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Generalized Method of Moments 
(GMM) 

• 2sls is an instrumental variable approach 
which is encompassed by GMM 

– GMM allows overidentification (MM does not) 

• Enhanced efficiency of GMM 

 



GMM 

• Unlike ML the calculation of the estimator for 
very large data sets is quite straightforward  
– No calculation of determinant or  eigenvalues of W, 

unlike the maximum likelihood (ML) estimating 
procedure 

• Consistent estimates of the spatial 
autocorrelation parameter(s). The resulting 
estimates of  β and σ rely on the large sample 
properties of the feasible generalized-least 
squares (FGLS) estimator 



GMM 

• In 2sls the overidentification is handled by the 
projection matrix so that  

 

– This reduces the q instruments to the G needed as 
instruments for G endogenous vars 

• In GMM each instrument is used, with a 
weighting applied to increase the efficiency of 
the estimator 
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Generalized Method of Moments 
(GMM) 

• 2sls/GMM presents some problems 

• Difficulty of finding valid instruments 

• Relies on asymptotics, possible small samples 
may induce bias 

• Weak instruments may mean 2sls/GMM 
worse than OLS 

 



GMM 

1

~ (0, )

,  are  x 1,  is  x ,  is  x 1 

instruments  is  x   

moments m ( ) ( ) 0 1,...,

m ( ) is  x 1

averaging over 

1
( ) ( )

ˆGMM chooses  that solv

i i i i i i

i

N

i i i

i

y X iid

y N X N k k

Q N q q k

Q Q y X i N

q

N

m Q y X
N

  

 

  



 





  



     

 

es ( ) 0

ˆWe choose  so that all  elements of are as close to 0 as possible using

the function

ˆ ˆ ˆ( ) ( ) ( )

 is a  x  symmetrical weighting matrix chosen so that the elements of

ˆ(

GMM GMM GMM

G

m

q

J Nm Rm

R q q

J





  







) are as close to 0 as possibleMM



GMM 
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GMM for the spatial errors model 
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Step 1 : obtain consistent estimates of   



GMM for the spatial errors model 
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GMM for the spatial errors model 
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These equations and moment conditions in matrix form 
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The vector  contains the parameters to be estimated. 
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Step 2: estimate parameters of 
Autoregressive error process 



GMM for the spatial errors model 
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ˆduce . .

However this can be obtained via Bootstrap or by the method

of Kelejian-Prucha (1998) available in software sem_gmm.m

s e 

Step 3 : eliminate error dependence 
Then estimate regression coefficients 



GMM for the spatial errors model 
• the GM estimator is both consistent and 

asymptotically efficient Kelejian and Prucha 
(1998,1999)  

• Step 1:  The OLS residuals are used as 
predictors of ε.   

• Step 2: Once OLS has been estimated, the 
system can be solved for              using non-
linear least squares 

• Typically done via nonlinear least-squares 
estimation via a modified Newton-Raphson 
method which is suitable for minimizing any 
nonlinear function. This depends on 
numerical differences so there is no need to 
specify derivatives. 

•  Step 3: Once a solution for the spatial 
parameter is found, estimates for the vector 
of exogenous variables and model variance 
can be derived using feasible generalized 
least squares (FGLS).   

2ˆ ˆ, 



GMM for the spatial errors model 
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Fig. 2. Wage rates (relative to the mean) 
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Fig. 3. Employment density 

 



GMM for the spatial errors model 

Constant = 5.60714    emp. density = 0.0316163  

t constant=191.208  t emp. density = 6.76165  

lambda estimate (AR error process) = 0.556276 

                    lambda t ratio = 13.2035 

ML estimates 
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Created by demo_3.m 

Variable          Coefficient  Asymptot t-stat    z-probability  

const                5.653089       167.098250         0.000000  

emp. density         0.022036         5.003729         0.000001  

lambda               0.748979        21.960853         0.000000 

Created by demo_1.m 



GMM/GS2SLS for the SARAR model 

2

2

2

spatial error                          ~ (0, )

spatial lag               ~ (0, )

SARAR                      ~ (0, )

y X M u u iid I

y Wy X iid I

y Wy X M u u iid I

     

    

      

   

  

    

ML very challenging with large samples, requires distributional assumptions 
Consistent non-ML estimation available for all three models, i.e. GMM/2sls 
 
Kelejian and Prucha (1998) show that the estimator is asymptotically normal  
and consistent. It is not based on an assumption of a normal error process. 
The only alternative is ML, which is probably not  feasible  with large samples 
  

SARAR combines spatially lagged dependent variable with spatially 
Autocorrelated error term, also possible M = W 



GMM/GS2SLS for the SARAR model 
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Created by demo_3.m 



A GMM estimator for a spatial model with Moving Average 

errors  

• GMM estimator for spatial regression 

models with moving average errors  

• spatial lag  

• Bootstrap inference  

• application 

Fingleton B (2008)  ‘A Generalized Method of Moments estimator for a 

spatial model with Moving Average errors, with application to real estate 

prices’  Empirical Economics 34 35-57 



A GMM estimator for a spatial 
model with Moving Average errors 
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Figure 1: Shock effects with Figure 2 : Shock effects under 

AR errors   SARAR 

Figure 3: Shock effects with MA errors     Figure 4: Shock effects under SARMA 



ESTIMATING THE SARMA MODEL 
VIA GMM  

• feasible Generalized Spatial two stage 

Least Squares (GS2SLS) estimator for the 

parameters of the SARAR model : Kelejian 

and Prucha (1998)  

• GS2SLS  for SARMA model  



ESTIMATING THE SARMA MODEL 
VIA GMM  

• 3 stages, but key differences  

– new moments  

– different Cochrane-Orcutt type 

transformations – require matrix inversion 

– IV  

• because of spatial lag                    

 



New moments  : MA errors 
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nlinear leastsquares estimators are
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MA errors 



GMM for the spatial errors model 
2
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ˆThis does not produce . .

However this can be obtained via Bootstrap 

s e 

Step 3 : eliminate error dependence 
Then estimate regression coefficients 



GMM/GS2SLS for the SARMA model 
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Created by demo_3.m 



GMM/GS2SLS for the SARMA model 

Fingleton B (2008)  ‘A Generalized Method of Moments estimator for 

a spatial model with Moving Average errors, with application to real 

estate prices’  Empirical Economics 34 35-57 

For  

1.Monte Carlo demonstration 

2.Application to real estate 
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GMM/GS2SLS for the SARMA model  : 

Issues 

• choice of appropriate instruments  

• most efficient optimisation method  

• small sample properties of the estimator  

• evidence presented here does suggest 

that there is scope for the practical 

implementation via GMM of  SARMA  

models 


