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Causation & Prediction



3

Causation

• One of the main difficulties in the social sciences is 
estimating whether a variable has a true causal effect

• Data are given to us by surveys etc where there is 
uncontrolled variation of a range of possible causes, so 
estimating individual causal effects when there is other 
causal variation going on in the background can lead to 
wrong interpretation of causation

• Usually we cannot carry out controlled experiments in 
which background variables are eliminated
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Causation

– Typically we are interested in the effect of X on Y but 
we have other variables (Z) also affecting the 
outcome Y

– If we cannot eliminate Z experimentally (as in 
laboratory experiments) then we need to eliminate its 
effect statistically
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Causation

» In experimental sciences, the effect of a treatment 
(X) is identified by eliminating other variables (eg Z) 
…the experimental subjects are identical 

» We use multiple regression to control for some 
covariates (Z) to isolate the effect of X on Y, 

» but some causal variables may still be  omitted from 
the regression, so while regression is an advance on 
doing nothing, it does not prove causation

» This can only really be done via a controlled 
randomized experiment (see Stock & Watson,2007)
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Granger causality

• One way to obtain a truer estimate of the effect of X 
on Y is to use that fact that in time series we have 
temporal order, before comes before after!

• Variable X Granger causes Y if past values of X have 
explanatory power 

• This does not guarantee true causation (which is why 
we use the term Granger causation) but at least it 
suggests that X may cause Y 

• If X does not Granger cause Y then we can be pretty 
sure that it does not cause Y. 
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Granger causality

• Assume stationary variables X and Y
• Include lags of both Y and X to form an ADL 

(autoregressive distributed lag) 
• The Y lags should soak up residual autocorrelation so 

that we can validly use the F test to test whether X is 
significant

• if the X lags have any explanatory power, then that is 
only suggestive of their causal influence 

• It does mean that past values of X contain information 
that is useful for forecasting Y, beyond that contained 
in past values of Y

– See Stock & Watson  p. 547
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Granger causality

Autoregressive distributed lag (ADL) models

‘a workhorse of the modern literature on 

time-series analysis’ (Greene, 2003, 
p.579) 

0 1 1 1 1t t t t tY X X Y uγ γ α− −= + + +
We refer to this as an ADL(1,1) one lag for each of X and Y 

we could have more variables and lags 

more general specification is ADL(p,q). 

This is defined by Stock and Watson(2007, 
p.544) 
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Granger causality

From ADL(1,1) to ADL(p,q)

1 1 0 1 1 2 2 ...t t t t t q t q tY Y X X X X uα γ γ γ γ− − − −= + + + + + +

ADL(1,q)

ADL(p,q)

1 1 2 2 3 3 0 1 1 2 2... ...t t t t p t p t t t q t q tY Y Y Y Y X X X X uα α α α γ γ γ γ− − − − − − −= + + + + + + + + +
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Scottish and English house prices : growth
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Granger causality

Does English house price growth Granger cause Scottish house price growth?

Use difference in logs (growth) which we assume are stationary

Model 7: OLS, using observations 1984:3-2007:2 (T = 92)
Dependent variable: d_lnS 
 
              coefficient   std. error   t-ratio   p-value  
  --------------------------------------------------------- 
  const        0.00113920   0.00420682    0.2708   0.7872   
  d_lnS_1     -0.425580     0.102801     -4.140    8.30e-05 *** 
  d_lnS_2      0.0316127    0.112305      0.2815   0.7790   
  d_lnS_3      0.369217     0.114033      3.238    0.0017   *** 
  d_lnS_4      0.367178     0.112187      3.273    0.0016   *** 
  d_lnEng_1    0.426773     0.160431      2.660    0.0094   *** 
  d_lnEng_2    0.0444523    0.198087      0.2244   0.8230   
  d_lnEng_3   -0.308842     0.194168     -1.591    0.1155   
  d_lnEng_4    0.352070     0.162601      2.165    0.0332   ** 
 
Restriction set 
 1: b[d_lnEng_1] = 0 
 2: b[d_lnEng_2] = 0 
 3: b[d_lnEng_3] = 0 
 4: b[d_lnEng_4] = 0 
 
Test statistic: F(4, 83) = 5.20779, with p-value = 0.000858687
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Granger causality

Does Scottish house price growth Granger cause English house price growth?
Model 8: OLS, using observations 1984:3-2007:2 (T = 92)
Dependent variable: d_lnEng 
 
              coefficient   std. error   t-ratio   p-value  
  --------------------------------------------------------- 
  const        0.00579451   0.00292438    1.981    0.0509   * 
  d_lnEng_1    0.757613     0.111524      6.793    1.54e-09 *** 
  d_lnEng_2    0.0769121    0.137700      0.5585   0.5780   
  d_lnEng_3   -0.0872252    0.134976     -0.6462   0.5199   
  d_lnEng_4    0.228962     0.113032      2.026    0.0460   ** 
  d_lnS_1     -0.375584     0.0714620    -5.256    1.12e-06 *** 
  d_lnS_2     -0.181442     0.0780688    -2.324    0.0226   ** 
  d_lnS_3      0.0685379    0.0792702     0.8646   0.3897   
  d_lnS_4      0.178741     0.0779867     2.292    0.0244   ** 
 
Restriction set 
 1: b[d_lnS_1] = 0 
 2: b[d_lnS_2] = 0 
 3: b[d_lnS_3] = 0 
 4: b[d_lnS_4] = 0 
 
Test statistic: F(4, 83) = 8.06225, with p-value = 1.52969e-005 
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Prediction

• One of the main advantages of regression analysis is its ability to 
PREDICT or FORECAST

• Given a model, we can use the model to estimate the value of the 
dependent variable that would occur if the independent variable(s) 
takes a specific value

• Typically we would estimate a model and then use that model to 
predict the dependent variable for some points in time in the future

• However this assume that the relationship between dependent and 
independent variable(s) remains the same over the forecast period  
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Prediction

• however, we need to take account of the inherent 
uncertainty in this prediction 

• as a result of the fact that b0 and b1 are 
estimates, not the true values
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Prediction

• assume that we fit the regression
– Yt = b0 + b1 timet + et t = 1,...,T 

• with estimates of b0 and b1 it is possible to 
predict YT+1 given timeT+1   
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Real  UK consumers’ expenditure

quarter  real UK  ln cex DLcex

1      49.514   3.9023        *
2      48.386   3.8792  -0.0230
3      48.971   3.8912   0.0120
4      48.189   3.8751  -0.0161
5      48.710   3.8859   0.0108

q1 = 1980q1  q38 = 1989q2q1 = 1980q1  q38 = 1989q2
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EQ( 2) Modelling DLcex by OLS (using CEXPDI.xls) 
       The estimation sample is: 2 to 33 
 
                  Coefficient  Std.Error  t-value  t-prob Part.R^2 
Constant          -0.00443574   0.003287    -1.35   0.187   0.0572 
Trend             0.000699500  0.0001661     4.21   0.000   0.3715 
 
sigma              0.00867655  RSS             0.00225847624 
R^2                  0.371473  F(1,30) =     17.73 [0.000]** 
log-likelihood        107.535  DW                       2.41 
no. of observations        32  no. of parameters           2

Model fitted to data for  q2 to q33
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Predicted growth q34 to q38
With 95% confidence interval (without acknowledging 
parameter uncertainty)

1-step forecasts for DLcex (SE based on error variance only) 
   Horizon      Forecast         SE        Actual         Error   t-value 
        34     0.0193472   0.008677    0.00169766    -0.0176496    -2.034 
        35     0.0200467   0.008677     0.0162947   -0.00375203    -0.432 
        36     0.0207462   0.008677     0.0191307   -0.00161555    -0.186 
        37     0.0214457   0.008677    0.00168125    -0.0197645    -2.278 
        38     0.0221452   0.008677     0.0156462   -0.00649904    -0.749
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Prediction

• however, we need to take account of the inherent 
uncertainty in this prediction 

• a result of the fact that b0 and b1 are estimated
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Assume the forecast errors are normally distributed, then 
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Predicted growth q34 to q38
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We place a We place a 95% confidence interval around these estimatesaround these estimates
just as for the ordinary sample meanjust as for the ordinary sample mean

Given Given timetime = 34...38  we predict = 34...38  we predict 
the growth of consumersthe growth of consumers’’ expenditureexpenditure
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1-step forecasts for DLcex (SE with parameter uncertainty) 
   Horizon      Forecast         SE        Actual         Error   t-value 
        34     0.0193472   0.009228    0.00169766    -0.0176496    -1.913 
        35     0.0200467   0.009278     0.0162947   -0.00375203    -0.404 
        36     0.0207462   0.009332     0.0191307   -0.00161555    -0.173 
        37     0.0214457   0.009388    0.00168125    -0.0197645    -2.105 
        38     0.0221452   0.009446     0.0156462   -0.00649904    -0.688

Predicted growth q34 to q38
With 95% confidence interval (with and without
parameter uncertainty)

1-step forecasts for DLcex (SE based on error variance only) 
   Horizon      Forecast         SE        Actual         Error   t-value 
        34     0.0193472   0.008677    0.00169766    -0.0176496    -2.034 
        35     0.0200467   0.008677     0.0162947   -0.00375203    -0.432 
        36     0.0207462   0.008677     0.0191307   -0.00161555    -0.186 
        37     0.0214457   0.008677    0.00168125    -0.0197645    -2.278 
        38     0.0221452   0.008677     0.0156462   -0.00649904    -0.749



29

Multiple regression

• it is a possible (using statistical software) to find the 
c.i. in MULTIPLE regression (ie with known X1 , X2 etc)
– one has to specify the  actual values of X1 , X2 etc for 

which one requires estimated E(Y) and the c.i.
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Summary

• beware of predicting Y beyond the domain of the 
variables

• always accompany any prediction of E(Y) with its (say 
95%) confidence interval
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Prediction

• Notice that we are making several big assumptions
• The regression parameters, and the error variance, estimated for 

the period 1….T remain constant over the period T+1….T+p
• The functional form (a straight line) remains the same
• We know the values of X over the period T+1….T+p
• If we do, then we are making what is known as an ex post 

prediction
• If we do not, then we are making an ex ante prediction. This 

requires us to first predict X in order to predict Y
• Needless to say, ex post prediction is much safer than ex ante 

prediction
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