EC408 Topics in Applied Econometrics

B Fingleton, Dept of Economics, Strathclyde University

Autoregressive distributed lag (ADL) models

two stage Engle-Granger process

- 1)we fit the long run static model to give the residuals then test these to check that they are I(0),
- 2) if yes, the second stage is to fit the ECM model

Problems such as

finite sample bias in the \hat{e}

Solution

estimate both the short run dynamic model and the long run static model jointly, using an ADL model

Autoregressive distributed lag (ADL) models

'a workhorse of the modern literature on time-series analysis' (Greene, 2003, p.579)

$$Y_{t} = \gamma_{0} X_{t} + \gamma_{1} X_{t-1} + \alpha_{1} Y_{t-1} + u_{t}$$
 (35)

We refer to equation (35) as an ADL(1,1) one lag for each of X and Y

we could have more variables and lags

more general specification is ADL(p,q). This is defined by Stock and Watson(2007, p.544)

Autoregressive distributed lag (ADL) models

$$Y_{t} = \gamma_{0} X_{t} + \gamma_{1} X_{t-1} + \alpha_{1} Y_{t-1} + u_{t}$$
 (35)

gives the same parameters as the ECM and allows the test of cointegration

$$\begin{split} \Delta Y_t &= b_1 \Delta X_t - b_2 (Y_{t-1} - \hat{Y}_{t-1}) + u_t \\ Y_t &= \beta_1 X_t + e_t \\ \hat{Y}_{t-1} &= \hat{\beta}_1 X_{t-1} \\ Y_{t-1} - \hat{Y}_{t-1} &= \hat{e}_{t-1} \end{split}$$

How the ADL and ECM are related: the long-run parameter

$$\Delta Y_{t} = \gamma_{0} \Delta X_{t} - (1 - \alpha_{1})(Y_{t-1} - \beta_{1} X_{t-1}) + u_{t}$$
 (37)

 β_1 is a function of the ADL parameters, we use this later

The reason why $\beta_1 = (\gamma_0 + \gamma_1)/(1-\alpha_1)$ is because at equilibrium economic forces are in balance and there is no tendency to change, so that $Y_t = Y_{t-1}, X_t = X_{t-1}$. Substituting into the ADL gives

$$Y_{t} = \gamma_{0} X_{t} + \gamma_{1} X_{t} + \alpha_{1} Y_{t} + u_{t}$$

$$Y_{t} (1 - \alpha_{1}) = (\gamma_{0} + \gamma_{1}) X_{t} + u_{t}$$

$$Y_{t} = \frac{(\gamma_{0} + \gamma_{1})}{(1 - \alpha_{1})} X_{t} + e_{t}$$

$$Y_{t} = \beta_{1} X_{t} + e_{t}$$
(38)

The error term e_t differs from u_t because we have divided by $1-\alpha_1$.

From ADL to ECM

For the ECM, we can obtain this from the ADL model by noting that the parameters γ_0, γ_1 must sum to an arbitrary constant γ_2 . In other words

How the ADL and ECM are related

- If a cointegrating long run relationship exists, then there must be a stationary ADL and also an ECM representation in which all the variables are stationary.
- The ADL can have as many lags are as necessary to whiten the residuals u so that they are well behaved and simply 'noise', hence the standard t tests will be valid. With sufficiently long lags for X and Y we get more precise estimates of the long run parameter β_1 .
- In contrast directly estimating the cointegrating regression $Y_t = \beta_1 X_t + e_t$ is problematic because $\hat{\beta}_1$ is biased in small samples and t tests are not valid with I(1) variables.

From ADL(1,1) to ADL(p,q)

ADL(1,q)

$$Y_{t} = \alpha_{1}Y_{t-1} + \gamma_{0}X_{t} + \gamma_{1}X_{t-1} + \gamma_{2}X_{t-2} + \dots + \gamma_{q}X_{t-q} + u_{t}$$
(42)

ADL(p,q)

$$Y_{t} = \alpha_{1}Y_{t-1} + \alpha_{2}Y_{t-2} + \alpha_{3}Y_{t-3}... + \alpha_{p}Y_{t-p} + \gamma_{0}X_{t} + \gamma_{1}X_{t-1} + \gamma_{2}X_{t-2} + ... + \gamma_{q}X_{t-q} + u_{t}$$

$$(44)$$

The notation is becoming cumbersome, so let us simplify. It is useful to use a lag operator L (Stock and Watson, 2007, p. 634) to do this. Hence

$$L^{r}Y_{t} = Y_{t-r}$$

$$\alpha(L) = \sum_{i=1}^{p} \alpha_{i}L^{i} = \alpha_{1}L^{1} + \alpha_{2}L^{2} + \alpha_{3}L^{3} + \dots + \alpha_{p}L^{p}$$
(46)

Combining these gives

$$\alpha(L)Y_{t} = \sum_{i=1}^{p} \alpha_{i} L^{i} Y_{t} = \alpha_{1} Y_{t-1} + \alpha_{2} Y_{t-2} + \alpha_{3} Y_{t-3} + \dots + \alpha_{p} Y_{t-p}$$

$$(47)$$

So the ADL(p,q) becomes

$$(1 - \alpha L)Y_t = \gamma(L)X_t + u_t \tag{48}$$

Or

$$Y_{t} - \sum_{i=1}^{p} \alpha_{i} Y_{t-i} = \sum_{i=0}^{q} \gamma_{i} X_{t-1} + u_{t}$$
(49)

Additional variables in the ADL

variables $(X_1, X_2,, X_{g-1})$.

Rather than $(1-\alpha L)Y_t = \gamma(L)X_t + u_t$ for just one *X* and one *Y*,

we now have

$$(1 - \alpha L)Y_t = b_1(L)X_{1t} + b_2(L)X_{2t} + \dots + b_{g-1}(L)X_{g-1t} + u_t$$
(53)

With each b_i , i = 1, ..., g-1, comprising a vector of parameters appropriate to each

$$X_i$$
, $i = 1, ..., g - 1$.

Additional variables in the ADL

we do reject Ho: $\delta = 0$ in favour of $\delta < 0$ for INFLAT, since ADF-

INFLAT = -6.197** Critical values used in ADF test: 5%=-3.439, 1%=-4.019.

ADF-CONS = -3.034 which indicates that Ho: $\delta = 0$ should not be rejected in favour of $\delta < 0$ using critical values: 5% = -3.439, 1% = -4.019, We also find that $\delta = 0$ is not rejected for INC, since ADF-INC = -3.14 Critical values used in ADF test: 5% = -3.439, 1% = -4.019.

Additional variables in the ADL

```
EQ(95) Modelling CONS by OLS (using DATA.IN7)

The estimation sample is: 1953 (2) to 1992 (3)
```

```
Coefficient Std.Error t-value t-prob Part.R^2
                  0.830024
CONS 1
                            0.02401
                                      34.6
                                            0.000
                                                   0.8865
                            0.02759
                                                  0.6642
                  0.479933
                                      17.4 0.000
INC
                            0.03543 -8.78 0.000 0.3351
INC_1
                 -0.311087
                 -0.764010 0.1863 -4.10 0.000
                                                  0.0990
INFLAT
                 INFLAT 1
sigma
                  1.09463
                                           183.325319
                          RSS
log-likelihood
                  -235.937
                                                1.95
no. of observations
                          no. of parameters
                                                  5
                      158
mean(CONS)
                  875.848 var(CONS)
                                             181.971
CONS = + 0.83*CONS 1 + 0.4799*INC - 0.3111*INC 1 - 0.764*INFLAT
(SE)
       (0.024)
                   (0.0276)
                               (0.0354)
                                            (0.186)
      - 0.2303*INFLAT_1
       (0.206)
```