢ψ :x4

2 T ∗

T x≺y∥z 3

T ϕ :y 6, T ψ :z 8

3 B

T x≺y 5, T x≺z 7, T y∥z
4 F ∧

F ♢ϕ :x5

5 F♢
F ϕ :y 6

6 ×Φ
×

4

∣∣∣∣∣∣∣∣
F ♢ψ :x7

7 F♢
F ψ :z 8

8 ×Φ
×

F ¬□(⊤ ∗ ⊤) :x1

1 F ¬

T □(⊤ ∗ ⊤) :x2,3,5

2 ≺R

T x≺x
3 T□
T ⊤ ∗ ⊤ :x4

4 T ∗

T x≺y1 ∥z1
5

T ⊤ :y1
T ⊤ :z1

5 T□ twice

T x≺y1,z1
T ⊤ ∗ ⊤ :y1
T ⊤ ∗ ⊤ :z1

Figure 6: Tableaux examples

T □(⊤∗⊤) :x are performed (for simplicity, in one step for both y1 and z1). Step 5 results in the
introduction of T ⊤ ∗ ⊤ :y1 and T ⊤ ∗ ⊤ :z1, the expansion of which creates four new successors
of x, two of y1 and two of z1. The whole process described previously then repeats itself infinitely
often as the BL models such that x⊩□(⊤ ∗ ⊤) are the ones in which all sucessors of x have at
least two distinct successors. This point is further discussed at the beginning of Section 6. □

5 Soundness and Completeness

Definition 16. The domain of a tableau branch b, denoted D(b), is the set {x | (Sϕ :x) ∈ b} of
all labels occurring in b. □
Definition 17 (Realization). Let b be a tableau branch. A realization of b in a BL model
M = (W,≤,R,V,⊩) is a function ρ from D(b) to W such that

– if (T ϕ :x) ∈ b, then ρ(x)⊩ϕ and if (F ϕ :x) ∈ b, then ρ(x)⊮ϕ
– if (T x≺y) ∈ b, then ρ(x) ≤ ρ(y), and if (F x≺y) ∈ b, then ρ(x) ≰ ρ(y).

A tableau branch is realizable if has at least one realization in some BL model. A tableau is
realizable if has at least one realizable branch. □
Lemma 18. If a tableau branch is closed, then it is not realizable.

Proof. Let b be a closed tableau branch. Assume that b is realizable. Then, there exists a
realization ρ of b in some BL model.

– If b is closed because both (T ϕ :x) ∈ b and (F ϕ :x) ∈ b, then by definition of a realization,
we have both ρ(x)⊩ϕ and ρ(x)⊮ϕ, which is a contradiction.

– If b is closed because both (T x≺y) ∈ b and (F x≺y) ∈ b, then by definition of a realization,
we have both ρ(x) ≤ ρ(y) and ρ(x) ≰ ρ(y), which is a contradiction.

Therefore, b cannot be realizable.

Lemma 19. If a tableau t is realizable, then expanding t using one of the tableau expansion
rules given in Figure 5 results in a realizable tableau t′.

10 Bifurcation Logic

Proof. Suppose that t is realizable. Then, it has at least one realizable branch b. If t′ is
obtained from t by expanding a branch that is distinct from b then t′ remains realizable since it
still contains the unchanged realizable branch b. Otherwise, t′ is obtained by expanding b into b′.
We then proceed by case analysis on the tableau rule expanding b. Let ρ be a realization of b
is some BL model.

We consider just a few illustrative cases, the others being similar.

– Case T−∗:
If (T z≺x∥y) ∈ b and (T ϕ−∗ψ :x) ∈ b, then by Definition 17, we get R(ρ(z),ρ(x),ρ(y)) and
ρ(x)⊩ϕ−∗ψ. It then follows from Definition 4 that ρ(y)⊩ϕ and ρ(z)⊮ψ. Therefore, ρ
realizes b′.

– Case F−∗:
If (F ϕ−∗ψ :x) ∈ b, then by Definition 17, we get ρ(x)⊮ϕ−∗ψ. By Definition 4, there exist
w1,w2 ∈W such that R(w2,ρ(x),w1), w1⊩ϕ and w2⊮ψ. Since b′ extends b with (T v≺x∥u),
(T ϕ :u) and (F ψ :v), where u and b are distinct fresh labels, we can extend ρ into a realization
of b′ by setting ρ(u) = w1 and ρ(v) = w2.

The other cases are similar.

Theorem 20 (Soundness). If ⊢ϕ, then ⊨ϕ.

Proof. If ⊢ϕ then we have closed tableau t for ϕ :x for some label x. Assume that ⊭ϕ. Any
tableau construction procedure that results in t begins with the tableau t0 that consists in the
single node F ϕ :x. Since t0 is realizable, Lemma 19 implies that t should also be realizable and
should therefore contain at least one realizable branch b. By Lemma 18, b cannot be closed. It
then follows that t is open, which is a contradiction. Thus, we have ⊨ϕ.

Definition 21. A tableau branch b is saturated if it satisfies all of the following conditions:

1. if (Sϕ :x) ∈ b, then (T x≺x) ∈ b

2. if (Sϕ :x,Sψ :y) ∈ b, then (T x≺y) ∈ b or (T y≺x) ∈ b or (T x∥y) ∈ b

3. if (T x≺y) ∈ b and (T y≺z) ∈ b, then (T x≺z) ∈ b

4. if (T x∼y) ∈ b and (Sϕ :x) ∈ b, then (Sϕ :y) ∈ b

5. if (T x∥y) ∈ b and (T x≺z) ∈ b, then (T z ∥y) ∈ b

6. if (T ¬ϕ :x) ∈ b, then (F ϕ :x) ∈ b

7. if (F ¬ϕ :x) ∈ b, then (T ϕ :x) ∈ b

8. if (T ϕ∧ψ :x) ∈ b, then (T ϕ :x) ∈ b and (T ψ :x) ∈ b

9. if (F ϕ∧ψ :x) ∈ b, then (F ϕ :x) ∈ b or (F ψ :x) ∈ b

10. if (T □ϕ :x) ∈ b, then for all y ∈D(b), if (T x≺y) ∈ b, then (T ϕ :y) ∈ b

11. if (F □ϕ :x) ∈ b, then for some y ∈D(b), (T x≺y) ∈ b and (F ϕ :y) ∈ b

12. if (T ϕ∗ψ :x) ∈ b, then, for some y,z ∈D(b), (T x≺y∥z) ∈ b, (T ϕ :y) ∈ b, and (T ψ :z) ∈ b

13. if (F ϕ∗ψ :x) ∈ b, then, for all y,z ∈D(b), if (T x≺y∥z) ∈ b, then (F ϕ :y) ∈ b or (F ψ :z) ∈ b
14. if (T ϕ−∗ψ :x) ∈ b, then, for all y,z ∈D(b), if (T z≺x∥y) ∈ b, then (F ϕ :y) ∈ b or (T ψ :z) ∈ b
15. if (F ϕ−∗ψ :x) ∈ b, then, for some y,z∈D(b),(T z≺x∥y) ∈ b, (T ϕ :y) ∈ b, and (F ψ :z) ∈ b. □
Lemma 22. Let b be a saturated open tableau branch. The binary relation ≺b over D(b) defined
as x≺b y iff (T x≺y) ∈ b is a quasi-order over D(b) such that if (F x≺y) ∈ b then x⊀b y.

D. Galmiche, T. Lang, D. Méry, and D. Pym 11

Proof. Transitivity and reflexivity of ≺b clearly follow from Conditions 1 and 3 of Definition 21.
Now, if (F x≺y) ∈ b, then (T x≺y) ̸∈ b because b is open. Hence, x⊀b y by definition of ≺b.

Lemma 23. Let b be a saturated open branch. Let ∼b be the equivalence relation over D(b)
defined as x ∼b y iff x ≺b y and y ≺b x. For all x ∈ D(b), let [x] = {y ∈ D(b) | x ∼b y} denote
the equivalence class of x under ∼b and let Wb denote the quotient D(b)/∼b. Then, the binary
relation ≤b over Wb defined as [x] ≤b [y] iff x ≺b y is a partial order over Wb that satisfies the
persistent separation property.

Proof. First, we show that ≤b is well defined by showing that the following conditions are
equivalent for all [u], [v] ∈Wb:

(a) u≺b v

(b) x≺b y for all x ∈ [u] and all y ∈ [v]

(c) x≺b y for some x ∈ [u] and some y ∈ [v]

It is clear that (a) implies (c) and that (b) implies (c) (and (a)). Therefore, we only have to
show that (c) implies (b). Assume x≺b y for some x∈ [u] and some y ∈ [v]. Then, x∼b u implies
u≺b x and y ∼b v implies y ≺b v. Pick an arbitrary x′ ∈ [u], then x′ ∼b u implies x′ ≺b u. Since
u ≺b x, we get x′ ≺b x. Pick an arbitrary y′ ∈ [v], then y′ ∼b v implies v ≺b y

′ Since y ≺b v, we
get y ≺b y

′. Finally, since we assumed x≺b y, x′ ≺b x and y ≺b y
′ imply x′ ≺b y

′.
Second, we show that ≤b is a partial order over Wb. Since ≺b is a quasi-order over D(b) by

Lemma 22, it immediately follows that ≤b is both reflexive and transitive. It remains to show
that ≤b is anti-symmetric. Assume [x] ≤b [y] and [y] ≤b [x], then, by definition of ≤b, we have
x≺b y and y ≺b x, from which we get x∼b y by definition of ∼b. Hence, [x] = [y].

Last, we show that ≤b satisfies the separation persistence property stated in Definition 2.
We pick arbitrary [x], [y], [z] ∈ Wb such that [x]⊥[y] and [x] ≤b [z] and show that [z]⊥[y]. We
have the following facts:

(i) By definition of ⊥, [x]⊥[y] implies [x] ≰b [y] and [y] ≰b [x].

(ii) By definition of ≤b, [x] ≤b [z] implies x≺b z.

Assume that [z] ≤b [y]. Then, z ≺b y by definition of ≤b. Since x≺b z and z ≺b y imply x≺b y,
we get [x] ≤b [y] by definition of ≤b, which contradicts [x]⊥[y] (i). Hence, [z] ≰b [y].
Assume that [y] ≤b [z]. Then, y ≺b z by definition of ≤b, from which we get (T y≺ z) ∈ b by
definition of ≺b. Besides, [x] ≰b [y] and [y] ≰b [x] imply x ⊀b y and y ⊀b x by definition of ≤b.
By definition of ≺b, we get (T x≺ y) ̸∈ b and (T y≺x) ̸∈ b. Since b is saturated, (T x ∥ y) ∈ b
then follows from Condition 2 of Definition 21. In turn, (T x ∥ y) ∈ b and (T y≺ z) ∈ b imply
(T x∥z) ∈ b by Condition 5 of Definition 21. (T x∥z) ∈ b implies (F x≺z) ∈ b by definition of ∥,
but from (F x≺z) ∈ b, Lemma 22 implies x⊀b z, which contradicts x≺b z (ii). Hence, [y] ≰b [z].
From, [z] ≰b [y] and [y] ≰b [z], we conclude [y]⊥[z] by definition of ⊥.

Lemma 24 (Model existence). Let b be a saturated open tableau branch. Then, b induces a
BL model Mb = (W,≤,R,V,⊩), where W =Wb and ≤=≤b as per Lemma 23, R is the ternary
relation induced by ≤b as per Definition 3, and, for all worlds [x] ∈Wb, V ([x]) = {p | (T p :x) ∈ b}.
Moreover, Mb is such that if (T ϕ :x) ∈ b then [x]⊩ϕ and if (F ϕ :x) ∈ b then [x]⊮ϕ.

Proof. By mutual induction on the structure of ϕ for all labels x.

12 Bifurcation Logic

•
• • • •

• •

•

Figure 7: A finite model with backlinks (left) and its infinite unfolding (right)

Base case ϕ= p:
If (T p :x) ∈ b, then p ∈ V ([x]) by definition of V , which implies [x]⊩p by Definition 4.

If (F p :x) ∈ b, then since b is open, we have (T p :x) ̸∈ b. Hence, we get p ̸∈ V ([x]) by
definition of V , which implies [x]⊮p by Definition 4.

Case ϕ= ϕ1 −∗ϕ2:
If (F ϕ1 −∗ϕ2 :x) ∈ b, then for some y,z ∈D(b), we have (T z≺x∥y) ∈ b, (T ϕ1 :y) ∈ b and
(F ϕ2 :z) ∈ b. (T z≺x∥y) ∈ b implies R([z], [x], [y]) by Lemma 23. Moreover, by induction
hypothesis, (T ϕ1 :y) ∈ b and (F ϕ2 :z) ∈ b imply [y]⊩ϕ1 and [z]⊮ϕ2. Hence, by Definition 4,
we have [x]⊮ϕ1 −∗ϕ2.

If (T ϕ1 −∗ϕ2 :x) ∈ b, then for all y,z ∈D(b), if (T z≺x∥y) ∈ b then (F ϕ1 :y) ∈ b or (T ϕ2 :z) ∈
b. Pick arbitrary [u], [v] ∈ Wb such that R([v], [x], [u]) and [u] ⊩ϕ1. Since [v] ≤b [x] and
[v] ≤b [u], we have (T v≺ x) ∈ b and (T v≺ u) ∈ b by definition of ≤b. Similarly, since
[x] ≰b [u] and [u] ≰b [x], we have (T x≺u) ̸∈ b and (T u≺x) ̸∈ b, which by Condition 2
implies (T x∥u) ∈ b. It then follows that we have (T v≺x∥u) ∈ b, which implies (F ϕ1 :u) ∈ b
or (T ϕ2 :v) ∈ b. By the induction hypothesis, we then get [u] ⊮ϕ1 or [v] ⊩ϕ2. Since we
assume [u]⊩ϕ1, we necessarily have [v]⊩ϕ2. Therefore, [x]⊩ϕ1 −∗ϕ2.

The other cases are similar.

Corollary 25. If b is a saturated open tableau branch in a tableau for ϕ :x, then the induced
model Mb = (Wb,≤b,R,V,⊩) is such that [x]⊮ϕ.

Proof. Since (F ϕ :x) is the root of any tableau for ϕ :x, The concluding property of Lemma 24
implies that x⊮ϕ.

Theorem 26 (Completeness). If ⊩ϕ, then ⊢ϕ.

Proof. It is standard to define a tableau construction procedure that applies the rules given in
Figure 5 with a fair strategy. Such a procedure will either result in a finite closed tableau for ϕ,
in which case we get a TBL-proof of ϕ, or build at least one (possibly infinite) complete open
branch b, in which case b gives rise to a BL model Mb such that Mb ⊭ϕ by Corollary 25.

6 A Finite Model Property and Decidability

The formula □(⊤ ∗ ⊤) enforces that every world has at least two distinct successors and can,
therefore, only be satisfied in infinite models like the one shown in Figure 7 (right). Consequently,
the finite model property in its traditional formulation fails for BL.

D. Galmiche, T. Lang, D. Méry, and D. Pym 13

However, models such as the one in Figure 7 (right) are sufficiently regular to allow for a
finite schematic representation. Consider, for example, the scheme in Figure 7 (left). Here,
each squiggly edge represents a backlink, indicating that a copy of the graph originating from
its endpoint should be attached to its starting point via a single edge. By unfolding such a
schematic model, we obtain precisely the full binary tree shown in Figure 7 (right).

For simplicity, we only present an informal description of models with backlinks. These
models are trees augmented with additional backlinks — edges that point backward in the tree
order. Formulas in BL can be interpreted on such models by first unfolding them into (infinite)
trees. One can then establish the following result:

Lemma 27. If φ is −∗-free and satisfiable in BL, then it has a finite model with backlinks.

Proof. Let Σ be the set of subformulae of φ. For a subset Σ0 ⊆ Σ, consider all immmediate
successors of the root node that satisfy exactly those formulae in Σ that are in Σ0. If we remove
all but two of such nodes and the branches stemming from them we obtain a different model
that still satisfies φ at the root. Note that we need to retain two nodes–unlike in standard modal
logic where one representative suffices–as the root might satisfy a statement ψ ∗ψ that enforces
the existence of two different successors, even with equal theories. Applying this idea repeatedly
we can create a model of φ that is finitely branching up to any given height.

On the other hand, if a branch is longer than 2|Σ|, we will encounter worlds w < v satisfying
exactly the same formulae from Σ. In this case, we can remove the branch stemming from v
and instead create a back link from the immediate predecessor of v to w. This too preserves
truth of φ at the root. In the end, we obtain a finitely branching model with backlinks that is
of bounded height, and therefore finite.

The proof is a modification of a standard filtration and pruning argument used in other
modal logics [2]. These arguments rely on the fact that the truth of a formula depends only
on the truth of its subformulae at successor nodes — a property that fails once one considers
backwards-looking modalities. This explains the restriction on −∗.

Corollary 28. It is decidable whether a −∗-free formula is valid in BL.

Proof. By Theorem 26, the −∗-free formulae of BL are computably enumerable. Furthermore,
Lemma 27 implies that and it follows that their complement is computably enumerable too, since
we can systematically generate all finite models with backlinks. Thus, decidability follows.

Acknowledgements

1. Galmiche and Méry gratefully acknowledge the support of the ANR Projet NARCO (ANR-
21-CE48-0011).

2. Lang and Pym gratefully acknowledge the support of the UK EPSRC through Research
Grants EP/S013008/1 and EP/R006865/1.

3. We thank the anonymous referees for their suggestions.

References
[1] Gabrielle Anderson and David Pym. A Calculus and Logic of Bunched Resources and Processes.

Theoretical Computer Science 614:63-96, 2016.

14 Bifurcation Logic

[2] Patrick Blackburn, Martin de Rijke, and Ide Venema. Modal Logic. Cambridge University Press,
2001.

[3] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context logic and tree update. Proc. 32nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM, 2005.

[4] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Context Logic as Modal Logic: Complete-
ness and Parametric Inexpressivity. Proc. 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. ACM, 2007.

[5] Tristan Caulfield, Marius Ilau, and David Pym. Engineering Ecosystem Models: Semantics and
Pragmatics. In Proc. 13th SIMUtools. Springer, 2021.

[6] Stéphane Demri and Morgan Deters. Separation Logics and Modalities: A Survey. Journal of Applied
Non-Classical Logics 25(1), 2015. doi:10.1080/11663081.2015.1018801.

[7] Kosta Došen. Modal Translations in Substructural Logics. Journal of Philosophical Logic 21(3),
283-336, 1992.

[8] Melvin Fitting. First-Order Logic and Automated Theorem Proving. Monographs in Computer Sci-
ence. Springer New York, 2012.

[9] A. Fuhrmann and E.D. Mares. On S. Studia Logica 53, 75–91 (1994). doi.org/10.1007/BF01053023
[10] Didier Galmiche, Pierre Kimmel, and David Pym. A Substructural Epistemic Resource Logic: The-

ory and Modelling Applications. Journal of Logic and Computation 29(8), 1251-1287, 2019.
[11] Didier Galmiche, Timo Lang, and David Pym. Minimalistic System Modelling: Behaviours, In-

terfaces, and Local Reasoning. Proc. 16th EAI International Conference on Simulation Tools and
Techniques (EAI SIMUtools 2024), LNICST 603, Springer, 2024.

[12] Didier Galmiche, Daniel Méry, and David Pym. The Semantics of BI and Resource Tableaux. Math-
ematical Structures in Computer Science 15(6), 1033-1088, 2005.

[13] Alexander V. Gheorghiu and David J. Pym. Semantical Analysis of the Logic of Bunched Implica-
tions. Studia Logica 111, 525–571, 2023.

[14] Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable data structures. Pro-
ceedings of the 28th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM SIGPLAN Notices 36(3), 2001. doi:10.1145/360204.375719.

[15] Nohihiro Kamide. Kripke semantics for modal substructural logics. Journal of Logic, Language and
Information 11, 453-470, 2002.

[16] Peter O’Hearn and David Pym. The Logic of Bunched Implications. Bulletin of Symbolic Logic 5(2),
215-244, 199. doi:10.2307/421090.

[17] Hiroakira Ono. Modal and Substructural Logics. In: Proof Theory and Algebra in Logic. Short
Textbooks in Logic. Springer, 2019. doi:10.1007/978-981-13-7997-04.

[18] David Pym, Peter O’Hearn, and Hongseok Yang. Possible Worlds and Resources: The Semantics of
BI. Theoretical Computer Science 315(1), 257-305, 2004.

[19] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures.
Proceedings 17th Annual IEEE Symposium on Logic in Computer Science, IEEE, 2002.
doi:10.1109/LICS.2002.1029817.

[20] Richard Routley and Robert Meyer. The Semantics of Entailment. Studies in Logic and the Foun-
dations of Mathematics, Vol. 68, pp. 199–243. Elsevier, 1973.

[21] Alex Simpson. The Proof Theory and Semantics of Intuitionistic Modal Logic. PhD thesis, University
of Edinburgh, 1994.

[22] Don Simpson and Jerry Bruckheimer (Producers). Tony Scott (Director). Crimson Tide [motion
picture]. United States: Don Simpson/Jerry Bruckheimer Films and Holywood Pictures, 1995.
https://www.imdb.com/title/tt0112740/.

https://www.imdb.com/title/tt0112740/

	Introduction
	Bifurcation Logic
	Modelling With Bifurcation Logic
	A Tableaux Calculus for BL: TBL
	Soundness and Completeness
	A Finite Model Property and Decidability

