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ABSTRACT This paper proposes a new generalized method of moments (GMM) estimator for spatial

panel models with spatial moving average errors combined with a spatially autoregressive dependent

variable. Monte Carlo results are given suggesting that the GMM estimator is consistent. The

estimator is applied to English real estate price data.

Une méthode généralisée d’estimateur de moments pour un modèle de panel

spatial avec un décalage endogène spatial et des erreurs spatiales de type moyenne

mobile

RÉSUMÉ Cette étude propose un nouvel estimateur GMM pour des modèles de panel spatial avec

des erreurs spatiales de type moyenne mobile combiné à une variable de dépendance spatiale

autorégressive. Les résultats de Monte Carlo fournis suggèrent que l’estimateur GMM est cohérent.

L’estimateur s’applique à des données sur des prix d’immobilier anglais.

Un estimador de método generalizado de momentos para un modelo de panel

espacial con retardo espacial endógeno y errores espaciales de media móvil

RESUMEN Este estudio propone un nuevo estimador GMM para modelos de panel espacial con

errores espaciales de media móvil combinado con una variable dependiente autorregresiva. Se indican los

resultados de Monte Carlo que revelan la coherencia del estimador GMM. El estimador se aplica a los

datos de precios en inmobiliarias inglesas.
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1. Introduction

There is a growing literature dedicated to the analysis of panel data with spatial
dependence, with various different approaches suggested. Probably the most useful
starting point in the spatial econometrics literature is Anselin (1988), and among
some of the more recent contributions, such as Conley (1999), Chen & Conley
(2001), Baltagi et al. (2003), Druska & Horrace (2003), Elhorst (2003), Baltagi
(2005), Baltagi & Li (2006) and Pinkse et al. (2006), we highlight the work of
Kapoor et al. (2007), which generalizes the generalized moments estimators of
Kelejian & Prucha (1999) to a panel data model with spatially and temporally
correlated error components, and which provides a feasible generalized least squares
procedure for the regression parameters, and formal large sample results for their
estimators.

This paper draws on their contribution, which provides the necessary
theoretical, computational, and mathematical background for the present paper.
Given this context, the specific innovatory aspects of the current paper are:

(i) the extension of the generalized moments estimators (GMM) estimation
procedure to allow a spatial moving average (MA) error process rather than
the spatial autoregressive process that has been the focus of attention thus far
in the literature;

(ii) the extension of the methodology to incorporate an endogenous spatial lag,
so that spatial dependence is not solely via the error process;

(iii) application of the method to real panel data involving real estate prices in
England.

To summarize, the paper extends the scope of the approach suggested by Kapoor
et al. (2007) by allowing different forms of spatial interaction for panel data.

2. The Model

Consider the N location cross-sectional time t regression specification

Y (t)�lW EY (t)�H(t)g�u(t) (1)

in which Y(t) is an N�1 vector of observations of the dependent variable, H(t) is
the N�k matrix of regressors with full column rank, g is a k�1 vector of
parameters, and u(t) is an N�1 vector produced by a random error process. Also
WE is an N�N matrix of non-stochastic time constant weights which defines the
interdependence of Y(t) across areas, so that WEY is an N�1 vector commonly
referred to as an endogenous spatial lag and l is a scalar parameter. Following
Kapoor et al. (2007) and Kelejian & Prucha (1998), all of the diagonal elements of
WE are zero, and (I�rW E) is non-singular. Also WE is uniformly bounded in
absolute value, meaning that a constant c exists such that max15i5Na

N

j�1jW E
ij j5

cB� and max15j5Na
N

i�1jW E
ij j5 cB�: Likewise, the elements of H(t) are

uniformly bounded in absolute value.
The most widely used approach to modelling spatial error dependence

involving N locations is to assume that in each period u(t)�rWu(t)�j(t); in
which u(t) is a vector of errors at time t, r is a parameter, W is also an N�N matrix
of non-stochastic weights which defines the error interaction across areas and j(t)
is an N�1 vector of time t innovations. All the diagonal elements of W are zero,
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(I�rW) is non-singular and W is also uniformly bounded in absolute value. This is
referred to as a spatial autoregressive (AR) process and implies complex
interdependence between locations, so that a shock at location j is transmitted to
all other locations, as indicated by the expansion of

u(t)� (I�rW )�1j(t) (2)

which, assuming jrjB1and a row-standardized W matrix with row sums equal to 1, is

(I�rW )�1j(t)� (
X�
i�0

riW i)j(t)�j(t)�rWj(t)�r2W 2j(t)�r3W 3j(t)� :::

(3)

in which W0�I, W2 is the matrix product of W and W, and W i is the matrix product
of W i�1 and W. The effect of shock at j is therefore felt directly at j, and there is an
indirect effect due to rWj(t) which affects only those location pairs for which there is
a non-zero element on the W matrix. If W were a contiguity matrix we might think of
these as local effects. The global effect of a shock occurs because it is transmitted also to
locations that are ‘neighbours of neighbours’ via the powers of W. Note that the effect
rebounds. A shock to j affects the neighbours, and the neighbours of the neighbours,
and eventually works its way back to j. In other words, the full effect of a shock to j is
not simply the shock itself, but the initial shock plus the feedback from the other
locations.

In contrast, the MA error process,1 which is the subject of this paper, is

u(t)� (I�rW )j(t) (4)

so that a shock at location j will only affect the directly interacting locations as given
by the non-zero elements in W. Hence shock-effects are local rather than global.
Since we are considering a panel with T periods rather than purely cross-sectional
data, we omit t to indicate that the observations are stacked. Hence

Y �l(IT �W E)Y �Hg�u�Xb�u

X � ((IT �W E)Y ;H)

b?� (l; g?) (5)

in which Y is a TN�1 vector of observations, X is a TN�(1�k) matrix of
regressors, comprising the TN�1 vector (IT�WE)Y, which is the endogenous
spatial lag, and H is a TN�k matrix of (exogenous) regressors. In addition, given j
is an NT�1 vector of innovations, IT is a T�T diagonal matrix with 1s on the
main diagonal and 0s elsewhere, IN is a similar N�N diagonal matrix, then ITN�
IT�IN is a TN�TN diagonal matrix with 1s on the main diagonal and 0s
elsewhere and the NT�1 vector u is given by the MA process

u� (ITN �r(IT �W ))j�j�rj̄: (6)

Regarding the error components in space-time, time dependency is introduced
into the innovations j by specifying unobserved permanent unit-specific error
components m together with transient error components n, where

m� iid(0;s2
m) (7)
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n� iid(0;s2
n) (8)

and

j� (iT � IN )m�n: (9)

Thus m is the N�1 vector of errors specific to each area, n is the NT�1 vector of
errors specific to each area and time, iT is a T�1 matrix with 1s, and iT � IN is a
TN�N matrix equal to T stacked IN matrices.

For n, it is assumed that 0B
¯
asn 5s2

n5 āsn B� and we also make the standard
assumption that the errors have finite fourth moments (/En4

j B�) to ensure a finite
domain for estimation. Likewise for m, 0B

¯
asm 5s2

m5 āsm B� and Em4
j B�:

Also, we assume that the error components are independent, hence E[minit]�0;
and each of the two error components m and n is subject to the same spatial moving
average process, since

u� (ITN �r(IT �W ))j� (ITN �r(IT �W ))((iT � IN )m)� (ITN �r(IT �W ))n

� (iT � (IN �rW ))m� (IT � (IN �rW ))n: (10)

For areas i, j and times t, s:

E(j?j)� [s2
n�s2

m] if i� j; t� s

E[j?j]� [s2
m] if i� j; t" s

E[j?j]� [0] if i" j; t" s: (11)

For the purposes of estimation, it is useful to represent the TN�TN innovations
variance�covariance matrix Vj using the matrices Q0 and Q1 defined2 as follows

Q0� (IT �
JT

T
)� IN ; (12)

in which JT is a T�T matrix of 1s, and

Q1�
JT

T
� IN : (13)

It follows that Q0�Q1� ITN and

Vj�s2
m(JT � IN )�s2

nITN

Vj�s2
nQ0�s2

1Q1 (14)

in which

s2
1�s2

n�Ts2
m: (15)
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3. The Moments Equations

Consider the TN�1 vector of residuals u

u� (ITN �r(IT �W ))j�j�rj̄ (16)

and

ū� (ITN �r(IT �W ))j̄� j̄�r ¯̄j: (17)

Pre-multiplying by Q0 gives

Q0u�Q0(j�rj̄) (18)

and X
j

(Q0u)2
j �u?Q0u� (j�rj̄)?Q0(j�rj̄) (19)

with

(j�rj̄)?Q0(j�rj̄)�j?Q0j�r2j̄?Q0j̄�2rj?Q0j̄�u?Q0u: (20)

Likewise

(j̄�r ¯̄j)?Q0(j̄�r ¯̄j)� j̄?Q0j̄�r2 ¯̄j?Q0
¯̄j�2rj̄?Q0

¯̄j� ū?Q0ū (21)

and

(j�rj̄)?Q0(j̄�r ¯̄j)�j?Q0j̄�r2j̄?Q0
¯̄j�rj̄?Q0j̄�rj?Q0

¯̄j�u?Q0ū: (22)

Similarly

(j�rj̄)?Q1(j�rj̄)�j?Q1j�r2j̄?Q1j̄�2rj̄?Q1j�u?Q1u (23)

(j̄�r ¯̄j)?Q1(j̄�r ¯̄j)� j̄?Q1j̄�r2 ¯̄j?Q1
¯̄j�2rj̄?Q1

¯̄j� ū?Q1ū (24)

(j�rj̄)?Q1(j̄�r ¯̄j)�j?Q1j̄�r2j̄?Q1
¯̄j�rj̄?Q1j̄�rj?Q1

¯̄j�u?Q1ū: (25)

Also

(j�rj̄)?(j�rj̄)� (j�rj̄)?Q0(j�rj̄)� (j�rj̄)?Q1(j�rj̄) (26)

(j̄�r ¯̄j)?(j̄�r ¯̄j)� (j̄�r ¯̄j)?Q0(j̄�r ¯̄j)� (j̄�r ¯̄j)?Q1(j̄�r ¯̄j) (27)

(j�rj̄)?(j̄�r ¯̄j)� (j�rj̄)?Q0(j̄�r ¯̄j)� (j�rj̄)?Q1(j̄�r ¯̄j): (28)

To obtain the expectations of these variables, we know (see Kapoor et al., 2007)
that

E(j?Q0j)�s2
nTr(Q0)�s2

nN (T �1) (29)

E(j̄?Q0j̄)�E(n?Q0(IT �W ?W )?Q0n)�s2
n(T �1)Tr(W ?W ) (30)
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E(j?Q0j̄)�0 (31)

and using similar arguments it is also possible to show that

E( ¯̄j?Q0
¯̄j)�s2

n(T �1)Tr(W ?WW ?W ) (32)

since

E( ¯̄j?Q0
¯̄j)�E[n?Q0(IT �W ?W )?(IT �W ?W )Q0n]

Q0(IT �W ?W )?(IT �W ?W )Q0�Q0(IT �W ?W )?(IT �W ?W )

E( ¯̄j?Q0
¯̄j)�s2

nTr(Q0(IT �W ?W )?(IT �W ?W ))

E( ¯̄j?Q0
¯̄j)�s2

n(T �1)Tr(W ?WW ?W ): (33)

Likewise3

E(j̄?Q0
¯̄j)�s2

n(T �1)Tr(W ?WW ): (34)

Also

E(j?Q0
¯̄j)�Tr(Ej?Q0WWj)�s2

n(T �1)Tr(WW ): (35)

By analogy, and following Kapoor et al. (2007),

E(j?Q1j)�s2
1Tr(Q1)�s2

1N (36)

E(j̄?Q1j̄)�s2
1Tr(W ?W ) (37)

E(j?Q1j̄)�0 (38)

E( ¯̄j?Q1
¯̄j)�s2

1Tr(W ?WW ?W ) (39)

E(j?Q1
¯̄j)�s2

1Tr(WW ) (40)

E(j̄?Q1
¯̄j)�s2

1Tr(W ?WW ): (41)

Ignoring the expectations, we put these equations together using the 3�3 matri-
ces G and G̃; the 3�1 vectors f and f̃; and the 3�1 vectors g and g̃; using
t1�Tr(W ?W ); t2�Tr(W ?WW ?W ); t3�Tr(W ?WW ); and t4�Tr(WW )so that

Gf�g�0 (42)

and

G̃f̃� g̃�0; (43)

where

G�
N (T �1) t1(T �1) 0

t1(T �1) t2(T �1) 2(T �1)t3
0 (T �1)t3 (T �1)(t1� t4)

2
4

3
5 f�

s2
n

r2s2
n

�rs2
n

2
4

3
5 g�

u?Q0u

ū?Q0ū

u?Q0ū

2
4

3
5
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G̃�
N t1 0

t1 t2 2t3
0 t3 (t1� t4)

2
4

3
5 f̃�

s2
1

r2s2
1

�rs2
1

2
4

3
5 g̃�

u?Q1u

ū?Q1ū

u?Q1ū

2
4

3
5:

4. Estimation

The estimation procedure comprises three stages. At stage 1, because of the
presence of the spatial lag, we obtain4 IV estimates of b and hence residuals

/û�Y �Xb̂: In stage 2 we use these IV residuals to obtain the estimates g and g̃ of g
and g̃; and denoting G and G̃ by G and G̃ we have the sample counterpart of
equation (42), which is

G[s2
n r2s2

n �rs2
n]?�g�z(r s2

n) (44)

in which z(r s2
n) is a vector of residuals, and the non-linear least squares

estimators are given by

(r̂; ŝ2
n)�arg minfz(r;s2

n)?z(r;s
2
n)g:

From the estimated r and s2
n one can obtain the estimate of s2

1 indirectly, using the
fact that, for MA errors, u� (ITN �r(IT �W ))j; hence j� (ITN �r(IT �
W ))�1u: Since E(j?Q1j)�s2

1Tr(Q1)�s2
1N ; then

s2
1�

1

N
((ITN �r(IT �W ))�1u)?Q1(ITN �r(IT �W ))�1u (45)

and therefore

ŝ2
1�

1

N
((ITN � r̂(IT �W ))�1û)?Q1(ITN � r̂(IT �W ))�1û: (46)

In practice, to obtain a direct estimate of s2
1; we also use the sample counterpart of

equation (43), which is

G̃[s2
1 r2s2

1 �rs2
1]?� g̃� z̃(r s2

1); (47)

in which z̃(r s2
1) is a vector of residuals, and obtain r̂; ŝ2

n; ŝ
2
1 as the minimum5 of

F1�F2, where F1�/z(r;s2
n)?z(r;s

2
n) and F2�/z̃(r;s2

1)?z̃(r;s
2
1):

In general, the variances associated with F1 and F2 differ, and Kapoor et al.
(2007) suggest weighting to allow for this. However, in the Monte Carlo
simulations that follow, for simplicity we have not introduced differential
weighting. In the analogous situation examined by Kapoor et al. (2007) they
note that giving equal weight to all six moments equations does give consistent
estimates. While the small sample behaviour in the AR case is the worse of the
alternative weighting schemes they examine, it seems appropriate commencing
with MA errors to initially explore the behaviour of the simplest approach prior to
more elaborate methods, which could be the subject of further research.

In the third stage, because the errors Vj�s2
nQ0�s2

1Q1 are not constant, the
appropriate method is generalized least squares (GLS), estimated by IV to also allow
for the presence of the endogenous spatial lag. The estimated error co-
variance matrix V̂j is obtained using ŝ2

n; ŝ
2
1 from stage 2, but first r̂ is used to
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perform a Cochrane�Orcutt (C-O)-type transformation to account for the spatial
dependence in the residuals.

Normally with C-O the assumption is an autoregressive error process,
hence u� (ITN �r(IT �W ))�1j; in which case one pre-multiplies through by
ITN �r(IT �W ) to obtain the innovations j. However, the MA error process

/u� (ITN �r(IT �W ))j requires pre-multiplication6 by the inverse7 to obtain j,
thus

Y �� (IT � (IN � r̂W ))�1Y

X�� (IT � (IN � r̂W ))�1X

j� (IT � (IN � r̂W ))�1u: (48)

In both the first and third stages, to carry out the IV estimation, as instruments we
employ a linearly independent subset of the exogenous variables, so that Z is a
TN�/f ] (k�1) matrix of instruments. Assume matrices X and Z are full column
rank with f ] (k�1); and following what is evidently a comparatively robust
approach for IV estimation with non-spherical disturbances (Bowden & Turking-
ton, 1984), calculate Pz�Z(Z ?V̂jZ)�1Z ?; which is a symmetric matrix (/PzVj is
idempotent) and hence

b̂�� [(X+?Z)(Z?V̂jZ)�1(Z?X+)]�1(X+?Z)(Z?V̂jZ)�1(Z?Y �)

� (X+?PzX
+)�1X+?PzY

�: (49)

The estimated variance�covariance matrix of the parameters is given by

Ĉ� [(X+?Z)(Z?V̂jZ)�1(Z?X+)]�1� (X+?PzX
+)�1: (50)

Greene (2003) also gives the equivalent of (49) and (50) as generalized methods of
moments (instrumental variables) estimators with non-spherical disturbances. The
standard errors of the b̂ are given by the squares roots of the values on the main
diagonal of Ĉ; which allows ‘t-ratios’ to be calculated for purposes of inference.

5. Example 1: the Data-generating Process

In this first example the data are purely artificial, and correspond to model (6),
which is repeated here for convenience:

Y �lIT �W EY �Hg�u (51)

X � (IT �W EY ;H)

b?� (l; g?)
Y �Xb�u

u� (ITN �r(IT �W ))j: (52)

In the MA error process, W is a contiguity matrix8 on a
ffiffiffiffiffi
N

p
�/

ffiffiffiffiffi
N

p
square. Matrix

W is standardized by dividing each row cell by its row total, so that the maximum
and minimum eigenvalues are 1 and �1. Also in practice, for simplicity we assume
that WE�W.

Matrix H had columns equal to the TN�1 vectors iTN, H1, H2, and H3, in
which iTN is a TN�1 vector with 1s. To obtain each H, first generate time t�0,
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N�1 vectors H1(0), H2(0), H3(0) by sampling at random from a uniform
(rectangular) distribution with minimum equal to 0 and maximum equal to 1. Then
for t equal to 1 . . . T, H1(t)�H1(t�1)�p1; in which p1�N(0,1), and likewise
for H2(t), H3(t) using p2�N(0,1) and p3�N(0,1). Then stacking these N�1
vectors we obtain H1, H2 and H3. In his way the exogenous variables in H have
some time dependency, as seems reasonable for panel data. Once generated, the
variables H1, H2 and H3 remain fixed. Also, in practice T�2 and T�4 below.

Given the exogenous variables, we next obtain the innovations vector NT�1
vector j. The innovations vector depends on the N�1 vector m obtained by
sampling from an N (0;s2

m) distribution and on the NT�1 vector n obtained by
sampling from an N (0;s2

n) distribution, so that j� (iT � IN )m�n: This is repeated
for each iteration k�1 . . . K, to obtain

Yk� (ITN �l(IT �W ))�1Hg� (ITN �l(IT �W ))�1(ITN �r(IT �W ))jk: (53)

Given Y, W and H, K estimates are obtained of the known parameters
r; l; g0; g1; g2; g3;s

2
n and s2

1 using the three-stage method outlined above. This is
achieved by using instruments Z for the endogenous spatial lag comprising the
exogenous variables, H, together with the TN�1 vector comprising T stacked
identical time ‘zero’ N�1 spatial lag vectors WY(0), which is assumed to be
exogenous with respect to the endogenous lag (IT �W )Y :

5.1. Monte Carlo Results

Monte Carlo results are given both here and in more detail in Appendix B. Those
given here are illustrative, while those in Appendix B provide more substantive
empirical evidence of the consistency of the estimator. In this first example, the
values r��0.25, l�0.75, g0�1, g1�10, g2�10, g3�10, s2

m�1 and s2
n�1

are used to generate Y, and the three-stage estimation method employed K�100

times9 gives a set of K estimates l̂k; ĝ0k; ĝ1k; ĝ2k; ĝ3k; r̂k;s
2
nk and ŝ2

1k (k�1 . . . K) of
these parameters. Table 1 summarizes the parameter estimate distributions. It is
evident that the parameter estimate means are close to the true values, although it is
shown later (see Appendix B) that there is evidence of small sample bias in the
estimator of r, although it is apparently consistent. The distributions are relatively
symmetrical, and on the whole have a degree of kurtosis consistent with the normal
distribution. To formally test the null of normality, the K estimates are divided intoffiffiffiffi

K
p

�10 groups with upper and lower bounds defined so that each group has
approximately the same observed frequency (Oi). These observed frequencies are
then compared to expected frequencies (Ei) calculated using the data to obtain
maximum-likelihood estimates of the normal mean and variance.10 The test statistic

X2�a
10

i�1((Oi�Ei)
2=Ei) is then referred to the x2

7 distribution. It is apparent that
none of the distributions differs significantly from normal, using the upper 5% point
(14.07) of the x2

7 distribution.
Table 2 summarizes the estimate distributions obtained with T�4 time periods

and assuming a different set of parameter values. In this case the true values are r�
�0.5, l�0.25, g0�1, g1�2, g2�4, g3�6, s2

m�0:1 and s2
n�1: Once again

the distribution means are all quite close to expectation, in most cases with low
levels of skewness and kurtosis and acceptable approximations to normality,
although the s2

1 estimates are clearly furthest from normality.
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The more detailed Monte Carlo results given in Appendix B (Tables A2 to A8)
use both Rook’s (edge touching) and Queen’s (edge and corner touching)
definitions of contiguity on a lattice, and also a torus, with opposite sides of the
lattice treated as being contiguous so as to eliminate edges. Measures of bias and of a
single indicator combining both precision (variance) and accuracy (bias), as given
by a variant of the RMSE statistic (see Appendix B), are calculated from 1,000
Monte Carlo replications of equation (53). Summarizing the outcomes obtained
under the various alternative assumptions detailed in Tables A2 to A8, it is evident
that there is a small sample bias in r̂: Attention is focused on positive dependence
(negative r), which gives positive bias, and these outcomes are mirrored in the
case of negative dependence,11 which gives negative bias, so that in both cases the
estimated parameter is closer to zero than the true value. The bias is increasing in r̂;
but the most significant result is the clear evidence that as the sample size (N)
increases, the bias in r̂ diminishes and the RMSE falls, suggesting consistency.

Table 1. Estimated parameter distributions

T�2 /

ffiffiffiffiffi
N

p
�15

/m�N (0;s2
m)

s2
m�1

Mean

/n�N (0;s2
n)

s2
n�1 SD

WE�W

(Rook’s case)

Skewness

H0�U[0,1]

Kurtosis

K�100

Normality

l�0.75 /l̂k 0.7486 0.0071 �0.04 �0.21 4.44

g0�1 /ĝ0k 1.0960 0.4594 0.19 �0.11 8.58

g1�10 /ĝ1k 10.0013 0.0667 �0.16 �0.39 13.57

g2�10 /ĝ2k 10.0089 0.0680 0.08 �0.47 3.28

g3�10 /ĝ3k 9.9992 0.0651 0.13 0.09 8.05

r��0.25 /r̂k �0.2373 0.0902 �0.04 �0.75 11.22

/s2
n �1 /ŝ2

nk 1.0167 0.0953 0.73 1.76 11.15

/s2
1 �3 /ŝ2

1k 2.9282 0.2878 0.53 �0.18 4.08

Notes: T�time periods, N�sample size, K�number of replications, W is a standardized N�N contiguity

matrix.

H0 denotes time 0 distribution of exogenous variables H.

U[0,1] denotes a uniform (rectangular) distribution with minimum equal to 0 and maximum equal to 1.

Skewness is calculated as S(xi � m)3/(n � 1)s3.

Kurtosis is calculated as S{(xi � m)4/(n � 1)s4} � 3 in which m�Sxi/n.

The goodness of fit to the normal distribution is indicated by the residual deviance which has an asymptotic

chi-squared distribution with the specified degrees of freedom. The table is formed by dividing the data into

groups of approximately equal observed frequency. The degrees of freedom c � p � 1, where c is the number

of cells in the table of fitted values and p is the number of parameters (2) estimated in the model. Here there

are 7 df.

Table 2. Estimated parameter distributions

T�4 /

ffiffiffiffiffi
N

p
�15

/m�N(0,/s2
m)

s2
m�0:1

Mean

/n�N(0,/s2
n )

s2
n�1

SD

WE�W

(Rook’s case)

Skewness

H0�U[0,1]

Kurtosis

K�100

Normality

l�0.25 /l̂k 0.2481 0.0291 �0.37 �0.15 9.03

g0�1 /ĝ0k 1.0254 0.2868 0.35 �0.37 10.68

g1�2 /ĝ1k 1.9996 0.0250 �0.36 0.11 10.05

g2�4 /ĝ2k 3.9950 0.0229 0.02 0.35 16.17

g3�6 /ĝ3k 6.0001 0.0212 0.08 0.61 8.69

/r��0.5 /r̂k �0.4879 0.0590 0.06 �0.46 5.28

/s2
n �1 /ŝ2

nk 1.0227 0.0678 0.16 0.64 11.54

/s2
1 �1.4 /ŝ2

1k 1.5026 0.2832 2.16 7.42 20.59
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These indications of consistency are precisely what one might anticipate on the
basis of the theoretical results given by Kapoor et al. (2007) (see also Kelejian &
Prucha, 1998, 1999). An essential difference between their analysis and what is done
here is, of course, that here we are assuming a spatial moving average process rather
than spatially autoregressive errors. In addition, in this paper we also introduce an
endogenous spatial lag in the panel context, a feature absent from their analysis.
Consistency of the generalized moments estimators of r and s2 is maintained by
utilizing IV estimates of b leading to consistent disturbances. Thus, although the
formal proofs given by Kapoor et al. (2007) are in the context of exogenous
regressors (no spatial lag) and autoregressive rather than moving average errors, it is
clear that their results carry through to the present set-up. Finally, it seems that
although there is a small sample positive bias in the estimator r̂; in many applied
situations r̂ will be effectively unbiased. One advantage of GMM estimation is its
comparative simplicity and computational efficaciousness12 in applications in which
the number of locations is far in excess of those subject to Monte Carlo exploration
in this paper. It is clear from the results presented here that as the number of
locations rises into the thousands, as for example with the 3,000 plus counties in the
USA, small sample bias in the estimator r̂ should be minimal.

6. Example 2: Real Estate Prices

In this example the GMM estimator is applied to a panel of average house prices in
N�353 small areas13 of England in the T�2 years 2000, 2001, denoted by the
NT�1 vector p. If the price at j is comparatively high, then demand may be
displaced to nearby location k. On the other hand, supply may be displaced from k
to j as investors in property seek higher returns. We therefore assume that price in
area j interacts contemporaneously with price in area k, and model this interaction
by the presence of an endogenous spatial lag Wp. In this case we again use the row
normalized contiguity matrix W for both the endogenous spatial lag and the MA
error process. The other explanatory variables14 are income from local jobs (wE),
equal to the local wage rate (w) times the local employment level (E), and income
from wages and employments within commuting distance (wcEc). In order to be
able to treat these as exogenous variables, 1 year lags are introduced, so that year
2001 prices are a function of income in 2000, and year 2000 prices are a function of
income in 1999.

There are many other variables that one might wish to introduce were panel data
available, such as air quality, the quality of local schooling, the size of
the existing stock of properties, demand coming from non-wage earners such as
the retired and students, and the effects of criminality, social quality of the
neighbourhood, amenity, local taxes, the nature of the housing stock, planning and
building regulations, vulnerability to flooding and therefore the additional insurance
premiums for areas on flood plains, and various other social, demographic, labour
market, environmental and cultural differences. These omitted variables are likely to
be spatially autocorrelated, the net effect of which is to induce an organized residual
pattern (Dubin, 1988). We model these omitted variables by the spatial MA error
process. While displaced demand or supply may causes price interactions that cascade
outwards in an autoregressive process, I assume no such chain reaction for these
variables, so that a shock, on its own, has a limited spatial extent, which is a property of
the spatial MA process.
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In order to obtain the estimates given in Table 3, the exogenous variables wE
and wcEc and their first spatial lags, obtained by pre-multiplying these vectors by W,
were used as instruments for the endogenous spatial lag in the first stage of the
three-stage estimation process. This then provided estimated IV residuals û which
facilitated the second stage, enabling r, s2

n and s2
1 estimates to be obtained. The

third-stage estimates are given in Table 3, showing that there is a significant
endogenous spatial lag effect, so that prices are directly positively related to
contemporaneous prices in contiguous areas, and there are significant effects due to
income from local jobs and jobs within commuting distance.

7. Conclusion

This paper considers panel data in which spatial interaction comes from the effects of
an endogenous lag and also from the MA error process. Monte Carlo results are given
suggesting that the GMM estimator is consistent. It appears that this is the first paper to
consider panel analysis with spatial MA errors, and also to jointly consider an
endogenous lag together with spatial and temporal correlation in the error
components, although much of this has been presaged in the earlier spatial
econometrics literature (Anselin, 1988), and also in the time series context (Harvey,
1990). Indeed, in the conclusion to their paper, Kapoor et al. (2007) suggest that they
would like to extend their results to models containing spatially lagged dependent
variables. The present paper raises many issues which should be the subject of further
study, such as the choice of appropriate instruments, the most efficient optimization
method, and the small sample properties of the estimator, but the evidence presented
here does suggest that there is scope for the practical implementation via GMM of
panel data models with an endogenous spatial lag and spatial error processes.

Notes

1. An early detailed account of the MA spatial process is given by Haining (1978).

2. Pre-multiplication of a TN�1 vector u by Q0 creates a TN�1 vector of deviations from the mean, where

the mean is obtained by averaging u over time. Pre-multiplication of a TN�1 vector u by Q1 creates a TN�
1 vector, comprising N across time area-specific means stacked for each T.

3. Note that Tr(W?WW)�0 for the Rook’s case contiguity matrix.

4. So that we can use equation (49) in both stage 1 and stage 3, it is assumed that s2
n�1 and s2

1�1 (so that Vj is a

diagonal matrix of 1s) and that r�0. The result is that at stage 1 we simply obtain IV estimates.

5. Using unconstrained non-linear least squares estimation. The method is a modified Newton�Raphson method

which is suitable for minimizing any non-linear function, and which depends on numerical differences rather

than derivatives.

Table 3. GMM estimates for the real estate price panel data with spatial moving average

errors

Parameter Par. est. SE t-ratio

Constant g0 44.4949 (43.6422) 12.3936 (12.5396) 3.59 (3.48)

Wp l 0.3941 (0.4011) 0.1174 (0.1196) 3.36 (3.35)

wE g1 0.2221 (0.2494) 0.0976 (0.0978) 2.27 (2.55)

wcEc g2 0.0507 (0.0493) 0.0066 (0.0067) 7.68 (7.34)

MA r �0.49279 (0.34998)

/s2
n 42.9822 (37.4959)

/s2
1 2722.83133 (2566.9143)

Note: Estimates using AR errors are given in parentheses.
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6. In contrast, at stage 1, r is assumed to equal 0, so that in that case Y+�Y, X+�X.

7. Moore�Penrose generalized inverses are used to avoid singularities.

8. In the main body of the text W is a Rook’s case contiguity matrix based on a 15�15 lattice. In the Monte

Carlo simulations described in Appendix B, the lattice size is varied and an irregular spatial partitioning is also

considered. Also, alternative contiguity definitions, namely the Queen’s case and torus, are also implemented.

9. Appendix B gives the results obtained using K�1,000 replications.

10. These procedures were carried out using the DISTRIBUTION directive of the programming language

GENSTAT. The DISTRIBUTION directive is used to fit an observed sample of data to a theoretical

distribution function, in order to obtain maximum-likelihood estimates of the parameters of the distribution

and test the goodness of fit.

11. To save space these results have not been reported here.

12. With the MA error process the C-O transform involves the inverse. See Smirnov & Anselin (2001) for a

discussion of the use of the power expansion to approximate the matrix inverse with large matrices.

13. Unitary authority and local authority districts, or UALADs.

14. Appendix A gives details of the sources and construction of these variables.

15. Small administrative areas, with median area equal to 250.77 km2.

16. Available on the NOMIS website (the ONS online labour market statistics database).

17. 1991 Census of Population*Special Workplace Statistics, available from NOMIS.

18. Total employees and self-employed with a workplace coded, tabulated by residents in each zone (10% sample).

19. Minimum of the sum of the squared deviations of the observed proportions in each distance band up to 40 km and

the proportions of the sum of the function exp(�didij) calculated using the upper limit of each distance band.

References

Anselin, L. (1988) Spatial Econometrics: Methods and Models, Dordrecht, Kluwer.

Baltagi, B. H. (2005) Econometric Analysis of Panel Data, 3rd edn, Chichester, Wiley.

Baltagi, B. H. & Li, D. (2006) Prediction in the panel data model with spatial correlation: the case of liquor, Spatial

Economic Analysis, 1, 175�185.

Baltagi, B. H., Song, S. H. & Koh, W. (2003) Testing panel data regression models with spatial error correlation,

Journal of Econometrics, 117, 123�150.

Bowden, R. J. & Turkington, D. A. (1984) Instrumental Variables, Cambridge, Cambridge University Press.

Brueckner, J. K. (2003) Strategic interaction among governments: an overview of empirical studies, International

Regional Science Review, 26, 175�188.

Chen, X. & Conley, T. G. (2001) A new semiparametric spatial model for panel time series, Journal of Econometrics,

105, 59�83.

Conley, T. G. (1999) GMM estimation with cross sectional dependence, Journal of Econometrics, 92, 1�45.

Druska, V. & Horrace, W. C. (2003) Generalized Moments Estimation for Spatial Panel Data, Technical Working

Paper 291, National Bureau of Economic Research, Cambridge, MA.

Dubin, R. A. (1988) Estimation of regression coefficients in the presence of spatially autocorrelated error terms,

Review of Economics and Statistics, 70, 466�474.

Elhorst, J. P. (2003) Specification and estimation of spatial panel data models, International Regional Science Review,

26, 244�268.

Greene, W. H. (2003) Econometric Analysis, 5th edn, Upper Saddle River, NJ, Prentice Hall.

Haining, R. P. (1978) The moving average model for spatial interaction, Transactions of the Institute of British

Geographers, 3, 202�225.

Harvey, A. C. (1990) The Economic Analysis of Time Series, 2nd edn, Cambridge, MA, MIT Press.

Kapoor, M., Kelejian, H. H. & Prucha, I. (2007) Panel data models with spatially correlated error components,

Journal of Econometrics, 140, 97�130.

Kelejian, H. H. & Prucha, I. R. (1998) A generalized spatial two-stage least squares procedure for estimating

a spatial autoregressive model with autoregressive disturbances, Journal of Real Estate Finance and Economics, 17,

99�121.

Kelejian, H. H. & Prucha, I. R. (1999) A generalized moments estimator for the autoregressive parameter in a

spatial model, International Economic Review, 40, 509�533.

Pinkse, J., Slade, M. & Shen, L. (2006) Dynamic spatial discrete choice using one-step GMM: an application to

mine operating decisions, Spatial Economic Analysis, 1, 53�99.

Smirnov, O. & Anselin, L. (2001) Fast maximum likelihood estimation of very large spatial autoregressive models:

a characteristic polynomial approach, Computational Statistics and Data Analysis, 35, 301�319.

A New GMM Estimator 39

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
5
2
 
1
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Appendix A

The dependent variable p is the mean transaction price (all types of residential
property) by area for the period July�September 2000, and July�September 2001
for the N�353 English Unitary Authority and Local Authority Districts15

(UALADs). The data were provided by the Land Registry. The wage rate (w) is
the gross weekly pay for all occupations and both males and females taken from the
Office for National Statistics’16 (ONS) New Earnings Survey. The employment
level for the years 1999 and 2000 is based on the annual business enquiry employee
analysis, also carried out by the ONS and available on the NOMIS database.

Total earnings in an area is the product of the average wage rate (w) in 1999 and
2000 and the total level of employment in 1999 and 2000, denoted by wE. These
are assumed to be predetermined with respect to year 2000 and 2001 price levels.

The vector wcEc denotes total earnings within commuting distance of a
UALAD. This is equal to the matrix product of the n�n matrix C and the n�1
vector wE. Matrix C is defined as follows:

Cij�exp(�didij) i" j

Cij�0 i� j

Cij�0 dij�100 km:

Cell (i, j) of the C matrix is a function of the (straight line) distance (dij) between
areas i and j and an area-specific coefficient di. This allows for the different levels of
transport infrastructure and commuting in different areas, with the choice of
exponent di based on empirical comparisons with observed census data17 on travel-
to-work patterns. Table A1 shows the overall proportion of workers18 living in
England and Wales travelling various distances from home to work. Given
observed travel percentages comparable to Table A1 for each area, the exponent di

for each area was chosen by iterating the function exp(�didij) through a range of
values to obtain the value giving the closest fit19 to each area’s commuting data.

Table A1. Commuting distances to work in England and Wales

Distance (km)

B2 2�4 5�9 10�19 20�29 30�39 �40

% 26.63 25.28 20.93 15.90 4.96 2.05 4.25 100
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Appendix B: Monte Carlo Investigation

Bias�median � true parameter value

RMSE�
�
bias2�

�
IQ

1:35

	2
0:5

;

where IQ is the interquantile range, equal to the difference between the 0.75 and
0.25 quantile. While this approximation is based on IQ rather than the variance,
under normality the median is equal to the mean and, apart from slight rounding,
IQ/1.35 is the standard deviation, so this measure reduces to the standard RMSE
statistic (see Kapoor et al., 2007).

In all cases W is normalized to row totals equal to 1 and the bias is based on
1,000 Monte Carlo replications.

Table A2. Bias and RMSE with increasing lattice size, positive dependence, Rook’s case.

r��0.25, l�0.75, g0�1, g1�10, g2�10, g3�10, s2
m�1; s2

n�1: Matrix W is a

Rook’s case contiguity matrix. There are two layers (T�2)

Bias

T�2 /m�N (0;s2
m)

/

n�N (0;s2
n)

WE�W

Rook’s case H�U[0,10] K�1,000

Lattice size 5�5 7�7 9�9 11�11 13�13 15�15

g0 0.31131 0.25106 0.10097 0.007300 �0.09312 0.010786

l �0.00031 �0.00048 �0.00006 0.000041 0.00012 �0.000092

g1 0.00009 �0.00078 �0.00121 0.000398 0.00051 0.000472

g2 �0.00385 0.00209 �0.00120 �0.000090 0.00043 0.001027

g3 0.00647 �0.00226 �0.00037 0.002743 0.00251 �0.000860

r 0.09523 0.07720 0.05598 0.039236 0.02294 0.012190

RMSE

T�2

/m�N (0;s2
m)

H�U[0,10]

/n�N (0;s2
n )

K�1,000

WE�W

Rook’s case

Lattice size 5�5 7�7 9�9 11�11 13�13 15�15

g0 5.489 3.035 2.519 1.265 1.665 1.368

l 0.008289 0.004939 0.004075 0.002079 0.002743 0.002337

g1 0.07910 0.06366 0.04657 0.03653 0.02868 0.02700

g2 0.06890 0.06400 0.05137 0.03187 0.02646 0.02800

g3 0.09746 0.05135 0.04204 0.03859 0.03179 0.02603

r 0.2180 0.1744 0.1391 0.1192 0.1029 0.08351
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Table A3. Bias and RMSE with increasing lattice size, with negative dependence, Rook’s

case. r�0:5; l�0:75; g0�1; g1�10; g2�10; g3�10; s2
m�1; s2

n�1: Matrix W is a

Rook’s case contiguity matrix. There are two layers (T�2)

Bias

T�2 /m�N (0;s2
m) /n�N (0;s2

n )

WE�W

Rook’s case H�U[0,10] K�1,000

Lattice size 5�5 7�7 9�9 11�11 13�13

/g0 �0.05185 0.09947 �0.004240 �0.007804 0.04937

/l 0.00007 �0.00014 0.000012 �0.000016 �0.00009

/g1 0.00082 0.00102 0.000088 �0.000737 0.00235

/g2 �0.00586 �0.00128 �0.000204 �0.001198 0.00009

/g3 �0.01132 �0.00224 �0.001816 �0.001393 0.00060

/r �0.04482 �0.05278 �0.019962 �0.022022 �0.01821

RMSE

/m�N (0;s2
m) /n�N (0;s2

n )

WE�W

Rook’s case H�U[0,10] K�1,000

Lattice size 5�5 7�7 9�9 11�11 13�13

/g0 2.644 2.202 0.8189 0.4571 0.8922

/l 0.005466 0.004334 0.001814 0.000999 0.001852

/g1 0.09958 0.05722 0.05082 0.03614 0.03045

/g2 0.08222 0.06473 0.04433 0.03452 0.02953

/g3 0.1147 0.05843 0.04015 0.03460 0.03073

/r 0.2690 0.1859 0.1483 0.1337 0.1168

Table A4. Bias with increases in the time dimension, positive dependence, Rook’s case.

r��0:25; l�0:75; g0�1; g1�10; g2�10; g3�10; s2
m�1; s2

n�1: Matrix W is a

Rook’s case contiguity matrix for a 7�7 square, hence the number of locations is N�49,

and W is of dimension 49�49. The number of layers is from 3 up to 10

/m�N (0;s2
m)

H�U[0,10]

/n�N (0;s2
n)

K�1,000

WE�W

Rook’s case

T 3 4 5 10

/g0 �0.11550 �0.03176 �0.15351 �0.04148

/l 0.00017 0.00006 0.00029 0.00013

/g1 0.00238 0.00174 0.00289 �0.00148

/g2 �0.00289 0.00141 0.00103 0.00096

/g3 0.00143 �0.00157 0.00088 0.00352

/r 0.05291 0.05349 0.05032 0.07608
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Table A6. Bias with increasing positive dependence, Queen’s case. l�0:75; g0�1; g1�
10; g2�10; g3�10; s2

m�1; s2
n�1; T�2. Matrix W is a Queen’s case contiguity matrix

for a 9�9 square, hence the number of locations is N�81, and W is of dimension 81�
81. There are two layers (T�2)

/r�0 /r��0.25 /r��0.5 /r��0.75 /r��0.95

/g0 �0.13457 �0.10588 �0.17422 �0.17873 �0.26565

/l 0.00019 0.00025 0.00026 0.00025 0.00029

/g1 �0.00075 �0.00077 �0.00063 �0.00051 �0.00073

/g2 �0.00024 0.00001 0.00029 0.00056 0.00021

/g3 �0.00053 0.00020 �0.00024 �0.00065 �0.00036

/r 0.07173 0.10511 0.13368 0.17192 0.19795

Table A5. Bias with increasing positive dependence, Rook’s case. l�0:75; g0�1; g1�
10; g2�10; g3�10; s2

m�1; s2
n�1; T�2. Matrix W is a Rook’s case contiguity matrix

for a 7�7 square, hence the number of locations is N�49, and W is of dimension 49�
49. There are two layers (T�2)

/r�0 /r��0.25 /r��0.5 /r��0.75 /r��0.95

/g0 �0.005857 �0.08888 0.02602 0.06492 0.01550

/l 0.000164 0.00010 0.00010 0.00003 0.00000

/g1 0.000023 0.00168 0.00042 �0.00056 0.00125

/g2 0.000085 �0.00157 �0.00111 �0.00005 �0.00230

/g3 �0.005534 �0.00041 �0.00445 �0.00084 �0.00028

/r 0.044455 0.06901 0.12872 0.19019 0.25428
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Table A7. Bias and RMSE with increasing lattice size, with positive dependence, Queen’s

case. r��0:25; l�0:75; g0�1; g1�10; g2�10; g3�10; s2
m�1; s2

n�1: Matrix W is a

Queen’s case contiguity matrix. There are two layers (T�2)

Bias

T�2 /m�N (0;s2
m) /n�N (0;s2

n)

WE�W

Queen’s case H�U[0,10] K�1,000

Lattice size 5�5 7�7 9�9 11�11 13�13 15�15

/g0 0.15583 0.40579 0.05725 0.00685 �0.07037 0.07598

/l �0.00002 �0.00077 �0.00001 �0.00001 0.00012 �0.00018

/g1 0.00077 �0.00088 �0.00048 �0.00058 0.00105 0.00057

/g2 �0.00188 0.00266 �0.00157 0.00240 0.00067 0.00131

/g3 0.00056 0.00049 �0.00163 0.00119 0.00364 �0.00119

/r 0.27036 0.14180 0.06174 0.06889 0.04701 0.03344

RMSE

/m�N (0;s2
m)

H�U[0,10]

/n�N (0;s2
n )

K�1,000

WE�W

Queen’s case

Lattice size 5�5 7�7 9�9 11�11 13�13 15�15

/g0 5.117 4.296 4.441 1.678 2.345 1.794

/l 0.008873 0.007006 0.007649 0.002720 0.003938 0.003026

/g1 0.06928 0.06651 0.04646 0.03442 0.02895 0.02723

/g2 0.1033 0.06679 0.04325 0.03177 0.02564 0.02739

/g3 0.1116 0.05538 0.04431 0.03356 0.03217 0.02701

/r 0.3914 0.2835 0.2160 0.1789 0.1529 0.1297

Table A8. Bias with increasing lattice size, with positive dependence, torus. r��0:75;
l�0:25; g0�1; g1�10; g2�10; g3�10; s2

m�1; s2
n�1: Matrix W is a torus, in other

words a Rook’s case contiguity matrix with no edges. There are three layers (T�3)

T�3

/m�N (0;s2
m)

H�U[0,10]

/n�N (0;s2
n)

K�1,000

WE�W

Rook’s case

Lattice size 5�5 7�7 9�9 11�11

/g0 �0.01686 �0.04101 �0.02184 �0.01271

/l �0.00008 0.00018 0.00022 �0.00020

/g1 �0.00450 0.00127 �0.00189 0.00103

/g2 �0.00061 0.00089 �0.00009 �0.00149

/g3 �0.00013 0.00046 0.00175 �0.00044

/r 0.20835 0.14658 0.09758 0.08673

44 B. Fingleton

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
5
2
 
1
1
 
J
a
n
u
a
r
y
 
2
0
1
1


