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and the link to housing prices are largely neglected. This paper attempts to fill these gaps and 

extend the literature in four ways. First, we argue that competition for land between firms and 

households will generate a potentially endogenous role for house prices, which we estimate 

using a GMM two-stage least squares spatial econometric model. Second, we model 

interaction effects between agglomeration and flood risk using a gravity-based measure of 

agglomeration. Third, our models utilise a high-resolution flood risk measure which 

incorporates both flood frequency and severity. Fourth, we use a high-resolution measure of 

employment to capture local effects of flood risk.  

 

Keywords: house prices, employment, firm location, agglomeration, flood risk, climate 

change 

 

 

 

 
Acknowledgements: 
This paper is based on research from the CREW (Community Resilience to Extreme Weather) project, 

funded by the UK Engineering and Physical Sciences Research Council. We are grateful to Aidan 

Burton and other CREW colleagues based at the University of Newcastle for providing the input 

variables necessary for estimation of the flood risk variable. We are also grateful to Nationwide, 

Experian and Ordinance Survey for data on house prices and neighbourhood characteristics. Finally, 

we would like to thank CREW researchers, stakeholders/advisors, and participants at the ERES 2011 

conference for their helpful comments. Any remaining errors are our own. 

                                                 
1
 Urban Studies, School of Social and Political Sciences, University of Glasgow, United Kingdom, 

email: yu.chen@glasgow.ac.uk 
2
 Department of Land Economy, University of Cambridge, United Kingdom,  

email: bf100@cam.ac.uk   
3
 Urban Studies, School of Social and Political Sciences, University of Glasgow, United Kingdom, 

email: gwilym.pryce@glasgow.ac.uk  
4
 College of Engineering, Mathematics and Physical Sciences, University of Exeter, United Kingdom, 

email: A.S.Chen@exeter.ac.uk   
5
 College of Engineering, Mathematics and Physical Sciences, University of Exeter, United Kingdom, 

email: s.djordjevic@exeter.ac.uk 

mailto:gwilym.pryce@glasgow.ac.uk
mailto:yu.chen@glasgow.ac.uk
mailto:bf100@cam.ac.uk
mailto:gwilym.pryce@glasgow.ac.uk
mailto:A.S.Chen@exeter.ac.uk
mailto:s.djordjevic@exeter.ac.uk


 2 

1. Introduction 

 

Half of all fatalities across the world due to natural disasters are the result of flood 

events (Fay, Block, Carrington, & Ebinger, 2009, p.28) and there are major economic 

costs associated with lost output, damage to property, equipment and infrastructure 

(Ciscar et al. 2011, p.3; Stern, 2006). Moreover, flood events and their impacts are 

likely to rise significantly for many cities due to global warming (Stern, 2006) which 

will cause sea levels to rise (as a result of thermal expansion of the oceans and 

melting ice sheets) and cause precipitation to be more variable and have greater 

extremes.  Given that cities have tended to emerge in close proximity to the coast or 

major rivers (McGranahan, Balk, & Anderson, 2007; Nicholls et al., 2007), these 

predictions raise serious concerns about the consequences of climate change for urban 

economies.  Floods are already the most common natural disaster in Europe 

(European Environment Agency [EEA], 2004) with rapidly rising economic impacts 

(Barredo, 2007). Concerns about future trajectories are likely to continue due to the 

anticipated rise in severity and frequency of extreme weather events (Christensen & 

Christensen, 2003; Frei, Scholl, Fukutome, Schmidli, & Vidale, 2006). Ciscar et al.’s 

(2011, p.3) estimates, for example, of the economic consequences of climate change 

for Europe, show significant increases in economic and welfare loss, particularly for 

the UK due to the coastal/floodplain location of many of its cities. In addition to 

climate change effects, there are other major drivers that lead to flood impacts in 

urban areas arising from urban development and socio-economic trends (Djordjević et 

al. 2011).   

Our interest in this paper is the impact of flood risk on urban employment, 

modelled at the small area level. Other things being equal, one would expect firms to 

aim to avoid flood hazards due to the disruption and damage that flood events cause to 
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the physical capital stock, supply chains and infrastructure. However, firms have to 

weigh up such costs against the benefits of potentially lower land rents associated 

with high flood-risk areas, rents that are determined by the competition for land 

between firms and households. There may also be offsetting benefits of locating near 

other firms—“agglomeration economies” (see Fujita & Krugman 2004)—which are 

also drawn to low land prices and repelled by the pernicious consequences of floods.   

Clearly, how firms respond to flood risk signals will be crucial to the 

economic impact of anticipated climate change. If firms are drawn to high flood risk 

areas because of lower land prices, then areas with increased flood risk will attract 

employment, and future flood events could affect many more firms. If, instead, firms 

tend, on balance, to be repelled by flood risk, then we might conclude that those areas 

predicted to have increases in flood risk will gradually lose employment over time, 

other things being equal. An important qualifying factor, however, is the extent to 

which agglomeration mitigates these effects. Such interactions, if valid, would imply 

heterogeneity across areas in the impact of the same increases in flood risk. Areas 

with strong agglomeration economies may be more robust to flood risk. 

While there exists some literature on the impact of floods or other natural 

disasters, such as hurricanes and tornados, on employment at regional and national 

levels (e.g. Ewing, Kruse, & Thompson, 2003; Leiter, Oberhofer, & Raschky, 2009), 

little research has been conducted on the impact of flood risk on employment density 

at the local level, and the link to housing price is almost entirely neglected in this 

context. Addressing these omissions will become increasingly important as flood risk 

projections become more ominous.  

Interdependencies between employment and residential land markets raise a 

number of methodological challenges for empirical estimation, however, not least the 

spatial dependency of employment-location, the endogeneity of agglomeration and 
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house price effects, and the need for high-resolution spatial measures of employment, 

house prices and flood risk. This paper attempts to contribute to this surprisingly 

under-developed, yet critically important field, by making progress on each of these 

issues using GMM (Generalised Method of Moments) estimation of spatial two-stage 

least squares models of local employment density with endogenous house price and 

agglomeration effects, utilising a high resolution measure of flood risk that accounts 

for both expected severity and frequency of floods in Southeast London.  

The remainder of the paper is structured as follows. Section 2 reviews existing 

evidence on the impact of flooding on employment and house prices. Section 3 briefly 

reviews the theoretical literature on firm location and land rent gradients, and draws 

insights from Lucas and Rossi-Hansberg (2002) and other models to articulate the 

hypotheses we seek to test in the empirical model. Section 4 summarises the 

econometric strategy marshaled to tackle the methodological challenges posed by the 

theory. In section 5, we describe the study area and data used in the study. Empirical 

results are presented in section 6. Section 7 concludes with a summary of findings. 

 

2. Review of the empirical literature 

The economics of firm location, and hence of employment location, has been a major 

theme in economics at least since Alfred Marshall (1890)
6
. The empirical literature 

has burgeoned in recent years (see review by Arauzo-Carod, Liviano-Solis, & 

Manjon-Antolin, 2010), with a growing number of studies that look at the impact of 

particular flood events on employment. There are, however, no studies that we are 

aware of that examine the effect on employment of flood risk. A further important 

limitation is the connection with the real estate sector. Many theoretical models 

                                                 
6
 See review by Arauzo-Carod et al. (2010), p.685. 
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include the competition for land as a core driver of industrial location (see section 3), 

but this has yet to enter the empirical literature on flood and employment location. 

Similarly, while agglomeration effects have been explored at length in urban 

economics and regional science, there do not appear to be any studies that examine 

the interaction between agglomeration and flood risks. There are also important issues 

of measurement, particularly in how, and at what scale, house price, flood risk and 

employment location variables are correlated. We explore these limitations of the 

literature in more detail below, first, in terms of the omission of endogenous house 

prices; second, the potential importance of agglomeration in mitigating flood risk; 

third, the measurement of flood risk; and fourth, the spatial scale of employment data. 

Consider, first, the interdependency between house price and employment. As 

noted, we are not aware of any previous study of the employment impacts of floods 

that allows for endogenous house price effects. As such, there may be simultaneity 

bias in existing work in this field. As we discuss in the next section, this omission 

may arise from a rather belated treatment of the co-dependency of house prices and 

employment in the theoretical literature—for a long time theoretical models assumed 

either firm location was endogenous, or household location was endogenous, but not 

both. However, the new synthesis of employment location theory and urban 

economics is unequivocal about the co-dependency of these two variables, even if the 

empirical literature has been slow to catch on. The failure to model endogenous 

effects may also be due to the growing use of spatial econometric models. Spatial 

econometric papers generally have tended to neglect the issue of endogeneity, other 

than that arising from spatial lags of the dependent variable (notable exceptions 

include Anselin & Lozano-Gracia, 2008; Fingleton & Le Gallo, 2008; Kelejian & 

Prucha, 2004, 2007).  
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A second issue is the potentially important mitigating effects of agglomeration 

(proximity to other firms) on the impact of floods. Whilst agglomeration economies 

are often not considered in studies using methods of difference-in-difference or time 

series (e.g. Leiter et al., 2009), they are widely discussed in industrial location studies 

(see Arauzo-Carod et al., 2010 for a review). According to urban economic theory, 

industrial concentration offers positive externalities for firms to reduce costs and 

improve productivities, through three major mechanisms, namely labour market 

pooling, input sharing and knowledge spillovers (Duranton & Puga, 2004; Marshall, 

1890). A thick and tight labour market assists firms to find suitable workers, and the 

concentration of firms enables them to share input suppliers, knowledge and ideas. 

The majority of empirical studies do find positive association between economic 

performance of firms and spatial concentration of economic activities (Arauzo-Carod 

et al., 2010), though the relative importance of the three mechanisms vary for 

different industries (Ellison, Glaeser, & Kerr, 2010; Glaeser & Kerr, 2009; Jofre-

Monseny, Marin-Lopez, & Viladecans, 2011; Rosenthal & Strange, 2003).  

The role and causation of agglomeration (economic concentration) in 

geographical space is the ‘defining issue of economic geography’ (Fujita & Krugman, 

2004, p.140). Intrinsic to its complexity and importance is that agglomeration: 

‘occurs at many geographical levels, having a variety of compositions. 

For example, one type of agglomeration arises when small shops and 

restaurants are clustered in a neighbourhood. Other types of agglomeration can 

be found in the formation of cities, all having different sizes, ranging from 

NewYork to Little Rock; in the emergence of a variety of industrial districts; 

or in the existence of strong regional disparities within the same country’ 

(Fujita & Krugman, 2004, p.140).   

 

This raises an important question for empirical analysis: whether a single 

measure of agglomeration is sufficient to capture its multi-faceted effects, particularly 
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the distinction between “local” effects—the benefits for firms of locating in the same 

neighbourhood, compared with the “global” externalities—the city-wide benefits of 

being located within the wider metropolitan area. Studies that do estimate 

agglomeration effects tend not to distinguish between global and local effects, and 

tend to assume—rather than estimate—the appropriate functional form of the 

distance-decay process associated with agglomeration (Fujita, Krugman, & Venables, 

1999; Graham, 2007). Moreover, we are not aware of any study that allows for 

interaction effects between agglomeration and flood risk, yet there may be theoretical 

reasons (see next section) to expect the impact of flood risk to be weaker the stronger 

the agglomeration effect, and vice versa.  

A third limitation of the literature is with respect to the measurement of flood 

risk effects on employment. While there are many studies of the effects of a particular 

flood event or other natural disaster (Baade, Barmann, & Matheson, 2007; Belasen & 

Polachek, 2008, 2009; Cuaresma, Hlouskova, & Obersterner, 2008; Ewing & Kruse 

2002; Ewing et al., 2003, 2009; Leiter et al. 2009; Sarmiento, 2007), we are not aware 

of any empirical employment models that estimate the effect of flood risk. This is an 

important omission because the effect of a particular natural disaster may be regarded 

by the market as a one-off event and therefore has very particular or limited long-term 

term effects.  

Indeed, some studies actually show a higher level of employment after a 

particular flood event. Ewing et al. (2003) reported that employment levels increased 

and regional labour markets became more stable following the 2000 tornado in Fort 

Worth. Using the 1999 tornado in Oklahoma as another natural experiment, Ewing et 

al. (2009) find negative effects on employment growth immediately after the tornado; 

but the drop was only temporary as the mean employment growth rate increased in the 
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post-tornado period. Leiter et al. (2009) also find that employment growth is 

significantly higher in those European regions which were hit by the 2000 floods, and 

such positive effects prevail for companies with a high share of intangible assets 

which could not be destroyed by floods, such as patents and trademarks. 

One explanation for the positive impact of floods on employment concerns 

rebuilding efforts financed by external sources, such as insurance claims and disaster 

relief funds. Another explanation is that older and less productive physical capital is 

updated and new technologies are adopted after the initial shock of a disaster (Ewing 

et al., 2009; Skidmore & Toya, 2002). Thus, natural disasters may be regarded as 

examples of Schumpeter’s processes of ‘creative destruction’, providing opportunities 

to replace old and obsolete capital stock with new and more productive one (Okuyama, 

2003).  

However, the implications of persistent vulnerability to repeated flooding, may 

be rather different from effects of one-off events, particularly if that risk is set to rise 

substantially and persistently in particular locations, as would be the case in the event 

of global warming (Ciscar et al., 2011; McGranahan et al., 2007; Nicholls et al., 2007; 

Stern, 2006). Moreover, endogenous house price effects may be an additional cause of 

rising employment in a particular area affected by floods if firms are less averse to 

floods and remediation than households. In summary, it is unclear what the existing 

employment literature tells us about the long-term effects of flood risk.  

In terms of the impact of flood risk on house prices, most studies agree that 

flood risk negatively influences house prices. For example, MacDonald, Murdoch, 

and White (1987) find that floodplain location lowers house prices by 6% to 8%, 

using data of home sales prices in Monroe, Louisiana. Skantz and Strickland (1987) 

show that property values in a floodplain in Houston, Texas, are reduced by 
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approximate 4%. Speyrer and Ragas (1991) reported that homes at high risk of 

flooding in New Orleans are valued 4.2% to 6.3% less than comparable flood-free 

homes. A recent study of Pope (2008) indicates that floodplain location results in 

house price discount of 3.8%-4.5% in North Carolina. Lower houses prices, 

controlling for type and size of dwelling, will imply lower land rents for firms and this 

will presumably have implications for firm location and employment density.  

However, there are studies that have found a positive impact of flood risk on 

house prices, though this is likely to be due to unmeasured amenities associated with 

proximity to rivers, such as waterfront views and access to leisure amenities. If 

insurance premiums do not fully price risk (as is the case in the UK) then such effects 

can easily offset the negative consequences of flood risk if not appropriately 

controlled for in econometric estimation (Morgan, 2007). Also, there may be 

distortions from failing to account for endogenous employment effects (which 

existing house price research on flood risk does not take into account, though there is 

a growing hedonic literature more generally that incorporates employment effects, 

such as the polycentric model of Osland and Pryce 2012), and from the relatively 

crude measures of flood risk employed in most of these studies (the flood risk variable 

was typically either binary—indicating, for example, whether a dwelling is located on 

a flood plain—or with a simple categorisation of flood risk, with no indication of 

variation in potential flood severity; and usually these measures relate to fluvial or 

coastal flood risk, with the assumption of zero probability of pluvial flooding).
7
 

Ideally, then, we would like to have a measure of flood risk that (a) is of high spatial 

resolution; (b) includes both fluvial and pluvial risk; and (c) captures not just 

frequency of flooding, but severity as well.  

                                                 
7
 see Chen, Pryce and Mackay (2011) for a more detailed survey of the housing economics literature on 

flood risk and climate change. 
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The fourth limitation we seek to highlight in the empirical literature is the 

measurement of employment. Existing studies (e.g. Belasen & Polachek, 2008; Ewing 

et al., 2009; Sarmiento, 2007) utilise a regional or county level aggregation measure 

of employment. This is problematic because it conflates the impact on specific 

localities worst affected by flood events and flood risks with the wider economic 

impact which may well be positive, as indicated above. Indeed, this failure to 

disentangle the local and regional effects may partly explain the apparent 

contradiction in the literature between those studies (listed above) which find positive 

effects of flood events on employment, and those which reported negative impact of 

floods or other natural disasters. For example, Garber, Unger, White, and Wohlford 

(2006) reported that Hurricane Katrina resulted in a 9.6% decrease on total nonfarm 

employment in Louisiana from September 2004 to September 2005; the industries of 

leisure and hospitality, education and health services, trade, transportation and utility, 

were particularly negatively affected. Using data on flood events and employment in 

1200 US municipalities during 1997 and 1999, Sarmiento (2007) finds that floods 

decrease local employment by an average of 3.4%. Belasen and Polachek (2009) 

employed data on hurricanes and employment in Florida between 1988 and 2005, and 

found that a high-intensity hurricane reduces employment by 4.76% while a low-

intensity hurricane decreases employment by 1.47%).  

 

3. Theoretical basis for linking real estate with employment 

location  

Until the P&T (Papageorgiou & Thisse) synthesis in the mid-1980s, firm location 

theory and urban economics had developed largely independently: ‘Whereas the 

former primarily seeks to determine supply characteristics given demand, the latter 

primarily seeks to determine demand characteristics given supply’ (P&T, 1985, p.20-
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21). The P&T model bridged the gap by permitting spatial interdependence between 

firms and households.  Unfortunately, the P&T model assumed that firms did not 

occupy land and so the potentially important implications of competition for land 

between households and firms were overlooked.  

Fujita’s (1988) model of monopolistic competition showed how market 

processes can generate spatial agglomeration, and this approach was extended by Liu 

and Fujita (1991) to allow land-use density to vary over the urban space. An important 

implication of that model for the empirical estimation of employment is that floor 

space equilibrium conditions require that ‘each unit of floor space must be occupied 

by either a household or firm which bids a higher floor rent at that location’ (Liu & 

Fajita, 1991, p.88). In other words, spatial competition between firms and households 

for land is a crucial driver of urban economic geography, where the market is cleared 

through adjustments to the price of land. The implication is that constant quality 

house prices are likely to be endogenous to employment location. Ceteris paribus, 

firms will be attracted to sites with low land prices. If the marginal loss associated 

with flood risk is higher for households than firms, then firms will tend to locate in 

high flood-risk areas. 

 Various theoretical models have since been developed where competition for 

land between households and firms has a similarly critical role. Of particular note is 

the LRH (Lucas & Rossi-Hansberg, 2002) model which conceives of a circular city 

where firms and households can locate anywhere (i.e. there is no prior assumption 

about central business district or suburban location for firms). Equilibrium is 

determined through the countervailing forces of firms seeking to locate near other 

producers (agglomeration benefits) and the costs commuting for workers. Without 

agglomeration benefits, ‘producers would disperse from cities to areas where land for 

production and residential use is cheaper’ (LRH 2002, p.1445).  



 12 

 Given this theoretical backdrop, what might we expect the implications of 

variable flood risk across the urban system? There are four key components of the 

LRH and related models likely to be affected. First, the utility of (and hence demand 

for) housing may be reduced at flood-prone locations, other things being equal. This 

will result in lower land prices in those locations, ceteris paribus. If firms are resilient 

to flood risk, or less affected than households, we might expect an increase in 

employment in areas with high flood risk because of the lower land rents. Failure to 

control for land price effects of flood risk in empirical models is therefore likely to 

lead to biased estimation of the direct effect of flood risk on employment location. 

Second, we might hypothesise that the long-run productivity of firms will be 

lower in high flood risk areas. Floods cause direct losses as a result of destruction of 

physical assets (Albala-Bertrand, 1993; Kahn, 2005) and labour shortage caused by 

human suffering (Leiter et al., 2009), as well as indirect losses due to disruption to 

companies up- and down-stream in the supply chain (Rose, 2004). Natural disasters 

can have deleterious long-term impacts on the local economy because disasters 

impede the accumulation of both physical and human capital stock (Skoufias, 2003). 

In the LRH model, a fall in productivity at particular location will result in a reduction 

of employment density. This in turn will increase commuting costs for households 

located in that area, which will then affect house prices, and have a feedback effect on 

firm location and employment density decisions.  

Third, we might expect flood risk to have a more potent effect where 

agglomeration economies are weakest. Where network effects between firms are 

strong, there is greater collective potential to adapt to flood events, and these effects 

may be non-linear. For example, if there are only two suppliers of a particular input to 

firm A, even a geographically limited flood event might sever all supply links to A. 
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However, if there are 20 potential suppliers of that input, the probability of all lines of 

supply being affected by a particular weather event will be disproportionately lower.  

Fourth, the pattern of flood risk might distort the geography of agglomeration 

benefits for a given set of firm locations. This is because flood risk may affect the 

interconnectedness between firms. For example, roads and railways which would 

otherwise be constructed as straight lines between two firms may have to take a 

circuitous route in a flood-prone topology. Similarly, there may be increased 

probability of disruptions to supply-chains and communications.  

We shall now distil these implications into a series of testable hypotheses. 

 

Hypotheses: 

H1:  Ceteris paribus, the effect of endogenous house prices on employment will be 

negative because of the competition for land. 

H2:   Because of expectations of the deleterious impact on productivity of flood 

events,  employment density will be low where flood risk is high. 

H3:  There is likely to be a positive interaction effect between flood risk and 

agglomeration because agglomeration economies may help firms be resilient 

to localised disruptions to input supplies and transport links. 

 

4. Econometric strategy  

We employ spatial econometrics  to capture spatial inter-dependence of employment. 

Our general specification of the employment equation is as follows: 

E = f(H, X, u),     (1)   

where,  
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P, WE, G, F
G

  H     (1.1)   

F, Z  X      (1.2)  

and where E, H and X refer to matrices of dependent variable (employment density), 

endogenous and exogenous independent variables, respectively; u is a potentially 

spatially dependent error term; P, G, F, and Z denote constant quality house prices 

(P), global (but distance weighted) agglomeration effects (G), flood risk (F), and 

other exogenous controls (Z), respectively. WE is spatially lagged employment, 

formed as the matrix product of matrix W and vector E,  which is included to capture 

localised agglomeration effects, and other factors (such as planning restrictions, 

topography, local effects) that affect the local pattern of employment location. Given 

n locations, W is an n by n contiguity spatial weight matrix with 1s and 0s indicating 

whether or not locations are contiguous (sharing boundaries). This is then subject to 

row standardisation, so that rows sum to 1. Standardisation implies that what is 

important is relative not absolute distance. The interaction effect between flood risk 

and agglomeration effects is given by F
G

, calculated through element by element 

multiplication of F and G.  We treat P, WE, G and F
G

 as endogenous variables, and F 

and Z as exogenous.  

Explanatory variables incorporated in Z include distances to transport nodes 

and CBD, population and property densities, and local deprivation. The choice of 

these variables follows the literature on firm location (Arauzo-Carod et al., 2010; 

Friedman, Gerlowski, & Silberman, 1992, Gottlieb, 1995; Moomaw, 1980;), which 

indicates that a firm locates where it maximizes profit, after weighing the benefits of a 

plant site, such as good access to transport and local public goods, proximity to 

amenities, and the cost components, including local wage rate, capital cost, tax rate, 

and costs of delivering inputs and outputs. As the variables of wage rate, capital cost 
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and public finance (e.g. tax rates and government expenditure) are fairly uniform 

across our study area, they are not included in our model. 

Because house prices and agglomeration variables are potentially endogenous, 

we face the challenge of how to account for this in a spatial econometric context. 

While the spatial lag is widely recognised as endogenous in spatial estimation, 

relatively few studies include other endogenous variables, as noted above. Given that 

“maximum likelihood of model with a spatial error process and endogenous 

variables … would be difficult, if not impossible, to implement” (Fingleton & Le 

Gallo 2008, p.320) we apply GMM estimation as advocated by Kelejian and Prucha 

(1998) and Fingleton and Le Gallo (2007, 2008).  

 Our estimation strategy is first to test the spatial independence of the residuals 

of an OLS
8
 2SLS

9
 model without WE and spatially dependent error terms, to 

ascertain whether it is valid to assume zero spatial autocorrelation. Second, if there is 

evidence of spatial dependence, we shall estimate GMM Spatial 2SLS models with 

and without WE, to establish whether WE should be included ( = 0 vs.   0). We 

shall also experiment with different spatial models to check whether the error term u 

is best modelled as an autoregressive (AR) or moving average (MA) process 

(Fingleton & Le Gallo, 2008). The AR process assumes that a shock in one place is 

transmitted to all other places in the sample, while the MA process posits that a shock 

in one place only influences neighbouring locations as defined by the non-zero 

elements in the spatial weight matrix W.  Finally, we shall compare the effect of the 

flood risk-agglomeration interaction term F
G

 using a continuous flood risk variable as 

well as a dummy variable of flood risk.  

                                                 
8
 Ordinary Least Squares 

9
 Two Stage Least Squares 
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The above mentioned variables are explained in more detail below. 

5. Study area and data 

Our study focuses on five boroughs in Southeast London: Greenwich, Bromley, 

Bexley, Lewisham and Croydon. It is an area with a concentration of employment and 

properties, and where detailed flood risk data were developed as part of the EPSRC 

Community Resilience to Extreme Weather (CREW) project. The study area has a 

population of 1.35 million, most of whom live in densely populated urban area 

(Community Risk Register [CRR], 2008). Compared to London as a whole and other 

major cities in England, Southeast London is a relatively affluent area. According to 

the Office for National Statistics (2008), 59% of the working population are employed 

in managerial positions, the same as in all of London but 7% higher than that in 

England as a whole. The home ownership rate in the study area is 65%, 8% higher 

than that in London. In terms of land use, the percentages of domestic and non-

domestic buildings (10%), water (3%), rail, road and path infrastructure (12%) within 

the study area are similar to other major cities in England. 

 

Flood risk data 

Due to climate change and rise in sea levels, Southeast London is at risk of both tidal 

and surface water flooding (pluvial flooding), as it is located near the Thames River 

(Thames Gateway London Partnership [TGLP], 2008). We use data on pluvial flood 

risk, because the Thames Barrier, a hard-engineered flood alleviation scheme, is 

reported to be adequate to protect London against a tidal flood with a one in 1000 year 

return period for the year 2030 (CRR, 2008). Pluvial flood risk data come from a 2D 

flood model built specifically for the 5-borough study area. The model was developed 
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to produce flood depth and frequency estimates at a 10m x 10m grid resolution, using 

data on rainfall, terrain, soil types and land uses (Chen et al., 2009). A 100-year 

continuous series of the spatially distributed rainfall data produced by the STNSRP 

model (Burton et al., 2010) was applied as a projection of the future rainfall scenarios. 

This series was filtered down into a number of isolated events that were deemed 

intense enough to cause any flooding. The outputs for each event were processed to 

create a Hazard Number (HN) variable originally designed to give a measure of the 

frequency of floods above a certain level of severity, based on information of flood 

depths and extent. These were then further spatially aggregated to Lower Layer Super 

Output Area (LSOA) level according to the following formula: 

 

HN = 2
(a+b+c)

 - (1-c), 

where, 

Parameter ‘a’ is defined by maximum flood depth (Dmax) within a LSOA unit as 

follows: 

      a =0                       for Dmax<=0.1m; 

           1                       for Dmax>=0.6m;  

Parameter ‘a’ is linearly interpolated for Dmax ranging from 0.1m to 0.6m. 

Parameter ‘b’ is defined by average flood depth (Davg) of the LSOA unit: 

       b =0                        for Davg<=0.1m;  

            1                        for Davg>=0.6m;  

Parameter ‘b’ is linearly interpolated for Davg ranging from 0.1m to 0.6m. 

Parameter ‘c’ is defined by the ratio of flooded area (Farea_r), where the flood depth is 

greater than 0.1m, to the area of the LSOA: 

      c =0                         for Farea_r<=0.2;  

           1                         for Farea_r>=0.5;  

Parameter ‘c’ is linearly interpolated for Farea_r ranging from 0.2 to 0.5. 
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Based on the definition, the HN of each LSOA is a value ranging from 0 to 8. 

A high HN represents an LSOA that is likely to be affected by high flood depths and a 

wider flood area. Floods with HN lower than one have negligible consequences. For 

the purpose of research presented in this paper, we define flood risk as the frequency 

of floods with HN greater than one in a time period of 100 years. About 70.6% of the 

LSOAs in Southeast London are subject to risk of floods with HN greater than one. 

The frequency of such floods in a hundred years’ time ranges from 0 to 12. Figure 1(a) 

shows an illustrative high resolution map with maximum simulated flood depths for 

one isolated rainfall event. A low resolution map of flood risk for a selected number 

of streets in the study area is presented in Figure 1(b) to illustrate the adopted 100-

year rainfall series. Figure 1(c) shows the borough boundaries in London and the 

location of the 5 boroughs for which the flood variables were computed. 

 

Figure 1: Flood Risk 
 

(a) Illustrative hi-resolution map-extract of maximum water depths for one flooding event  

 
(b) Low resolution map-extract for the frequency of hazard numbers for the 100-year 

rainfall series 

(c) Location of 5 Boroughs for which the flood variables were computed 

 

 

Employment and house price data 

We use employment density (number of employees per square kilometre) as the 

dependent variable thus controlling for area. Employment data come from the UK 

official labour market statistics database Nomis. In contrast to previous studies that 

model employment at a regional or national scale, we use a relatively disaggregated 

measure, i.e. at the LSOA level, to capture the local drivers of employment. The 

LSOAs have a minimum population of 1,000 and a mean population of 1,500. An 
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advantage of LSOA over postal sectors is that LSOAs are fairly consistent in size and 

boundary length across England.  

Housing price data are provided by the Nationwide building society. As the 

data are based at individual transaction level, we constructed a new variable of 

constant-quality house price, to control for property attributes. We achieve this by 

first estimating a house price surface for a typical property through hedonic models 

based on the transaction data, and then deriving prices for the typical property in 

different spatial locations. More details are provided in the results section and in the 

appendix. 

 

Agglomeration variable 

A simple gravity model (Hansen, 1959) suggests a measurement of agglomeration at a 

particular zone as an aggregation of numbers of jobs in other zones, discounted by the 

distance to each one. To improve flexibility, we define our agglomeration variable Gi 

as follows: 

Gi =  
j

bD

j
ijeE )(

)(*  

Dij refers to the distance between LSOA i and j; *

jE  is the number of employees
10

 at 

LSOA j; b is a scalar parameter, the value of which we determine empirically. A 

priori we assume b to be negative, with the contribution to agglomeration from more 

distant LSOAs to be relatively small, falling to practically zero at greater distances. 

One complication in measuring agglomeration is determining the geographic 

scale over which economic activities are able to generate externalities. The existing 

literature on agglomeration economies emphasises proximity, yet it is unclear about 

the exact definition of proximity, or any distance threshold beyond which 

                                                 
10

 Not to be confused with dependent variable E. 
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agglomeration economies disappear (Mion, 2004). It is agreed, however, that the 

measurement of connection with economic activities elsewhere should not be limited 

by administrative boundaries. We generated a 30-kilometre buffer around the 

boundary of the Greater London Area, and assume that employment in this wider 

region is related to job opportunities in Southeast London, with its impact decreased 

by distance. Altogether there are 8,327 LSOAs in this wider region. We then 

generated a distance matrix between each LSOA within the study area and 8,327 

LSOAs. After calculating the matrix of exp(bDij), the diagonal elements were set to 

zero before multiplying the numbers of employees, to ensure that the number of 

employment in an LSOA itself is not included in the agglomeration variable. The 

parameter of ‘b’ is estimated by a maximum likelihood grid search procedure using 

the employment model
11

. We experimented on values ranging from -5 to -0.1 with an 

interval of 0.002 (altogether 246 different values). The result shows that the most 

appropriate value for ‘b’ is -2.82. 

Other variables 

From the Ordinance Survey we obtained data on distances between dwellings, 

Euclidean distances from postcode centroids to the nearest transport nodes (e.g. roads 

and railway stations) and amenities (e.g. woodlands and rivers). These distances were 

then aggregated to LSOA level by taking average of those within a LSOA. We also 

derive the easting and northing co-ordinates of underground stations in the study area 

and use a dummy variable to indicate LSOA with at least one underground station. A 

summary statistics of all variables is displayed in Table 1. 

 

Table 1 Summary statistics of variables used in the study (N=841) 

 

 

                                                 
11

 The grid search procedure is based on an employment model without spatial lag and error terms. 
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6. Empirical results 

 

Surface hedonic derivation of constant-quality house prices 

 

In order to construct a variable of constant-quality house price for each LSOA, we 

estimate a surface of constant-quality house price for the study area, using Nationwide 

housing transaction data during 2006 and 2007. The following hedonic model is 

employed: 

 

Ln(P) = f(V1, x, y, x
2
, y

2
, xy,x

2
y, xy

2
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2
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3
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2
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3
, t, V2), 

 

 where Ln(P) is the natural log of house price, and t is the time period (month) 

in which the transaction takes place.  The vector of attributes V1 includes the number 

of bathrooms, number of bedrooms, property type, new-property, floor size, central 

heating, age, age squared, freehold, single garage, double garage, parking space. x and 

y are location co-ordinates, referring to easting and northing, respectively. V2 is a 

vector interactions of x, y and t, and their interactions with local authority dummies, 

year 2007 dummy, and all attributes (see Fik et al. 2003 and Pryce 2011 for 

applications of this type of model to spatial variation in house prices). Detailed results 

of model coefficients are in the Appendix. 

The model has a high R-square statistic of 0.8272. All attribute variables are 

significant and with expected signs. For example, more numbers of bedrooms and 

bathrooms, bigger floor size, new property, central heating and garage increase house 

prices; detached and semi-detached properties have higher prices than flats. This 

model is then used to estimate house prices of a typical property at locations with 

different x and y co-ordinates. A typical property in the study area, according to the 

Nationwide housing transaction data, is defined as a freehold flat with three bedrooms, 
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one bathroom, a floor size of 90.26 square metres, 72.9 years old, with central heating, 

but no garage or parking space. Consistent with the measurement of access-to-

transport variables at LSOA level, constant-quality house prices were first estimated 

at postcode centroids and then aggregated to the LSOA level by taking the average of 

those in a LSOA
12

. 

 

Employment models 

An initial baseline OLS employment model was estimated to establish whether there 

was prima facie evidence of spatial dependence. Using the OLS residuals, the Moran I 

statistic was computed to be equal to 0.0655 (p = 0.0001549). A more reliable test is 

obtained by treating log house prices and agglomeration as endogenous, using the 

Moran’s I statistic for two-stage least squares residuals (Anselin and Kelejian, 1997). 

This gives a test statistic equal to 0.376247 with p-value equal to 0.020788. Thus we 

reject the null hypothesis of zero spatial autocorrelation in the error term. We then 

estimated a variety of GMM/2SLS spatial models with AR (spatial autoregressive 

error) and MA (spatial moving average error) processes, with and without WE. There 

was very little difference between the AR and MA estimates and we therefore present 

only the results with AR error process, since the AR error process is the more 

typically adopted approach. The AR error process specification is u = Mu + e  in 

which u ~ iid(0,2
I).  

Our estimation method, which accommodates the spatial autoregressive error  

process together with several endogenous explanatory variables, is the feasible 

generalised spatial 2SLS procedure (FS2SLS) which is outlined by Fingleton and 

LeGallo (2007, 2008) and which is  based upon Kelejian and Prucha (1998). The 

                                                 
12

 We used an alternative approach and constructed a house price variable by estimating constant-

quality house prices in LSOA centroids. This variable is similar to the one used in the study and does 

not affect the results in the two-stage least squares models. 
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FS2SLS method involves three stages. First, two stage least squares residuals are 

obtained, ignoring the spatial error component. Next, GMM is used to estimate the 

parameters of the error process, applying a nonlinear optimisation procedure and 

moments conditions appropriate to an autoregressive process (see Fingleton, 2008 for 

the moments appropriate to a MA error process). Finally, in the third stage, the 

parameter estimate ̂  on the autoregressive error process is used to filter the spatial 

component from the data, using a Cochrane-Orcutt transformation, prior to consistent 

estimation again via two stage least squares.  Note that, because for some models we 

have an endogenous spatial lag (WE) and an endogenous error process, we have the 

possibility of invoking two different W matrices. In our analysis, the error process 

involves the standardised contiguity matrix M. The endogenous spatial lag also is 

based on a standardised matrix, but in this case exp( 0.2 )ij ijW D  with 0ijW  if 

exp( 0.2 )ijD <0.05, where ijD is the linear distance between locations i and j based on 

eastings and northings.  

Table 2 displays the resulting FGS2SLS estimates. There are six models, the 

first three include the endogenous spatial lag (WE) in the specification, and the 

remaining three models exclude it but are otherwise identical. Model 1 and model 4 

do not incorporate F
G

, an interaction variable of global agglomeration and flood risk; 

models 2 and 5 do include an interaction term based on a continuous flood risk 

variable, while models 3 and 6 specify the interaction using a dummy variable for 

flood risk. In these models, house prices (P), spatial lag of employment local 

agglomeration variable (WE), the global (but distance weighted) agglomeration 

variable (G) and its interaction with flood risk (F
G

) are treated as endogenous. Fitting 

these same specifications via standard two-stage least squares (that is omitting the AR 
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error process), the Hausman tests indicate (see Table 2) that local agglomeration (WE) 

is not endogenous, but the other variables are endogenous using a 10% level of risk.  

However, we retain global agglomeration in the set of endogenous variables 

because the interaction term is evidently endogenous, and since we treat flood risk as 

exogenous by definition, it appears that the source of this endogeneity will be global 

agglomeration. We therefore assume that the lack of identification of global 

agglomeration as endogenous is perhaps a statistical artefact rather than evidence that 

it is truly exogenous. The Hausman tests lead us to assume that these variables are 

indeed endogenous, and the 2SLS procedure is required for consistent estimation. We 

use distances to rivers and woodland and their spatial lags, and spatial lags of 

distances to transport nodes, as excluded instrument variables (IVs). The presence of 

more than one excluded instrument means that we have over-identification and can 

therefore test the validity of the instruments via the Sargan test. The results are mixed 

(see Table 2) although models 2 and 5 stand out as cases in which the Sargan statistics 

do not reject the null hypothesis, showing that the IVs are orthogonal to the 

disturbances.  We therefore focus on the estimates produced by these models (2 and 5).  

 

Table 2 Regression results 

 

Both versions of the preferred model (2 and 5) include the global (but distance 

weighted) agglomeration effects (G) and flood risk interaction (F
G

) with flood risk in 

continuous (that is, non-dummy) form, and which differ by the presence or absence of 

the endogenous spatial lag WE. We see that in both these models, flood risk has a 

statistically significant negative effect on employment density. Lower density of 

employment in places with higher flood risk could be explained by damage and 

expected losses associated with floods. The global agglomeration variable is found to 

be statistically significantly and positive in model 2, suggesting that firms prefer to 
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locate near each other to take advantage of business opportunities, though it is not 

statistically significant in model 5.  

Since model 2 is capturing remnant marginally significant (p < 0.01) spatial 

autocorrelation via the endogenous lag, which may otherwise represent an omitted 

spatially autocorrelated variable from model 5, model 2 is our finally preferred 

specification.  Under both models the interaction between agglomeration and flood 

risk is statistically significant, with the positive coefficient confirming our intuition 

that agglomeration economies mitigate the effect of flood risk on employment 

location.  

Under both models the endogenous house price effect appears to be 

insignificant.  This does not reflect weak instruments, as the majority of the p-values 

for correlation between the endogenous and exogenous variables are small enough to 

reject the null of no correlation, and the r-squared of the regression of the instruments 

on the endogenous variable log house price is equal to 0.803045.  Our assumption is 

that high house prices will raise land values and deter the presence of firms hence 

employment, but the negative effect of house prices on employment may have been 

cancelled out by other factors captured in the house price variable. For example, 

house prices may capture positive location effects that would attract firms that are not 

otherwise adequately accounted for in the employment model, such as the location of 

skilled workers or transport links. Thus, while high house prices may indeed be 

deterring employment, at the same time, high house prices may be a reflection of  a 

good supply of skilled workers and good transport links, thus offsetting the negative 

impact of land prices on employment density.  

Table 2 also shows that better access to transport nodes, especially A roads, 

underground and railway stations, stimulate greater density of employment. This 

finding is consistent with previous studies demonstrating that access to transport is 
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crucial for firms’ location choice. For both models 2 and 5 the coefficient of distance 

to CBD is found to be insignificant, probably reflecting the fact that the 

agglomeration affects associated with proximity to CBD are adequately captured in 

the gravity measure, G. The effect of deprivation on employee density is also not 

significant. This perhaps reflects the fact that many business location decisions tend 

not to be governed by the social status of the location where production might take 

place, but are more related to the location of other businesses which potentially 

provide pecuniary and other externalities that could enhance profitability, and these 

locations may be quite widely scattered across the entire conurbation and beyond. 

 

7. Conclusions 

This paper has sought to address a number of limitations in the existing 

literature by: (i) accounting for the potentially endogenous role for house prices 

arising from competition for land between firms and households; (ii) including 

agglomeration-flood risk interaction effects using a gravity-based measure of 

agglomeration; (iii) developing a high-resolution flood risk measure which 

incorporates both flood frequency and severity; and (iv) utilising a high-resolution 

measure of employment to capture local effects of flood risk. 

We have argued that, the extent to which firms respond to flood risk signals 

will have important implications for the economic effects of climate change in the UK 

and other countries where flood risks are anticipated to increase. If firms tend to be 

repelled by flood risk then we might conclude that those areas predicted to have 

increases in flood risk will gradually lose employment over time, other things being 

equal. A critical qualifying factor, however, is the extent to which agglomeration 

economies mitigate these effects.  



 27 

Our results appear to confirm the existence of negative impacts on 

employment location as a result of flood risk, thus supporting the hypothesis that 

firms are deterred from locating close to areas with high flood risk and consequent 

damage and disruption to productive activity. Our results also confirm that there are 

mitigating effects from agglomeration. The effect of house prices on employment is 

found to be insignificant, however.  

The interaction between agglomeration and flood risk has important 

implications for policy. It means that flood risk may have a more deleterious effect on 

employment in areas where agglomeration is weak. This means that policy makers 

cannot assume a uniform effect of future changes to flood risk as a result of climate 

change. Two areas could experience identical increases in flood risk but very different 

economic consequences because agglomeration economies are different. This 

complicates considerably the calculations for comparing the relative costs and 

benefits of flood defense interventions across different locations because it means that 

agglomeration economies will need to be taken into account when computing the 

economic benefits.  

The ongoing progress in the domain of flood risk communication will only 

strengthen our conclusions. As firms and households become more aware both of 

flood frequency and severity through such efforts, and as insurers face greater 

pressures (due to the systemic implications of climate change) to fully price risk and 

to ration provision in the most vulnerable areas, the sensitivity of employment density 

to flood risk is likely to increase over time. Similar arguments can be made for the 

likely increases in sensitivity of house prices to flood risk (Pryce, Chen & Galster 

2011). 
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APPENDIX:  

Constant Quality House Price Model  

 

We include property attributes, x and y co-ordinates and their squared and cubed 

terms, month, and all possible interaction variables, to derive a geographical surface 

allowing us to estimate a Constant Quality House Price for each LSOA.  Dummies for 

local authority and year are also incorporated to capture any step change effect in 

spatial and temporal dimensions. We adopt the general-to-specific estimation 

approach and used the significance level of 5 per cent to remove insignificant 

variables. The final regression model is displayed in Table A1 below. 

 

Table A1 Constant Quality House Price Model 

 

Independent variables Coefficients/Standard Errors 

x
2
y 2.25e-13*** 

 (2.45e-14) 

x
3
y -3.13e-19*** 

 (3.41e-20) 

xy
3
 1.08e-18*** 

 (1.19e-19) 

x
2
y

2
 -1.67e-18*** 

 (1.84e-19) 

x
3
y

2
 2.48e-24*** 

 (2.74e-25) 

x
3
y

3
 -2.48e-30*** 

 (2.78e-31) 

x(Dummy for Local Authority 2) 0.0038*** 

 (0.0004) 

txy_bathroom -3.05e-13*** 

 (8.62e-14) 

x_lnfloorsz -3.12e-06*** 

 (1.12e-06) 

x
2
(Dummy for Local Authority 2) -3.09e-09*** 

 (3.52e-10) 

y
2
(Dummy for Local Authority 2) 3.82e-09*** 

 (5.97e-10) 

x
2
y

2
(Dummy for Local Authority 2) -1.29e-20*** 

 (2.04e-21) 

x
2
(Dummy for Local Authority 4) -4.38e-11*** 

 (3.99e-12) 

x
2
(Dummy for Local Authority 5) -2.45e-09*** 
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 (1.77e-10) 

y
2
(Dummy for Local Authority 5) -2.36e-08*** 

 (1.71e-09) 

x
2
y

2
(Dummy for Local Authority 5) 8.20e-20*** 

 (5.91e-21) 

y
2
(bathroom) -7.20e-12*** 

 (2.20e-12) 

ty
2
(bathroom) 1.08e-12*** 

 (2.75e-13) 

t
2
x

2
(newproperty) -8.22e-16** 

 (3.26e-16) 

Number of bathrooms 0.1759*** 

 (0.0636) 

Number of bedrooms  0.0700*** 

 (0.0044) 

Detached property 0.2250*** 

 (0.0095) 

Semidetached property 0.0705*** 

 (0.0059) 

New property 0.2260*** 

 (0.0252) 

Ln(floor size) 2.1167*** 

 (0.6026) 

Central heating 0.0651*** 

 (0.0120) 

Age  0.0011*** 

 (0.0001) 

Age
2 

 -1.25e-06*** 

 (2.14e-07) 

Freehold  0.0826*** 

 (0.0065) 

Single garage 0.0877*** 

 (0.0062) 

Double garage 0.1319*** 

 (0.0139) 

Parking space 0.0550*** 

 (0.0058) 

Dummy for Year = 2007 0.0626*** 

 (0.0069) 

Dummy for Local Authority 2 (Bromley) -1126.5171*** 

 (114.9004) 

Dummy for Local Authority 3 (Croydon) -0.3822*** 

 (0.0342) 

Dummy for Local Authority 4 (Greenwich) 12.9099*** 

 (1.1833) 

Dummy for Local Authority 5 (Lewisham) 702.5505*** 

 (51.0427) 

Constant -910.4969*** 

 (99.3728) 

N 4916 
*Significant at 10%; ** significant at 5%; *** significant at 1%.  

Omitted (i.e. reference category) dummy variables are: flats, no garage and Borough Bexley. 
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Figure 2: Flood Risk 
 

(a) Illustrative hi-resolution map-extract of maximum water depths for one flooding event  

 
 

 

 

 

 

 

 

 

 

 

 
(b) Low resolution map-extract for the frequency of high hazard numbers for the 100-year rainfall series 
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(c) Location of 5 Boroughs for which the flood variables were computed 
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Note: (a), (b) and (c) each show different areas and are at different scales. Figure 1(a) depicts an illustrative map 

of flood depth of a particular event for a very small area, and the map image has been transformed to help 

preserve the anonymity of the streets shown. Figure 1(b) represents a considerably larger area and depicts the 

frequency of high HN values rather than a particular flood event. Figure 1(c) shows the borough boundaries in 

London and the location of the 5 Boroughs for which the flood variables were computed. 
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Tables: 
 

Table 1 Summary statistics of variables used in the study (N=841) 

 

Variable Mean Std. Dev. Min Max 

LN numbers of employees / km
2
 6.5418 1.2007 2.3384 10.6392 

LN constant-quality house price 12.4014 .1246 12.0726 12.9232 

Income deprivation .1672 .1062 .0129 .5593 

Agglomeration 3655.4760 3863.8720 4.4234 29453.2300 

Distance to A road 368.7027 326.4091 41.3145 2202.4600 

Distance to B road 904.4049 663.6203 54.8547 3479.8020 

Distance to motorway 10708.6000 3469.3260 1612.2030 16767.7900 

Distance to rail station 947.8918 799.5115 98.5323 6581.5550 

LSOA with subway station .0939 .2919 0 1 

Distance to CBD 15956.5400 4182.4410 6764.1040 26638.7300 

Flood risk 1.8500 2.0593 0 12 

Distance between dwellings 5.7369 3.7081 0 30.2541 

Population density 5937.7260 3200.4270 147.1444 18950.5700 

Distance to river 12577.9600 3816.4930 4168.8740 21304.2200 

Distance to woodland 2743.6410 1826.0180 111.6141 7484.9000 
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Table 2 Employment Density Regression Results 

Variables Model 1 Model 2 Model 3 

Local agglomoeration, WE -0.884787 

(-2.174914) 

-0.727337 

(-1.853279) 

-0.729283 

(-1.899910) 

Ln house price, P 0.130271 

(0.168999) 

0.049483 

(0.066239) 

-0.326599 

(-0.435694) 

Global agglomeration, G 0.000172 

(4.346957) 

0.000091 

(2.085505) 

0.000140 

(3.665982) 

Interaction of agglomeration 

and flood risk, F
G

 

- 0.000066 

(3.422051) 

0.000177 

(3.063213) 

Distance to nearest A road -0.000835 

(-6.257041) 

-0.000791 

(-5.911388) 

-0.000755 

(-5.696115) 

Distance to nearest B road -0.000094 

(-1.218508) 

-0.000062 

(-0.820446) 

-0.000079 

(-1.058432) 

Distance to motorway 0.000005 

(0.115300) 

0.000007 

(0.150760) 

-0.000005 

(-0.123891) 

Distance to railstation -0.000168 

(-2.389765) 

-0.000160 

(-2.307564) 

-0.000144 

(-2.116905) 

lsoa with station 0.386380 

(3.048185) 

0.320464 

(2.374716) 

0.374945 

(2.842419) 

Distance to CBD -0.000050 

(-0.901808) 

-0.000029 

(-0.535511) 

-0.000035 

(-0.655665) 

Floodrisk, F -0.045753 

(-2.350618) 

-0.235456 

(-4.013028) 

-0.131190 

(-3.869397) 

Distance between dwellings -0.016974 

(-1.268686) 

-0.017311 

(-1.253801) 

-0.018514 

(-1.356802) 

Population density -0.000035 

(-1.815453) 

-0.000035 

(-1.792244) 

-0.000034 

(-1.761623) 

Income deprivation 0.450839 

(1.028177) 

0.550885 

(1.231570) 

0.335696 

(0.759639) 

Lambda 0.205333 

(18.511811) 

0.132866 

(10.664825) 

0.121772 

(14.934978) 

Constant 9.277453 

(1.042652) 

9.967614 

(1.059728) 

14.190487 

(1.497248) 

N 841 841 841 

Diagnostic p-values:    

Sargan  0.00154581 0.170382 0.0530044 

Hausman WE 0.102357 0.102357 0.102357 

Hausman ln_house_price 0.0234306 0.0234306 0.0234306 

Hausman agglomeration 0.480984 0.480984 0.480984 

Hausman interaction of 

agglomeration and flood risk - 0.000462752 0.0658513 
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Table 2 Employment Density Regression Results (continued) 

 

Variables Model 4 Model 5 Model 6 

Local agglomoeration, WE - - - 

 

Ln house price, P 0.342991 

(0.467063) 

0.214588 

(0.297213) 

-0.161078 

(-0.224971) 

Global agglomeration, G 9.7999e-005 

(5.05937) 

2.96391e-005 

(1.09692) 

7.88601e-005 

(4.08043) 

Interaction of agglomeration 

and flood risk, F
G

 

- 6.72633e-005 

(3.56503) 

0.000177796 

(3.20982) 

Distance to nearest A road -0.000838 

(-6.47103) 

-0.000794 

(-6.05668) 

-0.000753 

(-5.85642) 

Distance to nearest B road -5.796e-005 

(-0.798148) 

-3.1551e-005 

(-0.434318) 

-4.7202e-005 

(-0.672796) 

Distance to motorway 8.17409e-006 

(0.189065) 

9.16273e-006 

(0.216161) 

-3.2566e-006 

(-0.0794287) 

Distance to railstation -0.000119 

(-1.84191) 

-0.000118 

(-1.84439) 

-0.000102 

(-1.63223) 

lsoa with station 0.414194 

(3.32274) 

0.339102 

(2.53731) 

0.396132 

(3.04107) 

Distance to CBD -2.3703e-006 

(-0.0484833) 

1.0383e-005 

(0.215421) 

4.0529e-006 

(0.0872567) 

Floodrisk, F -0.0448333 

(-2.34787) 

-0.236989 

(-4.1468) 

-0.131014 

(-3.99301) 

Distance between dwellings -0.0227856 

(-1.7694) 

-0.0221116 

(-1.65036) 

-0.0233901 

(-1.77526) 

Population density -2.2319e-005 

(-1.24586) 

-2.5197e-005 

(-1.34824) 

-2.4206e-005 

(-1.31685) 

Income deprivation 0.422762 

(0.987209) 

0.524373 

(1.19117) 

0.305319 

(0.706812) 

Lambda 0.180611 

(72.6992) 

0.114387 

(20.1765) 

0.0916093 

(105.708) 

Constant 2.12389 

(0.259222) 

3.67337 

(0.422029) 

7.99814 

(0.907697) 

N 841 841 841 

Diagnostic p-values:    

Sargan  0.000485505 0.0899364 0.0173073 

Hausman WE - - - 

Hausman ln_house_price 0.0234306 0.0234306 0.0234306 

Hausman agglomeration 0.480984 0.480984 0.480984 

Hausman interaction of 

agglomeration and flood risk - 0.000462752 0.0658513 
Dependent variable is employment density (E) 

t-statistics in parentheses. 

In Models 2,5 interaction of agglomeration and flood risk = agglomeration * flood risk; flood risk is continuous.  

In Models 3,6 interaction of agglomeration and flood risk = agglomeration * flood risk dummy variable; flood 

risk dummy variable is defined as one when the flood risk variable is greater than 1.  

 
 

 


