Regression with limited dependent
variables

* Professor Bernard Fingleton



Regression with limited dependent
variables
Whether a mortgage application Is
accepted or denied
Decision to go on to higher education

Whether or not foreign aid is given to a
country

Whether a job application is successful
Whether or not a person is unemployed
Whether a company expands or contracts




Regression with limited dependent
variables

In each case, the outcome Is binary

We can treat the variable as a success (Y
= 1) or failure (Y = 0)

We are interested in explaining the
variation across people, countries or

companies etc in the probability of
success, p = prob( Y =1)

Naturally we think of a regression model In
which Y Is the dependent variable



Regression with limited dependent
variables

e But the dependent variable Y and hence the
errors are not what is assumed in ‘normal’
regression
— Continuous range
— Constant variance (homoscedastic)

 With individual data, the Y values are 1(success)

and O(failure)

— the observed data for N individuals are discrete
values 0,1,1,0,1,0, etc...... not a continuum

— The variance is not constant (heteroscedastic)



Bernoulli distribution

probability of a success (Y = 1)isp

probability of failure (Y = 0)isl-p =g

E(Y)=p

var(Y) = p(1-p)

as p, varies for i= 1,...,N individuals

then both mean and variance vary

E(Yi) = P

var(Yi) - pi(l_ pi)

regression explains variation in E(Y;) = p. as a function of
some explanatory variables

E(Yi) = f (Xli""’ XKi)

but the variance is not constant as E(Y;) changes
whereas in OLS regression, we assume only the mean
varies as X varies, and the variance remains constant



The linear probability model

this is a linear regression model

Y. =b,+b X, +...b X, +€

Pr(Y, =1| Xy, .., X i) =by +b, X, +...0 X

b, Is the change in the probability that Y = 1 associated
with a unit change in X, holding constant X,....X,, etc
This can be estimated by OLS but

Note that since var(Y;) is not constant, we need to allow
for heteroscedasticity in t, F tests and confidence intervals



The linear probability model

e 1996 Presidential Election
e 3,110 US Counties
e binary Y with O=Dole, 1=Clinton



The linear probability model

Ordinary Least-squares Estimates

R-squared = 0.0013

Rbar-squared = 0.0010

sigman2 = 0.2494

Durbin-Watson = 0.0034

Nobs, Nvars = 3110, 2
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Variable Coefficient t-statistic t-probability
Constant 0.478917 21.962788 0.000000
prop-gradprof 0.751897 2.046930 0.040749

prop-gradprof = pop with grad/professional degrees as a proportion of
educated (at least high school education)



The linear probability model

Clinton

0.5F

Dole
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prop-gradprof = pop with grad/professional degrees as a proportion of
educated (at least high school education)



The linear probability model

Dole_Clinton_1 versus prop_gradprof (with least squares fit)
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The linear probability model

e Limitations

* The predicted probability exceeds 1 as X
becomes large

e N

Y =0.479+0.752X

if X >0.693 then Y >1
X =0 gives Y =0.479
If X <0 possible, then
X <-0.637 gives Y <0



Solving the problem

We adopt a nonlinear specification that forces
the dependent proportion to always lie within the
range O to 1

We use cumulative probability functions (cdfs)
because they produce probabilities inthe 0 1
range

Probit

— Uses the standard normal cdf

Logit

— Uses the logistic cdf



Probit regression

d(z) = areato left of z in standard normal distribution
®(-1.96) =0.025

®(0)=0.5

d(1)=0.84

®(3.0) =0.999

we can put any value for z from -oo to +oo, and the outcome
ISO< p=®d(z)<1



Sraristical Tables 659

Table 1. Areas under the Normal Curve

Example
C-025 7= X — In
g
o Z- .96 z P(Z > 1-96) = -0250
00 01 .02 03 04 .05 06 .07 08 .09

-5000 | -4960 | -4920 | -4880 |-4840 |-4801 |-4761 |-4721 |-4681 |-4641
4602 | -4562 | -4522 | -4483 |-4443 |-4404 |-4364 |-4325 |-4286 |-4247
4207 | -4168 | -4129 |-4090 |-4052 |-4013 |-3974 |-3936 |-3897 |-3859
-3821 | -3783 | -3745 |-3707 |-3669 |-3632 |-3594 [.3557 |-3520 |-3483
3446 | -3409 | -3372 |-3336 |-3300 |-3264 |-3228 |-3192 |-3156 |-3121

-3085 | -3050 | -3015 |-2981 [-2946 |-2912 |-2877 {-2843 |-2810 |-2776
2743 | -2709 | -2676 |-2643 |-2611 |-2578 |-2546 |-2514 |-2483 |-2451
2420 | -2389 | -2358 |-2327 |-2296 |:2266 |-2236 |-2206 |-2177 |-2148
2119 | -2090 | -2061 |-2033 |-2005 |-1977 |-1949 |-1922 |-1894 |-1867
-1841 | -1814 | -1788 |-1762 |-1736 |-1711 -1685 |-1660 |-1635 |-1611

‘1587 | -1562 | -1539 |-1515 |-1492 |-1469 |-1446 |-1423 |-1401 |-1379
-1357 1-1335 | -1314 [-1292 |-1271 [-1251 |-1230 [-1210 |-1190 |-1170
-1151 1 -1131 | -1112 [-16G93 |-1075 |-1056 |-1038 |-1020 |-1003 [|-0985
0968 | -0951 | -0934 |-0918 [-0901 [-0885 |-0869 |-0853 |-0838 |-0823
‘0808 | -0793 | -0778 |-0764 |-0749 |-0735 |-0721 |-0708 |[-0694 |-0681

‘0668 | -0655 | -0643 |-0630 |-0618 |-0606 |-0594 |[-0582 |-0571 |-0559
-0548 | -0537 | -0526 |-0516 |-0505 |-0495 |-0485 [-0475 |-0465 |-0455
-0446 | 0436 | -0427 |-0418 |-0409 |-0401 |-0392 |-0384 |.0375 |-0367
‘0359 ' -0351 | -0344 |[-0336 |-0329 |-0322 |-0314 [-0307 |-0301 -0294
‘0287 | -0281 | -0274 |-0268 |-0262 |-0256 |-0250 |-0244 -0239 |-0233

-0228 | -0222 | .0217 [-0212 |-0207 |-0202 |-0197 [-0192 |-0188 -0183
-0179 | -0174 | -0170 |-0166 |-0162 |-0158 [-0154 |-0150 |-0146 -0143
-0139 | -0136 | -0132 |-0129 |-0125 |-0122 |-0119 |-0116 |-0113 -0110
0107 | -0104 | -0102 |-0099 |-0096 |-0094 |-0091 |-0089 |.-0087 -0084
-0082 | -0080 | -0078 |-0075 |[-0073 |-0071 [-0069 |-0068 -0066 |-0064
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Probit regression

Pr(Y :1|x1,x2) =®(b, +b, X, +b,X,)

e.g.
b, =-1.6,b, =2,b, =0.5
X,=04,X,=1

z=b,+b X, +b,X,=-1.6+2x0.4+0.5x1=-0.3
Pr(Y =1|X,, X,) =®(-0.3) =0.38



Probit regression

Model 9: Probit estimates using the 3110 observations 1-3110

Dependent variable: Dole Clinton_ 1

VARIABLE

const
prop_gradprof
log_urban
prop_highs

COEFFICIENT

-2.11372
9.35232

15.9631
3.07148

STDERROR

0.215033
1.32143
5.64690
0.310815

T STAT

-9.830
7.077
2.827
9.882

SLOPE
(at mean)

3.72660
6.36078
1.22389



Dole_Clinton_1

Probit regression

Actual and fitted Dole_Clinton_1 versus prop_gradprof
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Probit regression

Interpretation
The slope of the line is not constant

As the proportion of graduate professionals
goes from 0.1 to 0.3, the probability of Y=1
(Clinton) goes from 0.51t0 0.9

As the proportion of graduate professionals
goes from 0.3 to 0.5 the probabillity of Y=1
(Clinton) goes from 0.9 to 0.99



Probit regression

Estimation
The method is maximum likelihood (ML)

The likelihood is the joint probability given
specific parameter values

Maximum likelihood estimates are those
parameter values that maximise the
probability of drawing the data that are
actually observed




Probit regression

Pr(Y, =1) conditional on X,;,..., X\, Isp, =D (b, +b, X +..b, X )

Pr(Y; =0) conditional on X ..., X, iIs1-p, =1-®(b, + b, X, +..b, X .)
y. is the value of Y, observed for individual i

for ith individual, Pr(Y, =y.) isp” (1-p,)"”

fori =1,..,n, joint likelihood is L = l:IPr(Yi =y.)= 17[ p(-p)"”

L= TIPr(Y, = y;) =II[@(by +b, X +..b X )] [1-D (b, +b,X,, +...bKXKi)]1_yi

log likelihood is
InL = Z[yiln {D(by +b, X, +..b X i} + (@—y;)In{1-D(b, +b, X, +...bKXKi}}

we obtain the values of b,,b,,...,b, that give the maximum value of InL



Hypothetical binary data
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Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

~N~NoOoOoah~,WNEO

log
log
log
log
log
log
log
log

likel1hood

likelihood = -6
likelthood = -5
likelthood = -5
likelthood = -5
likelthood = -5
likelthood = -5
likelthood = -5

-13.0598448595
-50161713610
.50794602456
-29067548323
.26889753239
-26836878709
.26836576121
.26836575008

Convergence achieved after 8 iterations

Model 3: Probit estimates using the 24 observations 1-24
Dependent variable: success

VARIABLE

const
X

COEFFICIENT

-4.00438
0.612845

STDERROR

1.45771
0.218037

T STAT

-2.747
2.811

SLOPE
(at mean

0.241462



Model 3: Probit estimates using the 24 observations 1-24
Dependent variable: success

VARIABLE COEFFICIENT STDERROR T STAT
const -4.00438 1.45771 -2.747
X 0.612845 0.218037 2.811

SLOPE
(at mean)

0.241462

If X = 6, probit = ®(—4.00438+0.612845*6) = d( -0.32731) = 0.45



success
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Logit regression

Based on logistic cdf

This looks very much like the cdf for the
normal distribution

Similar results

The use of the logit is often a matter of
convenience, it was easier to calculate
before the advent of fast computers



Logistic function
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Z

— € . 271
Prob success = — —[1+e }
. et  l+ef  e° 1 e
Prob fail = 1- = — = =1-|1+e”*
1+e4 1+e* 1+e? 1+e° [ ]
Z Z
odds ratio = Probsuccess e~ 1+e _ 7

Probfail 1+e? 1
log odds ratio =z

Z=b,+b, X, +b X, +....+Db X,



Logistic function
p. =b, +b,X

p plotted against X is a straight line with p <0 and >1 possible
exp(b, +b, X)
" 11 exp(b, +b,X)
p. plotted against X gives s-shaped logistic curve
so p. >1and p, <0 impossible
equivalently

In{l—pipi } b, +1, X

this is the equation of a straight line, so

In{1 P } plotted against X is linear
— P



Estimation - logit

X Is fixed data, so we choose b,,b,, hence p,
exp(b, +b, X)

P T exp(b, +b,X)

so that the likelihood is maximized




Logit regression

z=Db, +b X, +..b X,

Pr(Y, =1) conditional on X,,,..., X . is p, =[L+exp(-z)] ™

Pr(Y. =0) conditional on X,,..., X is1- p, =1—-[L+exp(-2z)]™*

y, Is the value of Y, observed for individual i

for i'th individual, Pr(Y, =y,) isp/ (1-p,)""

fori =1,..,n, joint likelihood is L =1iTPr(Yi =Y.) :1i1 Py (-p)

L= TIPr(Y, =y,) =T1[ [+ exp(-2) " " [1-[1+ exp(-2)]* ]
log likelihood is
InL=>"| yin{[L+exp(-2)] "} + (- y,)In {1-[1+exp(~(2)] "} |

we obtain the values of b,,b,,...,b, that give the maximum value of In L



Estimation

 maximum likelihood estimates of the
parameters using an iterative algorithm



Iteration
Iteration
Iteration
Iteration
Iteration
Iteration
Iteration

O~ wWNEO

log
log
log
log
log
log
log

Estimation

likelihood

likelithood = -6
likelithood = -5
likelithood = -5
likelithood = -5
likelithood = -5
likelithood = -5

-13.8269570846
-97202524093
-69432863365
-43182376684
-41189406278
-41172246346
-41172244817

Convergence achieved after 7 iterations

Model 1: Logit estimates using the 24 observations 1-24
Dependent variable: success

VARIABLE

const
X

COEFFICIENT

-6.87842
1.05217

STDERROR

2.74193
0.408089

T STAT

-2.509
2.578

SLOPE
(at mean)

0.258390



VARIABLE COEFFICIENT STDERROR T STAT

const -6.87842 2.74193 -2.509

X 1.05217 0.408089 2.578
IT X =6, logit = -6.87842 + 1.05217*6 =-0.5654 = In(p/(1-p)

P = exp(-0.5654)/{1+exp(~0.5654)} = 1/(1+exp(0.5654)) = 0.362299

SLOPE
(at mean)

0.258390
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Modelling proportions and
percentages



The linear probability model

consider the following individual data for Y and X
Y =0,0,1,0,0,1,0,1,1,1
X=1122334,4,55
constant=1,1,1,1,1,1,1,1,1,1
Y =-0.1+0.2X is the OLS estimate
Notice that the X values for individuals 1 and 2 are identical,
likewise 3 and 4 and so on
If we group the identical data, we have a set of proportions
p=0/21/2,1/2,1/2,1=0,0.5,05,05, 1
X=12345
p=-0.1+0.2X is the OLS estimate



The linear probability model

 When n individuals are identical in terms of the
variables explaining their success/failure

 Then we can group them together and explain
the proportion of ‘successes’ in n trials

— This data format is often important with say
developing country data, where we know the
proportion, or % of the population in each country with
some attribute, such as the % of the population with
no schooling

— And we wish to explain the cross country variations in
the %s by variables such as GDP per capita or
Investment in education, etc



Regression with limited dependent

variables

With individual data, the values are 1(success)
and O(failure) and p is the probabillity that Y = 1

— the observed data for N individuals are discrete
values 0,1,1,0,1,0, etc...... not a continuum

With grouped individuals the proportion p Is
equal to the number of successes Y In n trials
(individuals)

So the range of Y is from O to n

The possible Y values are discrete, 0,1,2,...,n,
and confined to the range 0 to n.

The proportions p are confined to the range 0 to



Modelling proportions

Proportion (Y/n) Continuous response
5/10=0.5 11.32
1/3 =0.333 17.88
6/9 = 0.666 3.32
1/10 =0.1 11.76
7/20 = 0.35 1.11

1/2=0.5 0.03



Binomial distribution

the moments of the number of successes Y,

n. trials, each independent, 1 =1,...,N

p. Is the probability of a success in each trial

E(Yi) =N P;

var(Y;) =n;p;1-p;)

the variance Is not constant, but depends on n. and p.
Y; ~B(n;, p;)



Data

Region  OQutput growth survey of startup firms

q starts(n) expanded(Y) propn =Y/n
Cleveland,Durham  0.169211 13 8 0.61538

Cumbria 0.471863 34 34 1.00000
Northhumberland 0.044343 10 0 0.00000
Humberside 0.274589 15 9 0.60000

N Yorks 0.277872 16 14 0.87500



The linear probability model

Regression Plot

Y = 0.296428 + 1.41711X
R-Sq = 48.9 %

=els

propn




OLS regression with proportions

y = 0.296 + 1.42 X

Predictor Coef StDev T P

Constant 0.29643 0.05366 5.52 0.000

X 1.4171 0.2559 5.54 0.000
S = 0.2576 R-Sq = 48.9% R-Sq(adj) = 47.3%

Fitted values=y = 0.296 + 1.42 x

0.48310

Negative proportion -0.00576

Proportion > 1 1.07892
0.58634

0.25346



Grouped Data

Region  OQutput growth survey of startup firms

q starts(n) expanded(Y) propn =Y/n
Cleveland,Durham  0.169211 13 8 0.61538

Cumbria 0.471863 34 34 1.00000
Northhumberland 0.044343 10 0 0.00000
Humberside 0.274589 15 9 0.60000

N Yorks 0.277872 16 14 0.87500



Proportions and counts

In(p, / (1—p;) =b, +b, X
In(p, / (1- p.) =b, +b, X
E(Yi) =N; P;

YAi =, f)i

N. =size of sample i

o

Y; =estimated expected number of ‘successes’ in sample |



Binomial distribution

For region |
n!
Prob(Y =y) = 0’ (1-p)™
y!(n—y)!
N1 = number of individuals
p = probability of a ‘success’

Y = number of ‘successes’ in n individuals



Binomial distribution

For region |
n| .
Prob(Y =y) = p’(1-p)"”’
yl(n-y)!
Example P =05,n=10
10! : 5
Prob(Y =5) = 5!(10_5)!0.5 (0.5)° =0.2461

E(Y)=np=5
var(Y) =np(l-p)=25



Y is B(10,0.5) E(Y)=np =5 var(Y)=np(1-p)=2.5

500 —

400 —

300 —

Frequency

200 —

100 —

o 1

Y is B(10,0.9) E(Y)=np =9 var(Y)=np(1-p)=0.9

500 —

400 —

300 —

200 —

Frequency

100 —

0 —

Cc27



Maximum Likelihood —
proportions

Assume the data observed are
Y, =y, =5 successes from 10 trials and Y, = y, =9 successes from 10 trials
what is the likelihood of these data given p, =0.5, p, =0.9?

n, !
Prob(Y, =5) = - (- p)™ "
' yl!(nl_yl)! ' '
10! e e
Prob(Y, =5) = 0.5°(0.5)° =0.2461
51(10-5)!
n,l!
Prob(Y, =9) = 2 2 (1-p,)" "
i yz!(nz_yz)! i i
10! 9 1
Prob(Y2 =9) = 0.9°(0.1) =0.3874
91(10-9)!

likelihood of observingy, =5,y, =9 given p, =0.5, p, =0.9
=0.2461x0.3874 = 0.095

However likelihood of observingy, =5,y, =9 given p, =0.1, p, =0.8
=0.0015x0.2684 = 0.0004



Inference



Likelihood ratio/deviance

Y?=2In(L,/L)~ 7’

| = likelihood of unrestricted model with k1 df
u

| = likelihood of restricted model with k2 df
,

k2 > k1l
Restrictions placed on k2-k1 parameters
typically they are set to zero



Deviance

Ho:b =0,i=1,..., (k2 — k1)
Y*=2In(L, /L)~

E(Y?)=k2—kl



Iteration 7: log likelihood = -5.26836575008 — |
Convergence achieved after 8 iterations

Model 3: Probit estimates using the 24 observations 1-24
Dependent variable: success

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -4.00438 1.45771 -2.747
X 0.612845 0.218037 2.811 0.241462

Model 4: Probit estimates using the 24 observations 1-24
Dependent variable: success

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const 0.000000 0.255832 -0.000
Log-likelihood = -16.6355 =Lr

Comparison of Model 3 and Model 4:

Null hypothesis: the regression parameters are zero for the variables

X 2{Lu — Lr]= 2[-5.268 + 16.636] = 22.73
Test statistic: Chi-square(l) = 22.7343, with p-value = 1.86014e-006

Of the 3 model selection statistics, 0 have Improved.




Iteration 3: log likelihood = -2099.98151495
Convergence achieved after 4 iterations

Model 2: Logit estimates using the 3110 observations 1-3110
Dependent variable: Dole Clinton_1

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -3.41038 0.351470 -9.703
log_urban 25.4951 9.10570 2.800 6.36359
prop_highs 4.96073 0.508346 9.759 1.23820
prop_gradprof 15.1026 2.16268 6.983 3.76961

Model 3: Logit estimates using the 3110 observations 1-3110
Dependent variable: Dole _Clinton_1

VARIABLE COEFFICIENT STDERROR T STAT SLOPE
(at mean)
const -0.972329 0.184314 -5.275
prop_highs 2.09692 0.360723 5.813 0.523414

Log-likelthood = -2136.12

Comparison of Model 2 and Model 3:
Null hypothesis: the regression parameters are zero for the variables

log_urban
prop_gradprof

Test statistic: Chi-square(2) = 72.2793, with p-value = 2.01722e-016



DATA LAYOUT FOR LOGISTIC REGRESSION

REGION URBAN SE/NOT SE OUTPUT GROWTH Y N
Hants, loW suburban SE 0.062916 9 11
Kent suburban SE 0.035541 4 10
Avon suburban not SE 0.133422 4 14
Cornwall, Devon rural not SE 0.141939 5 12
Dorset, Somerset rural not SE 0.145993 12 16
S Yorks urban not SE -0.150591 0 11
W Yorks urban not SE 0.152066 14 15



Logistic Regression Table

Predictor Coef StDev
Constant -1.2132 0.3629
gvagr 9.716 1.251
URBAN/SUBURBAN/RURAL
suburban -0.8464 0.2957
urban -1.3013 0.4760
SOUTH-EAST/NOT SOUTH-EAST
South-East 2.4411 0.3534

Log-Likelithood = -210.068

~N A~ N
OPr T

-3.34 0.00
7.77 0.00

-2.86 0.004
-2.73 0.006

6.91 0.000



Testing variables

Log-like degrees of freedom
Prob = f(q) —247.1 32

Prob = f(q,urban,SE) -210.068 29

2*Difference = 74.064

74.064 > 7.81, the critical value equal to the

upper 5% point of the chi-squared distribution with
3 degree of freedom

thus introducing URBAN/SUBURBAN/RURAL
and SE/not SE causes a significant

Improvement in fit



Interpretation

 When the transformation gives a linear equation linking
the dependent variable and the independent variables
then we can interpret it in the normal way

* The regression coefficient is the change in the
dependent variable per unit change in the independent
variable, controlling for the effect of the other variables

 For a dummy variable or factor with levels, the
regression coefficient is the change in the dependent
variable associated with a shift from the baseline level of
the factor



Interpretation

In(P,/(1- P)

Changes by 9.716 for a unit change in gvagr

by 2.441 as we move from not SE to SE counties
by -1.3013 as we move from RURAL to URBAN
by -0.8464 as we move from RURAL to SUBURBAN



Interpretation

The odds of an event = ratio of Prob(event) to Prob(not event)
The odds ratio Is the ratio of two odds.

The logit link function means that parameter estimates are the
exponential of the odds ratio (equal to the logit differences).



Interpretation

For example, a coefficient of zero would indicate that
moving from a non SE to a SE location produces no change
In the logit

Since exp(0) = 1, this would mean the
(estimated) odds = Prob(expand)/Prob(not expand)
do not change ie the odds ratio =1

In reality, since exp(2.441) = 11.49 the odds ratio is 11.49
The odds of SE firms expanding are 11.49 times the
odds of non SE firms expanding



Interpretation

param. est. s.e. tratio p-value odds ratio lower c.i. upper c.i.

Constant -1.2132 0.3629 -3.34 0.001
gvagr 9.716 1.251 7.77 0.000 16584.51 1428.30 1.93E+05
RURAL/SUBURBAN/URBAN

suburban -0.8464 0.2957 -2.86 0.004 0.43 0.24 0.77
urban -1.3013 0.4760 -2.73 0.006 0.27 0.11 0.69
SE/not SE

SE 2.4411 0.3534 6.91 0.000 11.49 5.75 22.96

Note that the odds ratio has a 95% confidence interval
since 2.4411+1.96*0.3534 =3.1338
and 2.4411-1.96*0.3534 = 1.7484
and exp(3.1338)=22.96 , exp(1.7484) =5.75
The 95% c.1.for the odds ratio 1S 5.75 to 22.96
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