

Applied Econometrics

Professor Bernard Fingleton

Causation & Prediction

Causation

- One of the main difficulties in the social sciences is estimating whether a variable has a true causal effect
- Data are given to us by surveys etc where there is uncontrolled variation of a range of possible causes, so estimating individual causal effects when there is <u>other</u> <u>causal variation</u> going on in the background can lead to wrong interpretation of causation
- Usually we cannot carry out controlled experiments in which background variables are eliminated

Causation

- Typically we are interested in the effect of X on Y but we have other variables (Z) also affecting the outcome Y
- If we cannot eliminate Z experimentally (as in laboratory experiments) then we need to eliminate its effect statistically

Causation

- » In experimental sciences, the effect of a treatment
 (X) is identified by eliminating other variables (eg Z)
 ...the experimental subjects are identical
- » We use multiple regression to control for some covariates (Z) to isolate the effect of X on Y,
- » but some causal variables may still be omitted from the regression, so while regression is an advance on doing nothing, it does not prove causation
- » This can only really be done via a controlled randomized experiment (see Stock & Watson, 2007)

- One way to obtain a truer estimate of the effect of X on Y is to use that fact that in time series we have temporal order, before comes before after!
- Variable X <u>Granger causes</u> Y if past values of X have explanatory power
- This does not guarantee true causation (which is why we use the term Granger causation) but at least it suggests that X may cause Y
- If X does not Granger cause Y then we can be pretty sure that it does not cause Y.

- Assume stationary variables X and Y
- Include lags of both Y and X to form an <u>ADL</u> (autoregressive distributed lag)
- The Y lags should soak up residual autocorrelation so that we can validly use the F test to test whether X is significant
- if the X lags have any explanatory power, then that is only suggestive of their causal influence
- It does mean that past values of X contain information that is useful for forecasting Y, beyond that contained in past values of Y

- See Stock & Watson p. 547

Autoregressive distributed lag (ADL) models

'a workhorse of the modern literature on time-series analysis' (Greene, 2003, p.579)

We refer to this as an ADL(1,1) one lag for each of X and Y

$$Y_{t} = \gamma_{0} X_{t} + \gamma_{1} X_{t-1} + \alpha_{1} Y_{t-1} + u_{t}$$

we could have more variables and lags

more general specification is ADL(p,q). This is defined by Stock and Watson(2007, p.544)

From ADL(1,1) to ADL(p,q)

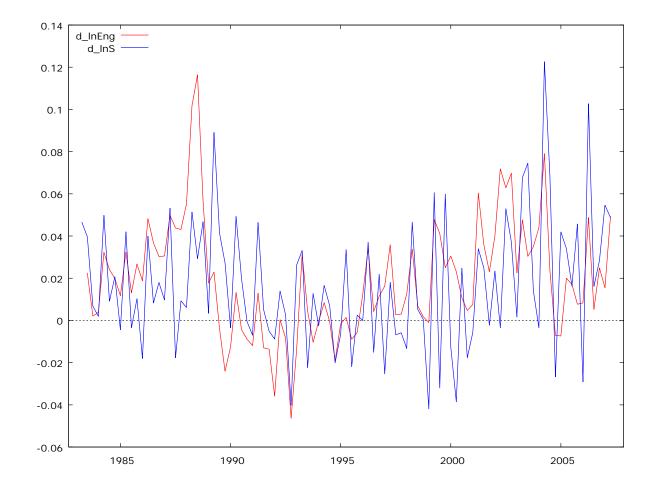
ADL(1,q)

$$Y_{t} = \alpha_{1}Y_{t-1} + \gamma_{0}X_{t} + \gamma_{1}X_{t-1} + \gamma_{2}X_{t-2} + \dots + \gamma_{q}X_{t-q} + u_{t}$$

ADL(p,q)

 $Y_{t} = \alpha_{1}Y_{t-1} + \alpha_{2}Y_{t-2} + \alpha_{3}Y_{t-3} \dots + \alpha_{p}Y_{t-p} + \gamma_{0}X_{t} + \gamma_{1}X_{t-1} + \gamma_{2}X_{t-2} + \dots + \gamma_{q}X_{t-q} + u_{t}$

Scottish and English house prices : growth



Does English house price growth Granger cause Scottish house price growth?

Use difference in logs (growth) which we assume are stationary

Model 7: OLS, using observations 1984:3-2007:2 (T = 92) Dependent variable: d_lnS

	coefficient	std. error	t-ratio	p-value	
const	0.00113920	0.00420682	0.2708	0.7872	
d_lnS_1	-0.425580	0.102801	-4.140	8.30e-05	***
d_lnS_2	0.0316127	0.112305	0.2815	0.7790	
d_lnS_3	0.369217	0.114033	3.238	0.0017	***
d_lnS_4	0.367178	0.112187	3.273	0.0016	***
d_lnEng_1	0.426773	0.160431	2.660	0.0094	***
d_lnEng_2	0.0444523	0.198087	0.2244	0.8230	
d_lnEng_3	-0.308842	0.194168	-1.591	0.1155	
d_lnEng_4	0.352070	0.162601	2.165	0.0332	**

Restriction set

1: b[d_lnEng_1] = 0 2: b[d_lnEng_2] = 0 3: b[d_lnEng_3] = 0 4: b[d_lnEng_4] = 0

Test statistic: F(4, 83) = 5.20779, with p-value = 0.000858687

Does Scottish house price growth Granger cause English house price growth?

Model 8: OLS, using observations 1984:3-2007:2 (T = 92) Dependent variable: d_lnEng

	coefficient	std. error	t-ratio	p-value	
const	0.00579451	0.00292438	1.981	0.0509	*
d_lnEng_1	0.757613	0.111524	6.793	1.54e-09	** *
d_lnEng_2	0.0769121	0.137700	0.5585	0.5780	
d_lnEng_3	-0.0872252	0.134976	-0.6462	0.5199	
d_lnEng_4	0.228962	0.113032	2.026	0.0460	**
d_lnS_1	-0.375584	0.0714620	-5.256	1.12e-06	***
d_lnS_2	-0.181442	0.0780688	-2.324	0.0226	**
d_lnS_3	0.0685379	0.0792702	0.8646	0.3897	
d_lnS_4	0.178741	0.0779867	2.292	0.0244	**

Restriction set

1: b[d_lnS_1] = 0 2: b[d_lnS_2] = 0 3: b[d_lnS_3] = 0 4: b[d_lnS_4] = 0

Test statistic: F(4, 83) = 8.06225, with p-value = 1.52969e-005

Prediction

- One of the main advantages of regression analysis is its ability to PREDICT or FORECAST
- Given a model, we can use the model to estimate the value of the dependent variable that would occur if the independent variable(s) takes a specific value
- Typically we would estimate a model and then use that model to predict the dependent variable for some points in time in the future
- However this assume that the relationship between dependent and independent variable(s) remains the same over the forecast period

Typically, with one independent variable we estimate a regression $\hat{Y}_{it} = \hat{b}_0 + \hat{b}_1 X_{it}$

and use this estimated model to predict what *Y* will be for future *X* values $\hat{Y}_{it+1} = \hat{b}_0 + \hat{b}_1 X_{it+1}$

and so on, forecasting to *p* periods ahead

$$\hat{Y}_{it+p} = \hat{b}_0 + \hat{b}_1 X_{it+p}$$

Prediction

- however, we need to take account of the inherent uncertainty in this prediction
 - as a result of the fact that b_0 and b_1 are estimates, not the true values

Prediction

• assume that we fit the regression

- $Y_t = b_0 + b_1 time_t + e_t$ t = 1, ..., T

• with estimates of b_0 and b_1 it is possible to predict Y_{T+1} given *time*_{T+1}

$$\hat{Y}_{T+1} = \hat{b}_0 + \hat{b}_1 tim e_{T+1}$$

$$\hat{Y}_{T+2} = \hat{b}_0 + \hat{b}_1 tim e_{T+2}$$

The \hat{Y} 's are estimates of E(Y), the mean of Y at T+1, T+2 etc

Real UK consumers' expenditure

quarter	real UK	ln cex	DLcex
1	49.514	3.9023	*
2	48.386	3.8792	-0.0230
3	48.971	3.8912	0.0120
4	48.189	3.8751	-0.0161
5	48.710	3.8859	0.0108

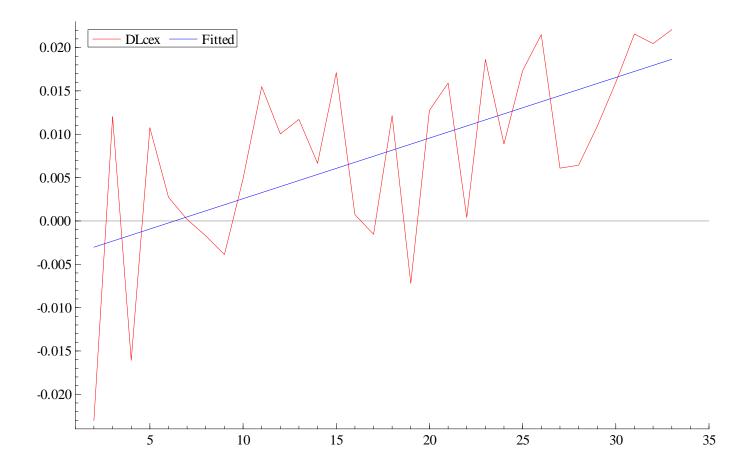
 $q1 = 1980q1 \quad q38 = 1989q2$

Model fitted to data for q2 to q33

EQ(2) Modelling DLcex by OLS (using CEXPDI.xls) The estimation sample is: 2 to 33

	Coefficient	Std.Error	t-value	t-prob	Part.R^2
Constant	-0.00443574	0.003287	-1.35	0.187	0.0572
Trend	0.000699500	0.0001661	4.21	0.000	0.3715
sigma	0.00867655	RSS	0.00	02258476	524
R^2	0.371473	F(1, 30) =	17.73	[0.000]] * *
log-likelihood	107.535	DW		2.	.41
no. of observati	ons 32	no. of par	ameters		2

Actual and fitted growth rates, q2 to q33



Predicted growth q34 to q38 With 95% confidence interval (without acknowledging parameter uncertainty)

1-step for	ecasts for DLcex	(SE based	on error varia	ance only)	
Horizon	Forecast	SE	Actual	Error	t-value
34	0.0193472	0.008677	0.00169766	-0.0176496	-2.034
35	0.0200467	0.008677	0.0162947	-0.00375203	-0.432
36	0.0207462	0.008677	0.0191307	-0.00161555	-0.186
37	0.0214457	0.008677	0.00168125	-0.0197645	-2.278
38	0.0221452	0.008677	0.0156462	-0.00649904	-0.749

Prediction

- however, we need to take account of the inherent uncertainty in this prediction
 - a result of the fact that b_0 and b_1 are estimated

$$\begin{split} \hat{Y}_{T+1} &= \hat{b}_0 + \hat{b}_1 Time_{T+1} \\ Y_{T+1} &= b_0 + b_1 Time_{T+1} + e_{T+1} \qquad e \sim N(0, \sigma^2) \\ Y_{T+1} - \hat{Y}_{T+1} &= (b_0 - \hat{b}_0) + (b_1 - \hat{b}_1) Time_{T+1} + e_{T+1} \\ \text{var}(Z) &= E \Big[(Z - E(Z))^2 \Big] \\ \text{var}(Z) &= E \Big[(Z - 0)^2 \Big] = E \Big[Z^2 \Big] \\ \text{if } Z &= Y_{T+1} - \hat{Y}_{T+1} \text{ and } E(Y_{T+1} - \hat{Y}_{T+1}) = 0 \\ \text{MeanSquareForecastError} &= E \Big[(Y_{T+1} - \hat{Y}_{T+1})^2 \Big] = \text{var}(Y_{T+1} - \hat{Y}_{T+1}) \\ \text{MSFE} &= \sigma^2 + \text{var} \Big[(b_0 - \hat{b}_0) + (b_1 - \hat{b}_1) Time_{T+1} \Big] \\ \text{RMSFE} &= \sqrt{\text{MSFE}} \end{split}$$

The 95% confidence interval for E(Y)

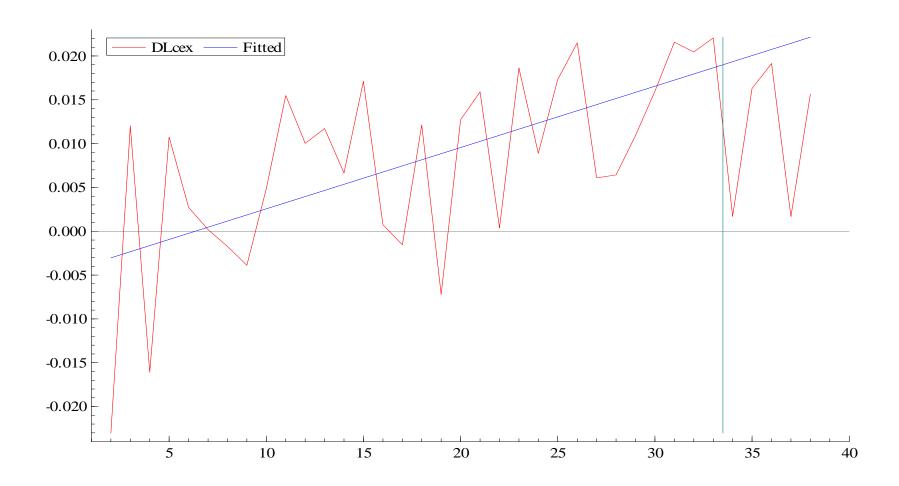
Assume the forecast errors are normally distributed, then

$$c.i. = 95\%$$
 confidence interval

$$c.i. = \hat{Y}_{T+1} \pm 1.96 \ s.e.(Y_{T+1} - \hat{Y}_{T+1})$$

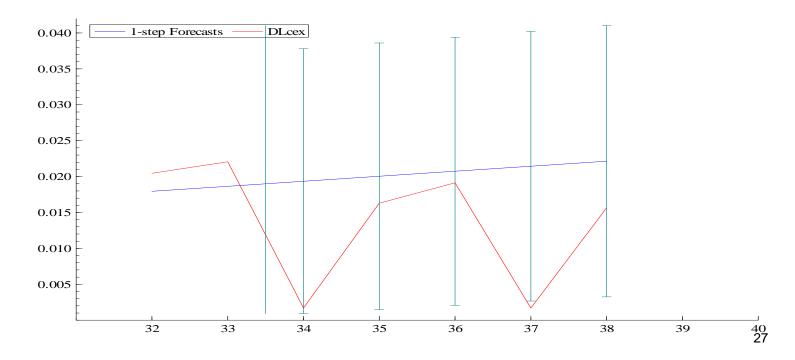
$$c.i. \approx \hat{Y}_{T+1} \pm 1.96 \text{RMSFE}$$

Predicted growth q34 to q38



Predicted growth q34 to q38 With 95% confidence interval (with parameter uncertainty)

Given *time* = 34...38 we predict the growth of consumers' expenditure
We place a 95% confidence interval around these estimates just as for the ordinary sample mean



Predicted growth q34 to q38 With 95% confidence interval (with and without parameter uncertainty)

1-step f	forecast	s for	DLcex	(SE	based	on	error	va	ariance	only)		
Horiz	zon	Fored	cast		SE		Ac	tua	al	Erro	or t	-value
	34	0.0193	3472	0.00	8677	0	.0016	976	56 -0	.017649	96	-2.034
	35	0.0200)467	0.00	8677		0.016	294	1 7 −0.	0037520)3	-0.432
	36	0.0207	7462	0.00	8677		0.019	130)7 -0.	0016155	55	-0.186
	37	0.0214	1457	0.00	8677	0	.0016	812	25 -0	.019764	15	-2.278
	38	0.0221	L452	0.00	8677		0.015	646	52 -0.	0064990)4	-0.749

1-step forecasts	for	DLcex	(SE	with	parameter	uncertainty)
------------------	-----	-------	-----	------	-----------	--------------

Horizon	Forecast	SE	Actual	Error	t-value
34	0.0193472	0.009228	0.00169766	-0.0176496	-1.913
35	0.0200467	0.009278	0.0162947	-0.00375203	-0.404
36	0.0207462	0.009332	0.0191307	-0.00161555	-0.173
37	0.0214457	0.009388	0.00168125	-0.0197645	-2.105
38	0.0221452	0.009446	0.0156462	-0.00649904	-0.688

Multiple regression

- it is a possible (using statistical software) to find the c.i. in MULTIPLE regression (ie with known X₁, X₂ etc)
 - one has to specify the actual values of X₁, X₂ etc for which one requires estimated E(Y) and the c.i.

Summary

- beware of predicting Y beyond the domain of the variables
- always accompany any prediction of E(Y) with its (say 95%) confidence interval

Prediction

- Notice that we are making several big assumptions
- The regression <u>parameters</u>, and the error variance, estimated for the period 1.... *T* remain <u>constant</u> over the period *T*+1.... *T*+*p*
- The functional form (a straight line) remains the same
- We know the values of X over the period T+1....T+p
- If we do, then we are making what is known as an <u>ex post</u> prediction
- If we do not, then we are making an <u>ex ante</u> prediction. This requires us to first predict *X* in order to predict *Y*
- Needless to say, ex post prediction is much safer than ex ante prediction