• Professor Bernard Fingleton

- Whether a mortgage application is accepted or denied
- Decision to go on to higher education
- Whether or not foreign aid is given to a country
- Whether a job application is successful
- Whether or not a person is unemployed
- Whether a company expands or contracts

- In each case, the outcome is binary
- We can treat the variable as a success (Y = 1) or failure (Y = 0)
- We are interested in explaining the variation across people, countries or companies etc in the probability of success, p = prob(Y=1)
- Naturally we think of a regression model in which Y is the dependent variable

- But the dependent variable Y and hence the errors are not what is assumed in 'normal' regression
 - Continuous range
 - Constant variance (homoscedastic)
- With individual data, the Y values are 1(success) and 0(failure)
 - the observed data for N individuals are discrete values 0,1,1,0,1,0, etc....not a continuum
 - The variance is not constant (heteroscedastic)

Bernoulli distribution

probability of a success (Y = 1) is pprobability of failure (Y = 0) is 1 - p = qE(Y) = pvar(Y) = p(1-p)as p_i varies for i= 1,...,N individuals then both mean and variance vary $E(Y_i) = p_i$ $var(Y_i) = p_i(1-p_i)$ regression explains variation in $E(Y_i) = p_i$ as a function of

some explanatory variables

 $E(Y_i) = f(X_{1i}, ..., X_{Ki})$

but the variance is not constant as $E(Y_i)$ changes whereas in OLS regression, we assume only the mean

varies as X varies, and the variance remains constant

this is a linear regression model

 $Y_{i} = b_{0} + b_{1}X_{1i} + \dots b_{K}X_{Ki} + e_{i}$ Pr(Y_i = 1 | X_{1i}, ..., X_{Ki}) = b_{0} + b_{1}X_{1i} + \dots b_{K}X_{Ki}

 b_1 is the change in the probability that Y = 1 associated with a unit change in X_1 , holding constant $X_2...X_K$, etc This can be estimated by OLS but

Note that since $var(Y_i)$ is not constant, we need to allow for heteroscedasticity in *t*, *F* tests and confidence intervals

- 1996 Presidential Election
- 3,110 US Counties
- binary Y with 0=Dole, 1=Clinton

Ordinary Least	-squares Estin	nates		
R-squared	= 0.0013			
Rbar-squared	= 0.0010			
sigma^2	= 0.2494			
Durbin-Watson	= 0.0034			
Nobs, Nvars	= 3110,	2		
****	* * * * * * * * * * * * * * *	* * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * * * * * *
Variable	Coefficient	t-s	tatistic	t-probability
Constant	0.478917	2	1.962788	0.00000
prop-gradprof	0.751897	:	2.046930	0.040749

prop-gradprof = pop with grad/professional degrees as a proportion of educated (at least high school education)

prop-gradprof = pop with grad/professional degrees as a proportion of educated (at least high school education)

Dole_Clinton_1 versus prop_gradprof (with least squares fit)

prop_gradprof

- Limitations
- The predicted probability exceeds 1 as X becomes large

 $\hat{Y} = 0.479 + 0.752X$ if X > 0.693 then $\hat{Y} > 1$ X = 0 gives $\hat{Y} = 0.479$ if X < 0 possible, then X < -0.637 gives $\hat{Y} < 0$

Solving the problem

- We adopt a nonlinear specification that forces the dependent proportion to always lie within the range 0 to 1
- We use cumulative probability functions (cdfs) because they produce probabilities in the 0 1 range
- Probit
 - Uses the standard normal cdf
- Logit
 - Uses the logistic cdf

 $\Phi(z)$ = area to left of z in standard normal distribution $\Phi(-1.96) = 0.025$ $\Phi(0) = 0.5$ $\Phi(1) = 0.84$ $\Phi(3.0) = 0.999$ we can put any value for z from -∞ to +∞, and the outcome is 0

Table 1. Areas under the Normal Curve

Example

		T	1	1						
Z	·00	·01	·02	.03	.04	·05	•06	·07	·08	.09
0.0	·5000	•4960	.4920	·4880	·4840	·4801	•4761	.4721	•4681	.4641
0.1	•4602	•4562	•4522	•4483	•4443	·4404	.4364	.4325	.4286	.4247
0.2	•4207	•4168	·4129	•4090	•4052	·4013	.3974	.3936	.3897	-3859
0.3	·3821	·3783	·3745	·3707	·3669	·3632	.3594	.3557	.3520	.3483
0-4	·3446	·3409	·3372	.3336	.3300	·3264	.3228	.3192	.3156	.3121
0.5	2005	2050								0121
0.5	.3085	.3050	•3015	·2981	·2946	$\cdot 2912$	·2877	$\cdot 2843$	$\cdot 2810$	·2776
0.6	•2743	•2709	•2676	$\cdot 2643$	$\cdot 2611$	-2578	·2546	$\cdot 2514$	·2483	·2451
0.7	•2420	•2389	-2358	-2327	$\cdot 2296$	•2266	·2236	·2206	·2177	·2148
0.8	•2119	•2090	·2061	$\cdot 2033$	$\cdot 2005$	·1977	·1949	·1922	·1894	·1867
0.9	·1841	·1814	·1788	·1762	1736	·1711	·1685	·1660	.1635	·1611
1.0	.1587	.1562	.1530	.1515	.1492	1460	1446	1422	1401	1270
1.1	.1357	.1335	.1314	.1202	1271	1251	1220	$\cdot 1423$	-1401	-1379
1.2	.1151	.1131	.1112	-1093	12/1	1056	1020	$(\cdot 1210)$	•1190	$\cdot 1170$
1.3	.0968	.0951	.0934	.0018	.1073	.1056	.1038	1020	•1003	.0985
1.4	.0808	.0793	.0779	0764	.0901	.0885	.0869	0853	.0838	.0823
1 7	0000	-0793	.0778	.0764	.0/49	.0735	0/21	0708	0694	0.0681
1.5	·0668	.0655	·0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
1.6	·0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
1.7	·0446	·0436	·0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
1.8	·0359	·0351	·0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
1.9	•0287	.0281	·0274	.0268	.0262	.0256	-0250	.0244	.0239	.0233
2.0					0-0-	0200	0250	0244	0239	0233
2.0	•0228	.0222	.0217	.0212	·0207	.0202	·0197	·0192	.0188	-0183
2.1	·0179	$\cdot 0174$.0170	.0166	·0162	.0158	·0154	·0150	·0146	.0143
2.2	.0139	·0136	.0132	·0129	·0125	.0122	·0119	·0116	·0113	.0110
2.3	·0107	.0104	·0102	·00 99	·0096	·0094	·0091	.0089	·0087	·0084
2.4	.0082	·0080	.0078	.0075	·0073	·0071	•0069	.0068	.0066	·0064
25	0000	0000	00.50						-	

$$Pr(Y = 1 | X_1, X_2) = \Phi(b_0 + b_1 X_1 + b_2 X_2)$$

e.g.
$$b_0 = -1.6, b_1 = 2, b_2 = 0.5$$

$$X_1 = 0.4, X_2 = 1$$

$$z = b_0 + b_1 X_1 + b_2 X_2 = -1.6 + 2x0.4 + 0.5x1 = -0.3$$

$$Pr(Y = 1 | X_1, X_2) = \Phi(-0.3) = 0.38$$

Model 9: Probit estimates using the 3110 observations 1-3110 Dependent variable: Dole_Clinton_1

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean)
const	-2.11372	0.215033	-9.830	
prop_gradprof	9.35232	1.32143	7.077	3.72660
log_urban	15.9631	5.64690	2.827	6.36078
prop_highs	3.07148	0.310815	9.882	1.22389

Actual and fitted Dole_Clinton_1 versus prop_gradprof

prop_gradprof

- Interpretation
- The slope of the line is not constant
- As the proportion of graduate professionals goes from 0.1 to 0.3, the probability of Y=1 (Clinton) goes from 0.5 to 0.9
- As the proportion of graduate professionals goes from 0.3 to 0.5 the probability of Y=1 (Clinton) goes from 0.9 to 0.99

- Estimation
- The method is maximum likelihood (ML)
- The likelihood is the joint probability given specific parameter values
- Maximum likelihood estimates are those parameter values that maximise the probability of drawing the data that are actually observed

 $\begin{aligned} &\Pr(Y_{i} = 1) \text{ conditional on } X_{1i}, ..., X_{Ki} \text{ is } p_{i} = \Phi(b_{0} + b_{1}X_{1i} + ...b_{K}X_{Ki}) \\ &\Pr(Y_{i} = 0) \text{ conditional on } X_{1i}, ..., X_{Ki} \text{ is } 1 - p_{i} = 1 - \Phi(b_{0} + b_{1}X_{1i} + ...b_{K}X_{Ki}) \\ &y_{i} \text{ is the value of } Y_{i} \text{ observed for individual } i \\ &\text{for } i'\text{th individual, } \Pr(Y_{i} = y_{i}) \text{ is } p_{i}^{y_{i}}(1 - p_{i})^{1 - y_{i}} \\ &\text{for } i = 1, ..., n, \text{ joint likelihood is } L = \prod_{i} \Pr(Y_{i} = y_{i}) = \prod_{i} p_{i}^{y_{i}}(1 - p_{i})^{1 - y_{i}} \\ &L = \prod_{i} \Pr(Y_{i} = y_{i}) = \prod_{i} \left[\Phi(b_{0} + b_{1}X_{1i} + ...b_{K}X_{Ki}) \right]^{y_{i}} \left[1 - \Phi(b_{0} + b_{1}X_{1i} + ...b_{K}X_{Ki}) \right]^{1 - y_{i}} \\ &\text{log likelihood is} \end{aligned}$

$$\ln L = \sum_{i} \left[y_{i} \ln \left\{ \Phi(b_{0} + b_{1}X_{1i} + \dots b_{K}X_{Ki} \right\} + (1 - y_{i}) \ln \left\{ 1 - \Phi(b_{0} + b_{1}X_{1i} + \dots b_{K}X_{Ki} \right\} \right]$$

we obtain the values of $b_0, b_1, ..., b_K$ that give the maximum value of $\ln L$

Hypothetical binary data

success	Х
1	10
0	2
0	3
1	9
1	5
1	8
0	4
0	5
1	11
1	12
0	3
0	4
1	12
0	8
1	14
0	3
1	11
1	9
0	4
0	6
1	7
1	9
0	3
0	1

0:	log	likelihood	=	-13.0598448595
1:	log	likelihood	=	-6.50161713610
2:	log	likelihood	=	-5.50794602456
3:	log	likelihood	=	-5.29067548323
4:	log	likelihood	=	-5.26889753239
5:	log	likelihood	=	-5.26836878709
6:	log	likelihood	=	-5.26836576121
7:	log	likelihood	=	-5.26836575008
	0: 1: 2: 3: 4: 5: 6: 7:	0: log 1: log 2: log 3: log 4: log 5: log 6: log 7: log	<pre>0: log likelihood 1: log likelihood 2: log likelihood 3: log likelihood 4: log likelihood 5: log likelihood 6: log likelihood 7: log likelihood</pre>	<pre>0: log likelihood = 1: log likelihood = 2: log likelihood = 3: log likelihood = 4: log likelihood = 5: log likelihood = 6: log likelihood = 7: log likelihood =</pre>

Convergence achieved after 8 iterations

Model 3: Probit estimates using the 24 observations 1-24 Dependent variable: success

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean
const	-4.00438	1.45771	-2.747	
Х	0.612845	0.218037	2.811	0.241462

Model 3: Probit estimates using the 24 observations 1-24 Dependent variable: success

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean)
const	-4.00438	1.45771	-2.747	
Х	0.612845	0.218037	2.811	0.241462

If x = 6, probit = $\Phi(-4.00438 + 0.612845*6) = \Phi(-0.32731) = 0.45$

Logit regression

- Based on logistic cdf
- This looks very much like the cdf for the normal distribution
- Similar results
- The use of the logit is often a matter of convenience, it was easier to calculate before the advent of fast computers

Logistic function

f(z)

Prob success $= \frac{e^{z}}{1+e^{z}} = [1+e^{-z}]^{-1}$ Prob fail $= 1 - \frac{e^{z}}{1+e^{z}} = \frac{1+e^{z}}{1+e^{z}} - \frac{e^{z}}{1+e^{z}} = \frac{1}{1+e^{z}} = 1 - [1+e^{-z}]^{-1}$ odds ratio $= \frac{\text{Prob success}}{\text{Prob fail}} = \frac{e^{z}}{1+e^{z}} \frac{1+e^{z}}{1} = e^{z}$ log odds ratio = z

$$z = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$

Logistic function

$$p_i = b_0 + b_1 X$$

p plotted against *X* is a straight line with *p* <0 and >1 possible $p_i = \frac{\exp(b_0 + b_1 X)}{1 + \exp(b_0 + b_1 X)}$

> p_i plotted against X gives s-shaped logistic curve so $p_i > 1$ and $p_i < 0$ impossible equivalently

$$\ln\left\{\frac{p_i}{1-p_i}\right\} = b_0 + b_1 X$$

this is the equation of a straight line, so

$$\ln\left\{\frac{p_i}{1-p_i}\right\} \text{ plotted against } X \text{ is linear}$$

Estimation - logit

X is fixed data, so we choose b_0, b_1 , hence p_i $p_i = \frac{\exp(b_0 + b_1 X)}{1 + \exp(b_0 + b_1 X)}$

so that the likelihood is maximized

Logit regression

 $z = b_0 + b_1 X_{1i} + \dots b_K X_{Ki}$ $Pr(Y_i = 1)$ conditional on $X_{1i}, ..., X_{Ki}$ is $p_i = [1 + exp(-z)]^{-1}$ $Pr(Y_i = 0)$ conditional on $X_{1i}, ..., X_{Ki}$ is $1 - p_i = 1 - [1 + exp(-z)]^{-1}$ y_i is the value of Y_i observed for individual *i* for *i*'th individual, $Pr(Y_i = y_i)$ is $p_i^{y_i} (1 - p_i)^{1 - y_i}$ for i = 1, ..., n, joint likelihood is $L = \prod_{i} \Pr(Y_i = y_i) = \prod_{i} p_i^{y_i} (1 - p_i)^{1 - y_i}$ $L = \prod_{i} \Pr(Y_{i} = y_{i}) = \prod_{i} \left[[1 + \exp(-z)]^{-1} \right]^{y_{i}} \left[1 - [1 + \exp(-z)]^{-1} \right]^{1-y_{i}}$ log likelihood is $\ln L = \sum \left[y_i \ln \left\{ [1 + \exp(-z)]^{-1} \right\} + (1 - y_i) \ln \left\{ 1 - [1 + \exp(-(z)]^{-1} \right\} \right]$

we obtain the values of $b_0, b_1, ..., b_K$ that give the maximum value of $\ln L$

Estimation

• maximum likelihood estimates of the parameters using an iterative algorithm

Estimation

Iteration	0:	log	likelihood	=	-13.8269570846	
Iteration	1:	log	likelihood	=	-6.97202524093	
Iteration	2:	log	likelihood	=	-5.69432863365	
Iteration	3:	log	likelihood	=	-5.43182376684	
Iteration	4:	log	likelihood	=	-5.41189406278	
Iteration	5:	log	likelihood	=	-5.41172246346	
Iteration	6:	log	likelihood	=	-5.41172244817	

Convergence achieved after 7 iterations

Model 1: Logit estimates using the 24 observations 1-24 Dependent variable: success

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean)
const	-6.87842	2.74193	-2.509	
Х	1.05217	0.408089	2.578	0.258390

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean)
const	-6.87842	2.74193	-2.509	
X	1.05217	0.408089	2.578	0.258390

If X = 6, logit = $-6.87842 + 1.05217*6 = -0.5654 = \ln(p/(1-p))$ P = exp(-0.5654)/{1+exp(-0.5654)} = 1/(1+exp(0.5654)) = 0.362299

Actual and fitted success versus X

Modelling proportions and percentages

consider the following individual data for Y and X

Y = 0, 0, 1, 0, 0, 1, 0, 1, 1, 1

X = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5

constant = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

 $\hat{Y} = -0.1 + 0.2X$ is the OLS estimate

Notice that the *X* values for individuals 1 and 2 are identical, likewise 3 and 4 and so on

If we group the identical data, we have a set of proportions p = 0/2, 1/2, 1/2, 1/2, 1 = 0, 0.5, 0.5, 0.5, 1X = 1,2,3,4,5

 $\hat{p} = -0.1 + 0.2X$ is the OLS estimate

- When n individuals are identical in terms of the variables explaining their success/failure
- Then we can group them together and explain the proportion of 'successes' in n trials
 - This data format is often important with say developing country data, where we know the proportion, or % of the population in each country with some attribute, such as the % of the population with no schooling
 - And we wish to explain the cross country variations in the %s by variables such as GDP per capita or investment in education, etc

- With individual data, the values are 1(success) and 0(failure) and p is the probability that Y = 1
 - the observed data for N individuals are discrete values 0,1,1,0,1,0, etc.....not a continuum
- With grouped individuals the proportion *p* is equal to the number of successes *Y* in *n* trials (individuals)
- So the range of Y is from 0 to n
- The possible Y values are discrete, 0,1,2,...,*n*, and confined to the range 0 to *n*.
- The proportions *p* are confined to the range 0 to
 1

Modelling proportions

Proportion (Y/n)	Continuous response
5/10 = 0.5	11.32
1/3 = 0.333	17.88
6/9 = 0.666	3.32
1/10 = 0.1	11.76
7/20 = 0.35	1.11
1/2 = 0.5	0.03

Binomial distribution

the moments of the number of successes Y_i

- n_i trials, each independent, i = 1, ..., N
- p_i is the probability of a success in each trial $E(Y_i) = n_i p_i$

$$\operatorname{var}(Y_i) = n_i p_i (1 - p_i)$$

the variance is not constant, but depends on n_i and p_i $Y_i \sim B(n_i, p_i)$

Data

Region	Output growth	su	survey of startup firms			
	q	starts(n) e	xpanded	d(Y) propn = Y/n		
Cleveland, Durham	0.169211	13	8	0.61538		
Cumbria	0.471863	34	34	1.00000		
Northhumberland	0.044343	10	0	0.00000		
Humberside	0.274589	15	9	0.60000		
N Yorks	0.277872	16	14	0.87500		
Cleveland,Durham Cumbria Northhumberland Humberside N Yorks	0.169211 0.471863 0.044343 0.274589 0.277872	13 34 10 15 16	8 34 0 9 14	0.61538 1.00000 0.00000 0.60000 0.87500		

Regression Plot

Y = 0.296428 + 1.41711X R-Sq = 48.9 %

OLS regression with proportions

y = 0.296 + 1.42 x

Predictor	Coef	StDev	Т	P
Constant	0.29643	0.05366	5.52	0.000
X	1.4171	0.2559	5.54	0.000
S = 0.2576	R-Sq =	48.9%	R-Sq(adj)	= 47.3%
	F	Fitted values	=y = 0.296	+ 1.42 x
		0.48310		
Negativo	e proportion	-0.00576		
Propo	ortion > 1	1.07892		
•		0.58634		
		0.25346		

Grouped Data

	Region	Output growth	survey of startup firms		
		q	starts(<i>n</i>)	expanded	(Y) propn = Y/n
Clevela	und,Durham	0.169211	13	8	0.61538
Cı	umbria	0.471863	34	34	1.00000
Northh	numberland	0.044343	10	0	0.00000
Hur	nberside	0.274589	15	9	0.60000
Ν	Yorks	0.277872	16	14	0.87500

Proportions and counts

$$\ln(p_i / (1 - p_i) = b_0 + b_1 X$$

$$\ln(\hat{p}_i / (1 - \hat{p}_i) = \hat{b}_0 + \hat{b}_1 X$$

$$E(Y_i) = n_i p_i$$

$$\hat{Y}_i = n_i \hat{p}_i$$

 n_i = size of sample i

 \hat{Y}_i = estimated expected number of 'successes' in sample i

Binomial distribution

For region i

$$\Pr{ob}(Y = y) = \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}$$

- \mathcal{N} = number of individuals
- p = probability of a 'success'
- Y = number of 'successes' in n individuals

Binomial distribution

For region i

$$\Pr{ob}(Y = y) = \frac{n!}{y!(n-y)!} p^{y} (1-p)^{n-y}$$

Example P = 0.5, n = 10

$$Pr \, ob(Y = 5) = \frac{10!}{5!(10-5)!} \, 0.5^5 \, (0.5)^5 = 0.2461$$
$$E(Y) = np = 5$$
$$var(Y) = np(1-p) = 2.5$$

Y is B(10,0.5) E(Y)=np = 5 var(Y)=np(1-p)=2.5

Maximum Likelihood – proportions

Assume the data observed are

 $Y_1 = y_1 = 5$ successes from 10 trials and $Y_2 = y_2 = 9$ successes from 10 trials what is the likelihood of these data given $p_1 = 0.5$, $p_2 = 0.9$?

Prob(Y₁ = 5) =
$$\frac{n_1!}{y_1!(n_1 - y_1)!} p_1^{y_1} (1 - p_1)^{n_1 - y_1}$$

$$\Pr \operatorname{ob}(Y_1 = 5) = \frac{10!}{5!(10-5)!} 0.5^5 (0.5)^5 = 0.2461$$

Prob(Y₂ = 9) =
$$\frac{n_2!}{y_2!(n_2 - y_2)!} p_2^{y_2} (1 - p_2)^{n_2 - y_2}$$

$$Prob(Y_2 = 9) = \frac{10!}{9!(10-9)!} 0.9^9 (0.1)^1 = 0.3874$$

likelihood of observing $y_1 = 5$, $y_2 = 9$ given $p_1 = 0.5$, $p_2 = 0.9$ = 0.2461x0.3874 = 0.095

However likelihood of observing $y_1 = 5$, $y_2 = 9$ given $p_1 = 0.1$, $p_2 = 0.8 = 0.0015x0.2684 = 0.0004$

Inference

Likelihood ratio/deviance

$$Y^2 = 2\ln(L_u / L_r) \sim \chi^2$$

 L_u = likelihood of unrestricted model with k1 df

 L_r = likelihood of restricted model with k2 df

k2 > k1

Restrictions placed on k2-k1 parameters typically they are set to zero

Deviance

 $Ho: b_i = 0, i = 1, ..., (k2 - k1)$ $Y^{2} = 2 \ln(L_{\mu} / L_{r}) \sim \chi^{2}_{k2-k1}$

 $E(Y^2) = k2 - k1$

Iteration 7: log 1	likelihood = -5.268	36575008 = Lu				
Convergence achiev	ved after 8 iteratio	ons				
Model 3: Probit es Dependent variable	stimates using the . e: success	24 observations	1-24			
VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE (at mean)		
const	-4.00438	1.45771	-2.747			
х	0.612845	0.218037	2.811	0.241462		
Model 4: Probit es Dependent variable VARIABLE	stimates using the set success	24 observations	1-24 T STAT	SLOPE		
VARIADUE	COEFFICIENT	SIDERKOR	I DIAI	(at mean)		
const	0.00000	0.255832	-0.000			
Log-likelihood = -16.6355 $= Lr$ Comparison of Model 3 and Model 4: Null hypothesis: the regression parameters are zero for the variables						
x $2{Lu - Lr} = 2[-5.268 + 16.636] = 22.73$ Test statistic: Chi-square(1) = 22.7343, with p-value = 1.86014e-006						
Of the 3 model selection statistics, 0 have improved.						

Iteration 3: log likelihood = -2099.98151495

Convergence achieved after 4 iterations

Model 2: Logit estimates using the 3110 observations 1-3110 Dependent variable: Dole_Clinton_1

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean)
const	-3.41038	0.351470	-9.703	
log_urban	25.4951	9.10570	2.800	6.36359
prop_highs	4.96073	0.508346	9.759	1.23820
prop_gradprof	15.1026	2.16268	6.983	3.76961
Model 3: Logit est	imates using the 3	110 observations	s 1-3110	
Dependent variable	: Dole_Clinton_1			

VARIABLE	COEFFICIENT	STDERROR	T STAT	SLOPE
				(at mean)
const	-0.972329	0.184314	-5.275	
prop_highs	2.09692	0.360723	5.813	0.523414

Log-likelihood = -2136.12

Comparison of Model 2 and Model 3:

Null hypothesis: the regression parameters are zero for the variables

log_urban prop_gradprof

Test statistic: Chi-square(2) = 72.2793, with p-value = 2.01722e-016

DATA LAYOUT FOR LOGISTIC REGRESSION

REGION	URBAN	SE/NOT SE	OUTPUT GROWTH	ΗY	n
Hants, IoW	suburban	SE	0.062916	9	11
Kent	suburban	SE	0.035541	4	10
Avon	suburban	not S	E 0.133422	4	14
Cornwall, Devon	rural	not S	E 0.141939	5	12
Dorset, Somerset	rural	not S	E 0.145993	12	16
S Yorks	urban	not S	E -0.150591	0	11
W Yorks	urban	not S	E 0.152066	7	15

Logistic Regression Table

Predictor	Coef	StDev	Z	Р
Constant	-1.2132	0.3629	-3.34	0.001
gvagr	9.716	1.251	7.77	0.000
URBAN/SUBUR	BAN/RURAL			
suburban	-0.8464	0.2957	-2.86	0.004
urban	-1.3013	0.4760	-2.73	0.006
SOUTH-EAST/	NOT SOUTH-	EAST		
South-East	2.4411	0.3534	6.91	0.000

Log-Likelihood = -210.068

Testing variables

Log-like degrees of freedom

Prob = f(q)

Prob = f(q,urban,SE) -210.068 29

2*Difference = 74.064

74.064 > 7.81, the critical value equal to the upper 5% point of the chi-squared distribution with 3 degree of freedom thus introducing URBAN/SUBURBAN/RURAL and SE/not SE causes a significant improvement in fit

- When the transformation gives a linear equation linking the dependent variable and the independent variables then we can interpret it in the normal way
- The regression coefficient is the change in the dependent variable per unit change in the independent variable, controlling for the effect of the other variables
- For a dummy variable or factor with levels, the regression coefficient is the change in the dependent variable associated with a shift from the baseline level of the factor

$$\ln(\hat{P}_i/(1-\hat{P}_i))$$

Changes by 9.716 for a unit change in gvagr

by 2.441 as we move from not SE to SE counties by -1.3013 as we move from RURAL to URBAN by -0.8464 as we move from RURAL to SUBURBAN

- The odds of an event = ratio of Prob(event) to Prob(not event)
- The odds ratio is the ratio of two odds.
- The logit link function means that parameter estimates are the exponential of the odds ratio (equal to the logit differences).

For example, a coefficient of zero would indicate that moving from a non SE to a SE location produces no change in the logit

Since exp(0) = 1, this would mean the (estimated) odds = Prob(expand)/Prob(not expand) do not change ie the odds ratio =1

In reality, since exp(2.441) = 11.49 the odds ratio is 11.49 The odds of SE firms expanding are 11.49 times the odds of non SE firms expanding

	param. est.	s.e.	t ratio	p-value	e odds ratio	lower c.i.	upper c.i.
Constant	-1.2132	0.3629	-3.34	0.001			
gvagr	9.716	1.251	7.77	0.000	16584.51	1428.30	1.93E+05
RURAL/SUBUR	BAN/URBAN						
suburban	-0.8464	0.2957	-2.86	0.004	0.43	0.24	0.77
urban	-1.3013	0.4760	-2.73	0.006	0.27	0.11	0.69
SE/not SE							
SE	2.4411	0.3534	6.91	0.000	11.49	5.75	22.96

Note that the odds ratio has a 95% confidence interval since 2.4411+1.96*0.3534 =3.1338 and 2.4411-1.96*0.3534 = 1.7484 and exp(3.1338)=22.96, exp(1.7484) = 5.75 The 95% c.i.for the odds ratio is 5.75 to 22.96