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Spatial panels 

• Panel data models allow the researcher to control 
for heterogeneity across individuals (people, 
firms, countries etc) 

• differences in ability, race or productivity  

• Spatial models allow for modelling externalities 
and spill-over effects 

• spend more money on police in one neighbourhood, you 
may increase the crime in an adjacent neighbourhood 

• Spatial panel models control for both 
heterogeneity and spatial interaction 



Spatial panels 

• With the increasing availability of micro as well as 
macro level panel data, spatial panel data models are 
becoming increasingly attractive in empirical economic 
research 

• spatial panel data applications 
– Does policing expenditures reduce crime across counties? 

see Kelejian and Robinson (1992) 
• Extra policing in one county may increase crime in neighbouring 

county 

– Is productivity across US states increased by public capital 
investment in roads  and highways? see Holtz-Eakin (1994) 

• Road improvement in one state may benefit producers in nearby 
states 



Two forms of error components  

• The recent literature on spatial panel data models with 
error components adopts two error processes 

• only the remainder/transient error term is spatially 
correlated but the individual effects are not (Anselin 
1988) 
– Individual/permanent effects can be random (RE) or fixed 

(FE) 

• both the individual/permanent and 
remainder/transient error components follow the 
same random spatial error process (Kapoor, Kelejian 
&Prucha, 2007) 
– Individual/permanent effects random (RE) 



Two forms of error process 

• Spatially autoregressive error process (Anselin, 
KKP) 

– SAR 

• Moving average error process (Fingleton, 
Baltagi & Pirotte, Pirotte) 

– SMA 

 



Six models 

• Models with no spatial autocorrelation in 
individual component, only in remainder 
– RE-SAR 

– RE-SMA 

– FE-SAR 

– FE-SMA 

• Models with spatial autocorrelation in both the 
individual and remainder component 
– SAR-RE 

– SMA-RE 
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Revision 
Kronecker product 



  λ is the scalar spatial autoregressive coefficient with | λ |< 1. W is a known N × N 
spatial weight matrix whose diagonal elements are zero 

Often W is binary, with wij  = 1 when i and j are neighbours and wij = 0 when they are not. 
 
Alternatively, W could be based on physical distances such as port to port or capital to capital,  
commuting distances, some measure of economic  distance or social distance, or distance  
on a network connecting points. 
 
The weights are commonly standardized so that the elements of each row sum to 1.  
 
W also satisfies the condition that ( I−  λW) is nonsingular 
 
Anselin (1988) provides more details on the properties of W 

Background to the equations 



Important difference from ordinary 
panel data 

• The data are ordered such that i = 1, . . ., N is 
the fast index and t = 1, . . ., T is the slow one. 



RE-SAR 
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Permanent component is random process 

I,W and B of dimension N 

SAR applies only to 
 transient disturbances 

I,W and D of dimension N 
SMA applies only to 
 transient disturbances 
 

Permanent, time constant Individual effects  
deterministic not random  

Permanent and transient error components. P. component 
introduces time dependency in the data, transient  
component differs across individuals (space) and times  



SAR-RE 
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SMA-RE 
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SAME spatial interaction applies to  
unobservable Individual heterogeneity  
(permanent component) 
AND to transient component 



estimation 

• Maximum likelihood 
– RE-SAR and RE-SMA typically estimated by ML(Anselin, 1988) 
– FE-SAR, FE-SMA see also Anselin(1988) 
– Many routines available on LeSage website 
– www.spatial-econometrics.com 
– And on Elhorst website 
– http://www.regroningen.nl/elhorst/software.shtml 
– Many other sources  such as   
– http://certur.free.fr/vgb/MatlabCodes.html 

• GMM 
– For SAR-RE suggested by Kapoor, Keleijian and 

Prucha(2007)….KKP 
– For SAR-SME suggested by Fingleton(2008) 

http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
http://www.spatial-econometrics.com/
http://www.regroningen.nl/elhorst/software.shtml
http://www.regroningen.nl/elhorst/software.shtml


More ML 

• Lee and Yu (2010) considered estimation of a 
spatial panel data model with individual-specific 
fixed effects, and proposed a ‘‘transformation 
approach’’ to eliminate the fixed effects and then 
apply quasi-ML to the transformed model 

• Yu et al. ( 2008) and Yu and Lee (2010) focused on 
the properties of the quasi-ML estimator in the 
case of dynamic, possibly nonstationary, panels 
with fixed effects and spatial error correlation, 
assuming both N and T large 

 



Focus on GMM 

• Why GMM? 
• ML estimation, even in its simplest form entails substantial computational 

problems when the number of cross-sectional units N is large 
• ML techniques requires the serial correlation processes of the error terms, 

if any, to be fully specified. In panels where N is relatively large this could 
be quite demanding 

• GMM allows multiple endogeneity 
• GMM method is less demanding but still requires moment conditions that 

correctly take account of specific spatial and serial correlation patterns of 
the errors 
– Kelejian and Prucha (1999) suggested a generalized moments (GM)estimation 

method which is computationally feasible even when N is large 
– Kapoor, Kelejian, and Prucha (2007) generalized this GM procedure from 

cross-section to panel data and derived its large sample properties when T is 
fixed and N→∞ 

– Fingleton(2008) extends this to MA errors 

Fingleton B (2008) ‘A Generalized Method of Moments estimator for a spatial 
panel model with an endogenous spatial lag and spatial moving average errors’  
Spatial Economic Analysis, 3 27-44 



Focus on GMM 

• GMM is concerned with the estimation of only some of the overall 
model parameters, namely those relating to the errors 

• The starting point is therefore the residuals from an initial  model 
(step 1) 

• These provide (consistent) estimates, via GMM, (stage 2) of  
 
 
 

• Given these, we find estimates of the other model parameters in 
step 3 

• The process for step 2 is very like that for GMM estimation of cross-
sectional data, but is more elaborate for panels because of the 
different moments equations 
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Step 2- GMM : preliminary tools 
0

1

0

( )

 is a x  diagonal matrix with 1s on the main diagonal 

and zeros elsewhere

is a similar x  matrix

 is a x   matrix of 1s

Given x1 vector , 

 is a x1 vector of deviat

T
T N

T
N

T

N

T

J
Q I I

T

J
Q I

T

I T T

I N N

J T T

TN

Q TN





  

 

1

ions from the time mean, 

where the mean is mean of  averaging over time
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       θ       time     place    timemean    Q0θ        Q1θ  

 

    1.0000    1.0000    1.0000    2.5000   -1.5000    2.5000 

    2.0000    1.0000    2.0000    3.5000   -1.5000    3.5000 

    3.0000    1.0000    3.0000    4.5000   -1.5000    4.5000 

    4.0000    2.0000    1.0000    2.5000    1.5000    2.5000 

    5.0000    2.0000    2.0000    3.5000    1.5000    3.5000 

    6.0000    2.0000    3.0000    4.5000    1.5000    4.5000 

 



GMM for SAR-RE 
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Moments equations 
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Substituting these expressions we obtain a 
system of six equations involving the second 
moments of ε etc.  This system involves λ etc 

and can be expressed as   
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In general the variances associated with the two separate 
right hand side terms differ, and Kapoor et al (2007) suggest 
weighting  to allow for this. However for simplicity we have 
not introduced differential weighting.  Kapoor et al (2007)  
note that giving equal weight to all six moments equations 
does give consistent estimates. 

Source : KKP 2007 
Fingleton 2008 

The equations underlying our 
GM procedures are the 
sample counterparts to the 
six equations based on 
estimated disturbances 



3 steps 

Step 1 : obtain consistent estimates of ε 

Step 2: estimate parameters of Autoregressive error process 

Step 3 : eliminate error dependence then estimate regression coefficients 

OLS if regressors exogenous, but 2SLS if endogenous 
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Estimation 

• 3 steps 

– (1) 2sls to obtain 2sls residuals 

– (2) Use OLS/2sls residuals to estimate via 

GMM 

– (3) robust IV to estimate regression 

parameters and t ratios 

• First carry out Cochrane-Orcutt transform 
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Feasible efficient GMM 

estimation 
* *
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Bootstrap estimation  

• Need an indication of λ value that would occur when there 

is no residual autocorrelation 

• provided by sampling at random (with replacement) from 

the residuals 

•  thus purging residuals of spatial dependence 

–  since the order of the sample of residuals is random, so 

neighbours in residuals will no longer typically be neighbours in 

the sample of residuals  

– The sample size equal to n and the probability of drawing a 

specific residual is equal to 1/n 

• then calculating λ using the randomly drawn set of 

residuals 

 



Bootstrap estimation  
• Doing this k times gives k λs, each one consistent with 

null of no residual autocorrelation  

• Ranking the k λs gives the empirical cumulative 

distribution function (or Bootstrap distribution) 

• Compare estimated λ with Bootstrap distribution 

• Reject the null if estimated λ is extreme with respect to 

its Bootstrap distribution 

– estimated λ is > 2 standard deviations away from mean of 

Bootstrap distribution 

– estimated λ may be close to the top ranked λ in the Bootstrap 

distribution  

• indicating that estimated λ will rarely occur when the 

residuals are random, suggesting that they are not 

random, i.e. spatially autocorrelated  
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One year of panel data : 2003 
 

n = 255    t = 9 (1995-2003) 



Estimates SAR-RE model 

λ estimate (AR error process) = 0.731368  σ2_v =0.0024103 σ2_1 = 0.199964 

 

      constant=6.84201          ln MP = 0.386          new entrants  =-1.32422 

 

 s.e. constant=0.3982    s.e.ln MP = 0.0399597  new entrants  =0.0724361  

 

      t constant=17.1825       t ln MP = 9.65972    t new entrants  =-18.2812  

 

sum of squared residuals = 148.556 

correlation between fitted and actual wages = 0.912692 

                   approximate t ratio for lambda 

estimated lambda =     0.7314 

 

mean of Bootstrap distribution = -0.0057 

 

standard deviation of Bootstrap distribution =    0.0453 

 

t_ratio_lambda =    16.0605 

Created by demo_5.m 

n.b. results differ 

each time because 

of different random 

draws 

 



Bootstrap lambda distribution  

Created by demo_5.m 

n.b. results differ 

each time because 

of different random 

draws 



Introducing endogenous 

variables 
• Consistent 2sls residuals used as input 

into GMM  

• Problem of finding instruments 

– lnMP is endogenous by definition 

– Empirical example uses region of area (sq 

km) and employment per sq. km as 

instruments 



Estimates SAR-RE model 

λ estimate (AR error process) = 0.73128 σ2_v =0.00242336 σ2_1 = 0.200278 

 

      constant=6.35297          ln MP = 0.435119         new entrants  = -1.30697 

 

 s.e. constant=0.791254    s.e.ln MP = 0.079462  new entrants  =0.076216  

 

      t constant= 8.02899      t ln MP = 5.47584   t new entrants  =-17.1483 

 

sum of squared residuals = 149.741 

 

correlation between fitted and actual wages = 0.91165 

                   approximate t ratio for lambda 

estimated lambda =     0.73128 

 

mean of Bootstrap distribution = -0.0031 

standard deviation of Bootstrap distribution =    0.0437 

t_ratio_lambda =     16.8011 

Created by demo_5.m 

n.b. results differ 

each time because 

of different random 

draws 



Bootstrap lambda distribution  

Created by demo_5.m 

 

n.b. results differ 

each time because 

of different random 

draws 



Introducing endogenous 

variables 
• Consistent 2sls residuals used as input into GMM  

• Problem of finding instruments 

• Simplest when instrumenting an endogenous spatial lag 

Wy 

– Wages (especially for similar work) tend not to be high and low 

in two nearby places, in-commuting will lower the high wages, 

and out-commuting will raise the low wages 

– Commuting can also cause efficient workers living in one place 

to affect labour efficiency in another place where they work, so 

that labour efficiency spills over  

• Use WX as instruments  
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Here for simplicity we assume that the matrix W applies to both 

The spatial lag and to the spatial error process.  

Alternatively, we could use another matrix M (with similar properties  

To W) to capture one of the spatial processes.   
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One year of panel data : 2003 
 



SAR-RE model : with Wy 

λ estimate (AR error process) = 0.659634  σ2_v =0.0038395 σ2_1 = 0.195991 

 

    constant= 8.13783     Wy =0.21753         ln ed = 0.054          n. entr. = -1.191 

 

 s.e. cons. = 0.6892  s.e. Wy = 0.0656   s.e.ln ed = 0.0092  s.e. n entr. =0.075  

 

      t cons. = 11.81        t  Wy =3.31            t ln ed = 5.79           t n entr. = -15.89  

 

sum of squared residuals = 126.0 

correlation between fitted and actual wages = 0.926562 

                   approximate t ratio for lambda 

estimated lambda =     0.659634 

 

mean of Bootstrap distribution = 5.6378e-004 

standard deviation of Bootstrap distribution  = 0.0492 

t_ratio_lambda =    13.3956 

Created by demo_6.m 

n.b. results differ 

each time because 

of different random 

draws 



Bootstrap lambda distribution  

n.b. results differ 

each time because 

of different random 

draws 

Created by demo_6.m 



prediction 

• Prediction is a difficult exercise 

• but ex ante prediction, in which the 

independent variables themselves have to 

be forecast, is even more so 

• . Ex post prediction, with independent 

variables known with certainty, is a more 

feasible and a valuable adjunct to 

assessing the performance of a model 



best linear unbiased predictor 

(BLUP) 
• Goldberger (1962) 

1
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Goldberger, A.S., 1962, Best linear unbiased prediction in the general- 

ized linear regression model, Journal of the American Statistical Asso- 

ciation 57, 369.375 



BLUP:RE model 

• Consider first the RE error components model, that is 

without any error autocorrelation, so that λ = 0 

• It can be shown that  
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This equation  

reappears later 

Adds a 

fraction of 

the mean 

residual for 

Individual i 



RE-SAR, RE-SMA 

• Baltagi & Li(2004,2006) 

• The spatial dependence is restricted to the 

transient disturbances 
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SAR-RE,SMA-RE 

• The spatial dependence (SAR or MA) 

occurs in both transient and permanent 

error components 

• The BLUP is identical to BLUP for the 

basic model with no spatial effects (BBP) 

 

 

• But the forecasts are different because the 

estimators are different (ML versus GLS 

residuals)  
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Example: prediction based on 

SAR-RE model 
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One year of panel data : 2003 
 

n = 255    t = 7 (1995-2001)  n.b. holding 2 years data to check ex-post forecast 



Estimates SAR-RE model 

λ estimate (AR error process) = 0.73642  σ2_v =0.00206186  σ2_1 = 0.156656 

 

      constant=6.34586            ln MP = 0.436234     new entrants = -1.3573 

 

 s.e. constant=0.775531    s.e.ln MP = 0.0786159  new entrants  = 0.0772075  

 

      t constant=8.1826      t ln MP =5.54893        t new entrants  =-17.5799  

 

sum of squared residuals = 120.12 

correlation between fitted and actual wages = 0.912934 
                    

Created by demo_7.m 



prediction based on SAR-RE model 
Created by demo_7.m 



prediction based on SAR-RE model 

Created by demo_7.m 



prediction for t + 1 

 

FIT_with_correction =     3.6150 

 

FIT_without_correction =    14.2162 

 

prediction for t + 2 

 

FIT_with_correction =     3.5328 

 

FIT_without_correction = 14.0978 

prediction based on SAR-RE model 

Created by demo_7.m 



Prediction for SAR-RE model : 

with spatial lag 
• Wy is endogenous, this leads to a 

specification 

 
1

2 2

1 1

1

1 1

1,..., ; 1,...,

~ (0, ) ~ (0, )

( ) ( )

ˆˆ ˆˆ( ) ( )

ˆˆ( ) ( ) ( ) (

N

it ij jt it it

j

t t t

t t t v

t N T N

t t t t

t t t T s T s

t t t T s

y W y x i N t T

W u

u v iid v iid

e B I B v

y Wy x

I W y x I W y x

y I W x y I W



  

  

   

 

  

      

   



 



 

 



    

 

 

   

  

      

    



1ˆ ˆ)T sx   


 



Prediction for SAR-RE model : with spatial lag 

1 1

2

, , 2
1 1 11

Both equations (1) and (2) are mathematically equivalent

ˆ ˆˆ(1)  ( ) ( ) Fingleton(2008)

ˆ ˆˆ(2)  Baltagi,Fingleton, Pirotte(2011)
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A proof that this is BLUP is available at 

www.spatialeconomics.ac.uk/textonly/SERC/publications/download/sercdp0095.pdf.

The relative performance of this com
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pared with other prediction equations is given in 

Fingleton B(2009) 'Prediction Using Panel Data Regression 

with Spatial Random Effects ' International Regional Science Review 32 195-220
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One year of panel data : 2003 
 

n = 255    t = 7 (1995-2001)  n.b. holding 2 years data to check ex-post forecast 



SAR-RE model : with Wy 

λ estimate (AR error process) = 0.673976  σ2_v =0.00301837 σ2_1 = 0.1507 

 

    constant= 8.19683    Wy =0.208964        ln ed = 0.0545         n. entr. = -1.245 

 

 s.e. cons. = 0.67086  s.e. Wy =0.064    s.e.ln ed = 0.0092  s.e. n entr. =0.075  

 

     t cons. = 12.22           t  Wy =3.26          t ln ed = 5.88           t n entr. = -16.70 

 

sum of squared residuals = 95.0976 

correlation between fitted and actual wages = 0.932038 

Created by demo_8.m 



Prediction for SAR-RE model : with spatial lag 

Created by demo_8.m 



Prediction for SAR-RE model : with spatial lag 

Created by demo_8.m 



prediction for t + 1 

 

FIT_with_correction =    12.7422 

 

 

FIT_without_correction =    24.2068 

 

prediction for t + 2 

 

FIT_with_correction =    13.9213 

 

 

FIT_without_correction =    25.1271 

Prediction for SAR-RE model : with spatial lag 

Note worse fit, but this model has an extra parameter estimated compared 

with the lnMP model  

Created by demo_8.m 



extensions 

 

• Dynamic 

 



Baltagi BH, Fingleton B and A Pirotte (2011) ‘Estimating and Forecasting 

with a Spatial Dynamic Panel Model’ SERCDP0095, Spatial Economics 

Research centre, London School of Economics 



Prediction with dynamic spatial panel 



Conclusion 

• ‘Econometric models are important tools 

for forecasting and policy analysis, and it 

is unlikely that they will be discarded in the 

future. The challenge is to recognise their 

limitations and to work towards turning 

them into more reliable and effective tools. 

There seem to be no viable alternatives’  

Hashem Pesaran(1990) 


