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Generalized Method of Moments
(GMM)

e 2slsis an instrumental variable approach
which is encompassed by GMM

— GMM allows overidentification (MM does not)

* Enhanced efficiency of GMM



GMM

* Unlike ML the calculation of the estimator for
very large data sets is quite straightforward

— No calculation of determinant or eigenvalues of W,
unlike the maximum likelihood (ML) estimating
procedure

* Consistent estimates of the spatial
autocorrelation parameter(s). The resulting
estimates of B and o rely on the large sample
properties of the feasible generalized-least
squares (FGLS) estimator



GMM

* |n 2sls the overidentification is handled by the
projection matrix so that
W9 =Q(Q'Q)"Q'Wy = P,Wy
— This reduces the g instruments to the G needed as
instruments for G endogenous vars

* In GMM each instrument is used, with a
weighting applied to increase the efficiency of

the estimator



Generalized Method of Moments
(GMM)

2sls/GMM presents some problems
Difficulty of finding valid instruments

Relies on asymptotics, possible small samples
may induce bias

Weak instruments may mean 2sls/GMM
worse than OLS



GMM

y=Xp+¢ g ~11d(0,Q)

y,eareN x1, X isN xk, gisk x1

Instruments Q isN xq g=>k

moments m.(S) =Q's, =Q/(y, — X, ) =0 1=1..,N
m,(B)isq x 1

averaging over N

m(8) =1 > QU(Y, - X.)

GMM chooses 3 that solves m(3) =0

We choose /3 so that all g elements of are as close to 0 as possible using
the function

J (ﬂAGMM )= Nm(BGMM )’Rm(ﬁGMM )
R Is a g x g symmetrical weighting matrix chosen so that the elements of

J (,BGMM ) are as close to 0 as possible



GMM

This leads to £.,,, = (X QWQ'X)™ X QWQ'y

W = (N[Q'&8'Q]) ™ =(N[Q'QQ]) ™ in which ¢ are the 2sls residuals
and Q is the variance-covariance matrix of the error process. If the errors
are iid, W = (o21)™ and so is proportional to the identity matrix I.

In which case B = Bog = (XP,X)IXP,y



GMM for the spatial errors model

y=Xp+¢

g=We+u u~iid(0,5%l) Step 1 : obtain consistent estimates of &
U=e-AWeg=¢-1eg

Multiplying by W

U=Wu=¢-1g

squaring, summing and and dividing by N gives

N T (62806 - 28) = N8+ NS 52N 0 N

(2)N‘1i(a —A&)(E - 28)=N"Y EE+ANTY & -2ANT )Y EE=NT) O
i=1
Also

ONY (6~ A8 ~15) =N Y5 + ANV Y, 55 - AN Y, 5 4+ N ) =N YU



GMM for the spatial errors model

(1)N—1i(gi —28)(6—A8)=N"Y &+ A’NTD 5 -2ANTY g5 =N"> v/

(Z)N-li(a —Ag)(E-Ag)=N"Y E +A'NTY & -2ANTY Fe=N") O

Also B

(3)N‘1ZN:(gi —A8)E - A8)=N"Y 65 +AN'Y E&-ANTY 68 +N 'Y & )=N"D ug
MomerI]?s equations

ON u’ - E[%u 'u] = o’

(N> 07— E[%U'W 'Wu] :%Ztr(\NW)

@GN ul — E[%u 'W'u]=0



GMM for the spatial errors model

These equations and moment conditions in matrix form

gy =G, 0+V, (4, c°) Step 2: estimate parameters of
2 Autoregressive error process
Vy(4, o%)=9, -G08

where v, (1, &) is a vector of residuals, 8 =[1, 1°,5°7,

i 2 .~ 1,2 1 ..
—&'e —c'e 1 —c&'e
N N N
2 2~ A 12 2 1 1 ~ -
G, = —c'e —c'e —trW'W) |, =|—c'¢c
N N N N (W'W) |, g, N
A= AL -1, ~ £ 1 . -~
i(5'5+5'8) - g'e 0 —&'e
N N | | N |
E=y-Xf

The vector @ contains the parameters to be estimated.

The GMM estimator 6, is the @ that minimise v, (4, 62)' v, (4, o?)
hence (i, &2):arg min{vy (4, 02)' vy (4, o?)}



GMM for the spatial errors model

Given A and &2 do Cochrane-Orcutt transform

B=(l1-AW)

X" = BX Step 3 : eliminate error dependence
« Then estimate regression coefficients

y =By

then using X" =P, X"

,8 = (X "X )‘1X

To obtain standard errors of ,3

iy */ * -1
C:&ﬂx x}
se.f =+/diag(C)
t= Z —
s.e.3
This does not produce s.e.
However this can be obtained via Bootstrap or by the method

of Kelejian-Prucha (1998) available in software sem_gmm.m



GMM for the spatial errors model

 the GM estimator is both consistent and
asymptotically efficient Kelejian and Prucha
(1998,1999)

* Step 1: The OLS residuals are used as
predictors of €.

e Step 2: Once OLS has been estimated, the
system can be solved for 1,62 using non-
linear least squares

e Typically done via nonlinear least-squares
estimation via a modified Newton-Raphson
method which is suitable for minimizing any
nonlinear function. This depends on
numerical differences so there is no need to
specify derivatives.

e Step 3: Once a solution for the spatial
parameter is found, estimates for the vector
of exogenous variables and model variance
can be derived using feasible generalized
least squares (FGLS).



GMM for the spatial errors model
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Fig. 2. Wage rates (relative to the mean) Fig. 3. Employment density



GMM for the spatial errors model

ML estimates

y=Xp+e¢
Created by demo_1.m

e=AMWe+u y -
u~N(,oc?%)

Variable Coefficient Asymptot t-stat z-probability

const 5.653089 167.098250 0.000000

emp. density 0.022036 5.003729 0.000001

lambda 0.748979 21.960853 0.000000

GMM estimates

y=Xp+¢
e=We+u
u ~iid(0,0°)

Constant = 5.60714 emp. density = 0.0316163
t constant=191.208 t emp. density = 6.76165

P o Created by demo_3.m
lambda estimate (AR error process) = 0.556276

Tambda + ratio = 13 2035



GMM/GS2SLS for the SARAR model

spatial error y=XpfB+¢ g=AMg+u u~iid(0,c°l)
spatial lag ~ y=pWy+XB+e&  ¢~iid(0,0°l)
SARAR V= Ny +XB+e e=AIMe+u u~iid(0,c21)

SARAR combines spatially lagged dependent variable with spatially
Autocorrelated error term, also possible M = W

ML very challenging with large samples, requires distributional assumptions
Consistent non-ML estimation available for all three models, i.e. GMM/2sls

Kelejian and Prucha (1998) show that the estimator is asymptotically normal
and consistent. It is not based on an assumption of a normal error process.
The only alternative is ML, which is probably not feasible with large samples



GMM/GS2SLS for the SARAR model

SARAR y=pWy+XB+s e=AMe+u u~iid(0,0°1)
estimation of wage equation for UK
Wy constant employment density

p =0.270002 S, =2.90051 }, = 0.0346384
t ratios 6.99939 18.6668 6.6591

A4 =0.281005
t ratio 14.5595
62 =0.0190167

R? = 0.335855 Created by demo _3.m
R? = 0.332576



A GMM estimator for a spatial model with Moving Average

errors

« GMM estimator for spatial regression
models with moving average errors

 spatial lag
* Bootstrap inference
 application

Fingleton B (2008) ‘A Generalized Method of Moments estimator for a
spatial model with Moving Average errors, with application to real estate
prices’ Empirical Economics 34 35-57



A GMM estimator for a spatial
model with Moving Average errors

SARAR y=pWy+ X +¢ g=AMeg+u u~iid(0,0°l)
AR errors e=(1-AM)"u

MA errors e=(1-AM)u

SARARY = (1 — pW) ™ X B+ (1 — pW) (1 =AM ) U
SARMAY = (1 = oN) X B+ (1 = AN (1 = AM)u



Figure 1: Shock effects with

AR errors
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Figure 3: Shock effects with MA errors

Figure 2 : Shock effects under
SARAR
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Figure 4: Shock effects under SARMA




ESTIMATING THE SARMA MODEL
VIA GMM

 feasible Generalized Spatial two stage
Least Squares (GS2SLS) estimator for the
parameters of the SARAR model : Kelejian
and Prucha (1998)

e GS2SLS for SARMA model



ESTIMATING THE SARMA MODEL
VIA GMM

« 3 stages, but key differences
— new moments

— different Cochrane-Orcutt type
transformations — require matrix inversion

=\
* because of spatial lag



New moments : MA errors

MA errors

SARMA y=pWy+XpB+e e=u—AMu u~iid(0,c°l)
MA errors e=(1 —AM)u

e=U—-AMu=u-AU0

Multiplying by M

Me=g=0-A0

then squaring, summing and and dividing by N etc

AR errors

SARAR y=pWy+XpB+e e=AMe+u u~iid(0,5°l)
e=AMe+uU

U=¢—-AMe=¢- e

Multiplying by M

Mu=U=¢-1¢

then squaring, summing and and dividing by N etc



u— Ao MA errors

o—A0

N (U-AT)(U-AT) =n" (D uP+ A2 07 - 24 Ul = "ty e
N ([@-AT)(T-AT)=n"(Q T+ %D 0*-24) ou)=n"> &’

N (- AT - AT) =n" (D ul +A2D00 —AY 0P -AD ul)=n"D ez
E(Zuz) =0’

EQ . 0?)=o’Tr(MM)

EQ 0 =c’Tr(MMMM)

EQ um) =0

E>_ul) =o°Tr(MM)

EQ> ) =c’Tr(MMM)

n"(o? + A%’ Tr(MM) -240) =n"'E(D &%)

(e’ Tr(MM) + 226" Tr (MMM M) - 245°Tr(MMM)) =n"E(D_&?)
N0+ A2c’Tr(MMM) = 26°Tr(MM) - Ac*Tr(MM)) =n"E(D_ &%)

&

™|
Il



MA errors
n"(c? + A%’ Tr(MM) -240) =n"'E(D &%)
N (o’ Tr(MM) + Ao Tr(MMMM) =220 Tr(MMM)) =n"E(D_&?)
N0+ A%’ Tr(MMM) = Ac’Tr(MM) — Ac’Tr(MM)) =n"'E()_&¢)

G|:62 A’c® o’ —/10'2]’—91:4’(/1 o’)
t,=Tr(WW) t, =Tr(WWW W) t, =Tr(WWW) t, =Tr(WW)

t - APA T
1 + 0 0 _ £'€
N g nlE(ZEZ)—)
t ot 2t . I
LR
G=|n n e E )_>— =¢(1 oY)
—Ao
0 t_3 t_l t_4 1 2 A,_
n n nl|L7*0 1E(Zeg)—)

£(A  o?) is a vector of residuals and the nonlinear leastsquares estimators are

(1,6%) =argmin{¢ (1 )¢ (A o2)}



GMM for the spatial errors model

Given A and &2 do Cochrane-Orcutt transform

B=(1-AM)

X" =B1tX Step 3 : eliminate error dependence
. 1 Then estimate regression coefficients

y =By

P, =Q(QQ)"Q

then using X" =P, X"

,B = (X "X )‘1X

To obtain standard errors of ﬂ
A */ * -1
C:&{x x]

se.f" =./diag(C)
_F
se.f
This does not produce s.e.4
However this can be obtained via Bootstrap

t




GMM/GS2SLS for the SARMA model

SARMA y=pWy+XpB+s e=u—AMu u~iid(0,o°l)
estimation of wage equation for UK

Wy constant employment density
p = 0.242277 B, =4.20119 f3, = 0.0333281
t ratios 6.77136 20.8969 6.39442
A = —0.429009
&% =0.0197793
R? = 0.309222

B Created by demo_3.m
R* = 0.30581



GMM/GS2SLS for the SARMA model

For
1.Monte Carlo demonstration
2.Application to real estate

See
Fingleton B (2008) ‘A Generalized Method of Moments estimator for

a spatial model with Moving Average errors, with application to real
estate prices’ Empirical Economics 34 35-57



GMM/GS2SLS for the SARMA model :
|ssues

choice of appropriate instruments
most efficient optimisation method
small sample properties of the estimator

evidence presented here does suggest
that there Is scope for the practical
Implementation via GMM of SARMA
models



