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Applied Econometrics

• What is spurious regression?
• How do we check for stochastic trends?
• Cointegration and Error Correction Models
• Autoregressive distributed lag (ADL) 

models
• VAR models 



  

Applied Econometrics

• What is spurious regression?
– Stationarity
– Deterministic trends (TSPs)
– Stochastic trends
– Implications of nonstationarity for regression 
– Differencing to induce stationarity



  

What is spurious regression?
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Fig. 1. Ln PDI  versus Ln consumers’ expenditure over 40 years 

R-squared= 0.97 

t-ratio = 41.6

False association between variables due to a common trend

The regression picks up the underlying common trend, to give a false
Impression of the true relationship. If trend eliminated, this would
 reveal the true association between log CEX and log PDI. 



  

What is spurious regression?
• problem was acknowledged but the method of dealing with 

it inadequate 
• field implicitly assumed that economic data were trend 

stationary processes (TSPs)
• if a series was trending upwards through time, it could 

easily be detrended by removing the deterministic trend 
• It was imagined that one would be left with a stationary 

variable, with a constant mean and variance – not true!
• Stationarity is the ‘sine qua non’ of regression analysis, but 

most economic variables are not TSPs 



  

Stationarity
for tY , t = 1,…,T, 
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mean and variance are constant over time 

covariance of two observations j units of time apart
 is the same for any value of t 
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Deterministic trends (TSPs)
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the trend is perfectly predictable 

Y fluctuates randomly about the trend line. If it were not for
 the trend, Y would be stationary 

Fig. 2 Deterministic Trend



  

Deterministic trends (TSPs)

eliminate a deterministic trend 

Introduce time as an explicit regression variable 

 0 1

2~ (0, )
tY b b X b t u

u IID σ

= + + +

The ~ here means ‘is distributed as’ 

IID stands for Independent and Identically Distributed 

at each point in time t the error is drawn from the same 
probability distribution, with 0 mean, and the same variance

(2)



  

Deterministic trends (TSPs)

EQ( 2) Modelling Lcex by OLS (using CEXPDI.xls) 
       The estimation sample is: 1 to 38 
 
                  Coefficient  Std.Error  t-value  t-prob Part.R^2 
Constant             -1.83200     0.1403    -13.1   0.000   0.8258 
Lpdi                  1.42357    0.03425     41.6   0.000   0.9796 
 
sigma               0.0152556  RSS              0.0083784056 
R^2                  0.979592  F(1,36) =      1728 [0.000]** 
log-likelihood        106.054  DW                      0.959 
no. of observations        38  no. of parameters           2 
mean(Lcex)            3.99731  var(Lcex)           0.0108038 
 
Lcex =  - 1.832 + 1.424*Lpdi 
(SE)     (0.14)  (0.0342)    



  

Deterministic trends (TSPs)
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The estimated regression coefficient  with the trend term in the 
regression is much lower, with 1% change in PDI causing 1.035% 
change in CEX. However, the DW statistic is still somewhat low, 
and is still below the critical value of 1.53 needed to retain the 

null of no residual autocorrelation.  

(3)

EQ( 3) Modelling Lcex by OLS (using CEXPDI.xls) 
       The estimation sample is: 1 to 38 
 
                  Coefficient  Std.Error  t-value  t-prob Part.R^2 
Constant            -0.293163     0.3015   -0.972   0.338   0.0263 
Lpdi                  1.03482    0.07586     13.6   0.000   0.8417 
Trend              0.00272102  0.0004999     5.44   0.000   0.4584 
 
sigma               0.0113864  RSS             0.00453773252 
R^2                  0.988947  F(2,35) =      1566 [0.000]** 
log-likelihood        117.706  DW                       1.19 
no. of observations        38  no. of parameters           3 
mean(Lcex)            3.99731  var(Lcex)           0.0108038 
 
Lcex =  - 0.2932 + 1.035*Lpdi + 0.002721*Trend 
(SE)     (0.301)  (0.0759)     (0.0005)   



  

Stochastic trends
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Fig.  3  A Stochastic trend 

A stochastic trend is not perfectly predictable 



  

Stochastic trends

• forecast from a stochastic trend are much 
less reliable 

• if we think our trend is deterministic when 
in fact it is stochastic, our long term 
forecasts are likely to be very wrong. 



  

Stochastic trends
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Fig 4  An apparent TSP which is actually a Stochastic trend 



  

Stochastic trends

both Figs 3 and 4 were generated in exactly the same way, 
as random walks 

A random walk occurs when the value of tY  is equal 
 to 1tY −  plus a random shock tu  
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The random walk process ensures that the variance of Y
Is not constant, but increases 

(5)



  

Stochastic trends
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at point T in time, the variance of the process is 
T times the variance of the shocks

(6)



  

Stochastic trends
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Stochastic trend:  I(1) process Stationary process

influence of a shock transitory,
 dying out as time passes 

the impact of a shock 
does not dies out, 
it is permanent 
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Stochastic trends
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Fig 5  Stationary autoregressive processes 

two autoregressive series with ρ  = 0.2 and 0.9  

the value at time t remembers to some extent the value at t-1,  

but both series are stationary. 



  

Implications of nonstationarity for 
regression
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the two series are independent,  
 anticipate that 1̂b  will not usually differ significantly from Ho: 1 0b =   
R-squared will be around 0 

(10)
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Implications of nonstationarity for 
regression

But
regression of independent and nonstationary variables 

characterized by 

• a (very) high R-squared  

• (very) high individual t-statistics 

• a low Durbin Watson statistic 

1)distributions of  t-stats, F-stats, and R-squared  are non-standard. 

2)With larger samples the null of no relationship is likely to be rejected more 

frequently – rejection rates increase with sample size.  

When regressions involve non-stationary variables, the estimation results should not 

be taken too seriously.   (Granger and Newbold, 1974). 



  

Implications of nonstationarity for 
regression
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Many regression quantities depend on 

If X,Y are stationary I(0) variables as T gets larger  
XXS , YYS and XYS increase at a rate such that 

  XXS /T , YYS /T and XYS /T tend to finite stable quantities. 

When X,Y  are I(1),  the rate of increase  of  
XXS , YYS and XYS as T increases is faster so 

 that there is no convergence to finite stable quantities 

(14)



  

Implications of nonstationarity for 
regression
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Differencing to induce stationarity
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Fig 6  A stationary series (drawn from a Normal distribution) 

(10)



  

Differencing to induce stationarity
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∆ = + ∆ + Using differenced variables in the regression  
means that we may have eliminated stochastic trend.  
Note also that the presence of the constant in the  
difference equation means that we are assuming  
a time trend in the equivalent levels equation. 
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Differencing to induce stationarity

A 1% increase in PDI produces only 0.33%

 increase in CEX 

DW = 1.87 is well above the upper bound 
given by the D-W tables of 1.53 

This is  somewhat different from what we found by 
treating CEX and PDI as TSPs rather that as having 
stochastic trends. The reaction of CEX is much less to changes

 in PDI, and the significance of the relationship is much lower 

the constant is significantly different from zero, indicating 
significant autonomous growth in CEX, which is growing 

regardless of PDI growth 

EQ( 7) Modelling DLcex by OLS (using CEXPDI.xls) 
       The estimation sample is: 2 to 38 
 
                  Coefficient  Std.Error  t-value  t-prob Part.R^2 
Constant           0.00629329   0.001897     3.32   0.002   0.2392 
DLpdi                0.331504     0.1623     2.04   0.049   0.1065 
 
sigma               0.0100083  RSS             0.00350580537 
R^2                  0.106453  F(1,35) =       4.17 [0.049]* 
log-likelihood        118.888  DW                       1.87 
no. of observations        37  no. of parameters           2 
mean(DLcex)        0.00822234  var(DLcex)         0.00010604 
 
DLcex =  + 0.006293 + 0.3315*DLpdi 
(SE)      (0.0019)   (0.162) 



  

Differencing to induce stationarity
the model  does not tell the whole story regarding the relationship 
between PDI and CEX. The growth relationship may in the long run 
predict excessively high (low) levels of  CEX, which are known to be
 very different from what one would  expect given the level of PDI. 

We have seen that stochastic trends lead to spurious regression, and 
this leads us to use differenced variables. But a regression of 
differenced variables ignores the long-run relationship between 
the levels of the variables, and so the results obtained may still be 
questionable 

ultimately we take account of the short-run  
relationship between ,X Y∆ ∆ , but also  
correct for deviations this produces  
from a long-run relationship between  
the levels X,Y 


