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Regression with limited dependent 
variables

• Whether a mortgage application is 
accepted or denied

• Decision to go on to higher education
• Whether or not foreign aid is given to a 

country
• Whether a job application is successful
• Whether or not a person is unemployed
• Whether a company expands or contracts



Regression with limited dependent 
variables

• In each case, the outcome is binary
• We can treat the variable as a success (Y 

= 1) or failure (Y = 0)
• We are interested in explaining the 

variation across people, countries or 
companies etc in the probability of 
success, p = prob( Y =1)

• Naturally we think of a regression model in 
which Y is the dependent variable



Regression with limited dependent 
variables

• But the dependent variable Y and hence the 
errors are  not what is assumed in ‘normal’ 
regression
– Continuous range
– Constant variance (homoscedastic)

• With individual data, the Y values are 1(success) 
and 0(failure)
– the observed data for N individuals are discrete 

values 0,1,1,0,1,0, etc……not a continuum
– The variance is not constant (heteroscedastic)
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The linear probability model
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The linear probability model

• 1996 Presidential Election
• 3,110 US Counties
• binary Y with 0=Dole, 1=Clinton 



Ordinary Least-squares Estimates 
R-squared      =    0.0013  
Rbar-squared   =    0.0010  
sigma^2        =    0.2494  
Durbin-Watson  =    0.0034  
Nobs, Nvars    =   3110,     2  
*************************************************************** 
Variable        Coefficient      t-statistic    t-probability  
Constant           0.478917        21.962788         0.000000  
prop-gradprof      0.751897         2.046930         0.040749 
 
prop-gradprof = pop with grad/professional degrees as a proportion of 
educated (at least high school education) 

The linear probability model
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The linear probability model

• Limitations
• The predicted probability exceeds 1 as X 

becomes large
ˆ 0.479 0.752

ˆif 0.693 then 1
ˆ0 gives 0.479

if  < 0 possible, then
ˆ< -0.637  gives 0
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Solving the problem
• We adopt a nonlinear specification that forces 

the dependent proportion to always lie within the 
range 0 to 1 

• We use cumulative probability functions (cdfs) 
because they produce probabilities in the 0 1 
range

• Probit
– Uses the standard normal cdf

• Logit
– Uses the logistic cdf



Probit regression

( )  area to left of z in standard normal distribution
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Probit regression

Model 9: Probit estimates using the 3110 observations 1-3110
Dependent variable: Dole_Clinton_1 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                -2.11372          0.215033     -9.830 
  prop_gradprof         9.35232          1.32143       7.077      3.72660    
  log_urban            15.9631           5.64690       2.827      6.36078    
  prop_highs            3.07148          0.310815      9.882      1.22389    



Probit regression
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Probit regression

• Interpretation
• The slope of the line is not constant
• As the proportion of graduate  professionals 

goes from 0.1 to 0.3, the probability of Y=1 
(Clinton) goes from  0.5 to 0.9

• As the proportion of graduate  professionals 
goes from 0.3 to 0.5 the probability of Y=1 
(Clinton) goes from  0.9 to 0.99



Probit regression

• Estimation
• The method is maximum likelihood (ML)
• The likelihood is the joint probability given 

specific parameter values
• Maximum likelihood estimates are those 

parameter values that maximise the 
probability of drawing the data that are 
actually observed
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Hypothetical binary data



Iteration 0: log likelihood = -13.0598448595 
Iteration 1: log likelihood = -6.50161713610 
Iteration 2: log likelihood = -5.50794602456 
Iteration 3: log likelihood = -5.29067548323 
Iteration 4: log likelihood = -5.26889753239 
Iteration 5: log likelihood = -5.26836878709 
Iteration 6: log likelihood = -5.26836576121 
Iteration 7: log likelihood = -5.26836575008 
 
Convergence achieved after 8 iterations 
 
Model 3: Probit estimates using the 24 observations 1-24 
Dependent variable: success 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean)
  const                -4.00438          1.45771      -2.747 
  X                     0.612845         0.218037      2.811      0.241462 



 
Model 3: Probit estimates using the 24 observations 1-24 
Dependent variable: success 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                -4.00438          1.45771      -2.747 
  X                     0.612845         0.218037      2.811      0.241462     
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Logit regression

• Based on logistic cdf
• This looks very much like the cdf for the 

normal distribution
• Similar results 
• The use of the logit is often a matter of 

convenience, it was easier to calculate 
before the advent of fast computers



Logistic function
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Logistic function

pp plotted against plotted against XX is a straight line with is a straight line with pp <0 and >1 possible<0 and >1 possible
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Estimation - logit
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Logit regression
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Estimation 

• maximum likelihood estimates of the 
parameters using an iterative algorithm



Estimation
Iteration 0: log likelihood = -13.8269570846 
Iteration 1: log likelihood = -6.97202524093 
Iteration 2: log likelihood = -5.69432863365 
Iteration 3: log likelihood = -5.43182376684 
Iteration 4: log likelihood = -5.41189406278 
Iteration 5: log likelihood = -5.41172246346 
Iteration 6: log likelihood = -5.41172244817 
 
Convergence achieved after 7 iterations 
 
Model 1: Logit estimates using the 24 observations 1-24 
Dependent variable: success 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                -6.87842          2.74193      -2.509 
  X                     1.05217          0.408089      2.578      0.258390  



      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE
                                                                  (at mean) 
  const                -6.87842          2.74193      -2.509 
  X                     1.05217          0.408089      2.578      0.258390 
 
If X = 6, logit =   -6.87842 +  1.05217*6 =-0.5654 = ln(p/(1-p) 
P = exp(-0.5654)/{1+exp(-0.5654)} = 1/(1+exp(0.5654)) = 0.362299            
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Modelling proportions and 
percentages



The linear probability model
consider the following individual data for  and 

0,0,1,0,0,1,0,1,1,1
1,1,2, 2,3,3,4, 4,5,5

constant 1,1,1,1,1,1,1,1,1,1
ˆ 0.1 0.2  is the OLS estimate
Notice that the  values for individuals 1 and 2

Y X
Y
X

Y X
X

=
=

=

= − +
are identical,

likewise 3 and 4 and so on
If we group the identical data, we have a set of proportions

 = 0/2, 1/2, 1/2, 1/2, 1 = 0, 0.5, 0.5, 0.5, 1
X = 1,2,3,4,5
ˆ 0.1 0.2  is the OLS estimate

p

p X= − +



The linear probability model
• When n individuals are identical in terms of the 

variables explaining their success/failure
• Then we can group them together and explain 

the proportion of ‘successes’ in n trials
– This data format is often important with say 

developing country data, where we know the 
proportion, or % of the population in each country with 
some attribute, such as the % of the population with 
no schooling

– And we wish to explain the cross country variations in 
the %s by variables such as GDP per capita or 
investment in education, etc



Regression with limited dependent 
variables

• With individual data, the values are 1(success) 
and 0(failure) and p is the probability that Y = 1
– the observed data for N individuals are discrete 

values 0,1,1,0,1,0, etc……not a continuum
• With grouped individuals the proportion p is 

equal to the number of successes Y in n trials 
(individuals)

• So the range of Y is from 0 to n
• The possible Y values are discrete, 0,1,2,…,n, 

and confined to the range 0 to n.
• The proportions p are confined to the range 0 to 

1



Modelling proportions

Proportion  (Proportion  (Y/nY/n)                     Continuous response)                     Continuous response

5/10 = 0.5                                     11.325/10 = 0.5                                     11.32
1/3 = 0.333                                 17.881/3 = 0.333                                 17.88
6/9 = 0.666                                   3.326/9 = 0.666                                   3.32
1/10 = 0.1                                   11.761/10 = 0.1                                   11.76
7/20 = 0.35                                   1.117/20 = 0.35                                   1.11
1/2 = 0.5                                      0.03 1/2 = 0.5                                      0.03 



Binomial distribution

the moments of the number of successes 
 trials, each independent, 1,...,
 is the  probability of a success in each trial
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Data 

q
0.169211
0.471863
0.044343
0.274589
0.277872

starts(n) expanded(Y) propn =Y/n
13 8 0.61538
34 34 1.00000
10 0 0.00000
15 9 0.60000
16 14 0.87500

Cleveland,Durham
Cumbria

Northhumberland
Humberside

N Yorks

Region Region Output growth             survey of startup firms Output growth             survey of startup firms 
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OLS regression with proportions

y = 0.296 + 1.42 x

Predictor        Coef StDev T        P
Constant      0.29643     0.05366       5.52    0.000
x              1.4171      0.2559       5.54    0.000

S = 0.2576      R-Sq = 48.9%     R-Sq(adj) = 47.3%

0.48310
-0.00576
1.07892
0.58634
0.25346

Fitted values = Fitted values = y = 0.296 + 1.42 x

Negative proportionNegative proportion
Proportion > 1Proportion > 1



Grouped Data 

q
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Proportions and counts

0 1

0 1

ln( / (1 )
ˆ ˆˆ ˆln( / (1 )

( )
ˆ ˆ

i i

i i

i i i

i i i

p p b b X

p p b b X
E Y n p

Y n p

− = +

− = +
=

=

iŶ
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Binomial distribution
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For region iFor region i

n =   number of individuals=   number of individuals

p =    probability of a =    probability of a ‘‘successsuccess’’

Y =    number of =    number of ‘‘successessuccesses’’ in n individualsin n individuals



Binomial distribution
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1 1 2 2

1 2

1
1 1 1

1 1 1

Assume the data observed are 
5 successes from 10 trials and 9 successes from 10 trials

what is the likelihood of these data given 0.5, 0.9?
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Inference 



Likelihood ratio/deviance 

LLuu 
= likelihood of unrestricted model with k1 = likelihood of unrestricted model with k1 dfdf

LLrr 
= likelihood of restricted model with k2 = likelihood of restricted model with k2 dfdf

k2 > k1k2 > k1
Restrictions placed on k2Restrictions placed on k2--k1 parametersk1 parameters

typically they are set to zerotypically they are set to zero
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Iteration 7: log likelihood = -5.26836575008
 
Convergence achieved after 8 iterations 
 
Model 3: Probit estimates using the 24 observations 1-24 
Dependent variable: success 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                -4.00438          1.45771      -2.747 
  X                     0.612845         0.218037      2.811      0.241462     
 
 
Model 4: Probit estimates using the 24 observations 1-24 
Dependent variable: success 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                 0.000000         0.255832     -0.000 
 
   
  Log-likelihood = -16.6355 
  Comparison of Model 3 and Model 4: 
 
  Null hypothesis: the regression parameters are zero for the variables 
 
    X 
 
  Test statistic: Chi-square(1) = 22.7343, with p-value = 1.86014e-006 
 
  Of the 3 model selection statistics, 0 have improved. 
 

Nb 2ln(Lu/Lr) = 2* (-16.6355- -5.2683) = 22.7343 

= Lu

=Lr

2{Lu – Lr]= 2[-5.268 + 16.636] = 22.73



Iteration 3: log likelihood = -2099.98151495
 
Convergence achieved after 4 iterations 
 
Model 2: Logit estimates using the 3110 observations 1-3110 
Dependent variable: Dole_Clinton_1 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                -3.41038          0.351470     -9.703 
  log_urban            25.4951           9.10570       2.800      6.36359     
  prop_highs            4.96073          0.508346      9.759      1.23820     
  prop_gradprof        15.1026           2.16268       6.983      3.76961     
Model 3: Logit estimates using the 3110 observations 1-3110 
Dependent variable: Dole_Clinton_1 
 
      VARIABLE       COEFFICIENT        STDERROR      T STAT       SLOPE 
                                                                  (at mean) 
  const                -0.972329         0.184314     -5.275 
  prop_highs            2.09692          0.360723      5.813      0.523414    
 
   
  Log-likelihood = -2136.12 
   
 
Comparison of Model 2 and Model 3: 
 
  Null hypothesis: the regression parameters are zero for the variables 
 
    log_urban 
    prop_gradprof 
 
  Test statistic: Chi-square(2) = 72.2793, with p-value = 2.01722e-016 



Hants, IoW suburban SE 0.062916 9 11
Kent suburban SE 0.035541 4 10
Avon suburban not SE 0.133422 4 14
Cornwall, Devon rural not SE 0.141939 5 12
Dorset, Somerset rural not SE 0.145993 12 16

DATA LAYOUT FOR LOGISTIC REGRESSIONDATA LAYOUT FOR LOGISTIC REGRESSION

REGION                                    URBAN    SE/NOT SE  OUREGION                                    URBAN    SE/NOT SE  OUTPUT GROWTH    Y              nTPUT GROWTH    Y              n

S Yorks urban    not SE -0.150591 0 11
W Yorks urban     not SE 0.152066 7 15



Logistic Regression Table

Predictor       Coef StDev Z     P
Constant     -1.2132     0.3629    -3.34 0.001
gvagr 9.716      1.251     7.77 0.000 
URBAN/SUBURBAN/RURAL       
suburban    -0.8464     0.2957    -2.86 0.004
urban       -1.3013     0.4760    -2.73 0.006
SOUTH-EAST/NOT SOUTH-EAST
South-East   2.4411     0.3534     6.91 0.000

Log-Likelihood = -210.068



Testing variables

-247.1     32  

-210.068    29 

2*Difference =  74.0642*Difference =  74.064

ProbProb = = f(qf(q))

ProbProb = = f(q,urban,SEf(q,urban,SE))

74.064 > 7.81, the critical value equal to the 74.064 > 7.81, the critical value equal to the 
upper 5% point of the chiupper 5% point of the chi--squared distribution withsquared distribution with
3 degree of freedom3 degree of freedom
thus introducing URBAN/SUBURBAN/RURALthus introducing URBAN/SUBURBAN/RURAL
and SE/not SE  causes a significantand SE/not SE  causes a significant
improvement in fitimprovement in fit

LogLog--likelike degrees of freedomdegrees of freedom



Interpretation
• When the transformation gives a linear equation linking 

the dependent variable and the independent variables  
then we can interpret it in the normal way

• The regression coefficient is the change in the 
dependent variable per unit change in the independent 
variable, controlling for the effect of the other variables

• For a dummy variable or factor with levels, the 
regression coefficient is the change in the dependent 
variable associated with a shift from the baseline level of 
the factor



Interpretation

)ˆ1/(ˆln( ii PP −

Changes by 9.716 for a unit change in Changes by 9.716 for a unit change in gvagrgvagr

by 2.441 as we move from not SE to SE countieby 2.441 as we move from not SE to SE countiess

by by --1.3013 as we move from RURAL to URBAN1.3013 as we move from RURAL to URBAN

by by --0.8464 as we move from RURAL to SUBURBAN 0.8464 as we move from RURAL to SUBURBAN 



Interpretation

The odds of an event = ratio of Prob(event) to Prob(not event)

The odds ratio is the ratio of two odds. 

The logit link function means that parameter estimates are the
exponential of  the odds ratio (equal to the logit differences).



Interpretation
For example,  a coefficient of zero would indicate  thatFor example,  a coefficient of zero would indicate  that
moving from a non SE to a SE location  produces no changemoving from a non SE to a SE location  produces no change
in the in the logitlogit

Since exp(0) = 1, this would mean the Since exp(0) = 1, this would mean the 
(estimated) odds = (estimated) odds = Prob(expand)/Prob(notProb(expand)/Prob(not expand) expand) 
do not change do not change ieie the odds ratio =1 the odds ratio =1 

In reality, since  exp(2.441) = 11.49 the odds ratio is 11.49In reality, since  exp(2.441) = 11.49 the odds ratio is 11.49
The odds of SE firms expanding are 11.49 times theThe odds of SE firms expanding are 11.49 times the
odds of non SE firms expandingodds of non SE firms expanding



Interpretation
Constant     -1.2132     0.3629    -3.34 0.001
gvagr 9.716      1.251     7.77 0.000 16584.51  1428.30 1.93E+05
RURAL/SUBURBAN/URBAN  
suburban    -0.8464     0.2957    -2.86 0.004     0.43     0.24     0.77
urban       -1.3013     0.4760    -2.73 0.006     0.27     0.11     0.69
SE/not SE        
SE           2.4411     0.3534     6.91 0.000    11.49     5.75 22.96

Note that the odds ratio has a 95% confidence intervalNote that the odds ratio has a 95% confidence interval
since 2.4411+1.96*0.3534 =3.1338 since 2.4411+1.96*0.3534 =3.1338 
and 2.4411and 2.4411--1.96*0.3534 = 1.74841.96*0.3534 = 1.7484

and exp(3.1338)=22.96 , exp(1.7484) = 5.75and exp(3.1338)=22.96 , exp(1.7484) = 5.75
The 95% The 95% c.i.forc.i.for the odds ratio is the odds ratio is 5.75 to 22.965.75 to 22.96

param. est.       s.e.             t ratio    p-value  odds ratio  lower c.i. upper c.i.
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