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• In previous lecture we have seen how spatially 
autocorrelated residuals obtained from a 
cross-section regression can lead to variants of 
the spatial Durbin model 
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• We showed that there are problems estimating 
these models by OLS 
– With the spatial lag model, the parameter estimates 

are biased 

– With the spatial error model, the parameter standard 
errors and hence the t-ratios are biased 

• We now consider appropriate (i.e consistent) 
estimators  

• ML (maximum likelihood) 

• 2sls/IV/GMM 



Maximum likelihood 
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Consider now a small number of realizations of z, let us say z = [-3 -2.9 2.9 3]'.  The likelihood of these 

occurring is small. In fact it is the product 1 2 3 4( ) ( ) ( ) ( )L f z f z f z f z   
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iz  2

iz  2exp( )iz    

-3.0 -9 0.0001234   

-2.9 -8.41 0.0002226   

2.9 -8.41 0.0002226   

3.0 -9 0.0001234   

 2exp( )i iz    7.5486e-

016 

  -34.8200z z   exp( )   7.5486e-016z z   

 



the realization  z = [-0.2 -0.1 0.1 0.2]'  is much more likely 

 

iz  2

iz  2exp( )iz    

-0.2000 -0.04 0.9608   

-0.1000 -0.01 0.9900   

0.1000 -0.01 0.9900   

0.2000 -0.04 0.9608   

 2exp( )i iz    0.9048   -0.1000z z   exp( )   0.9048z z   

 



Maximum likelihood estimation is that set of 
residuals (in other words regression 
coefficients leading to the residuals) that 
maximises L.  

Assuming normal errors, this is precisely the 
same as minimising the sum of the squared 
residuals, ie OLS. 
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Likelihood for OLS residuals 
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One set of residuals will give one value L, 
another set another L value 



Spatial error model 
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Notice we now have A known as the determinant of A, which is sometimes known as 

the Jacobean of the transformation from u to  ; In fact A is the matrix of partial 

derivatives 
j

i

u






and   is a set of residuals for a given set of parameters of the model 

y X   (ie , ,   ), so we choose parameters , ,   that maximise L. 



Spatial lag model 
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Now A is the Jacobean of the transformation from   to y.  As above the maximum 

likelihood estimates are the set of values of 2, ,   that give the maximum value of 

L.  



likelihood ratio tests  

• The significance of either individual parameter estimates or of sets 
of parameter estimates can be assessed by likelihood ratio tests 

• a pair of nested models is compared, the second of which is 
identical to the first apart from k >=1 restrictions that have been 
placed on the parameters of the first model 

• The test essentially places on scale of zero to one the ratio of the 
likelihoods of the two models 

• The numerator is the likelihood of the model restricted under the 
null hypothesis, and is therefore at most equal to the denominator 
which is the likelihood of the unrestricted model  

• In practice one works with log LR and log LU which are the natural 
logs of the restricted and unrestricted models 
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model of wage rates by UALAD across GB. The 
dependent variable is the ln wage rate in each 
area, and this is dependent on the ln 
employment density (employment per square 
km) in each area.  The data and theory are 
discussed in more detail in Fingleton(2006).  

Fingleton B (2006) ‘The new economic geography versus urban economics : an evaluation using local wage 
rates in Great Britain’,  Oxford Economic Papers 58  501-530  





A) OLS model 

y X    
2~ (0, )N I   

  

                               ̂                    . .s e                      ˆ( 0) / . .t s e p value    
constant       5.4752363    0.023831146      229.75128              0 

emp. density 0.058332136    0.004319197       13.50532              0 

log-likelihood = 221.6148, df = n – k = 408 - 2 =406 
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Created by demo_1.m 



0 0 0 0.5 0 
0 0 0.1667 0.1667 0 
0 0.2 0 0 0 
0.1428 0.1428 0 0 0 

A portion of the matrix W 

W has 408 rows and 408 columns, here we see the first 4 rows and 5 columns 
 
These illustrate the hypothesised spatial interdependence of  regions 
 
Thus the value W(1,5) = 0.5 means that we assume there are two regions  
Interacting with region 1, since the matrix is standardised so that rows sum to 1 
 
Likewise region4 interacts with 7 regions, since 7 * 0.1428 = 1.0  
 
There are many alternatives to these hypothesised weights, but here only  
contiguous regions interact, otherwise the weight is 0 
 
 
 



B) Spatial lag model 

y Wy X      
2~ (0, )N I   

C) Spatial error model 

 

y X    

W u     
2~ (0, )u N I  

D) Unrestricted spatial Durbin model 

 

y Wy X WX        
2~ (0, )N I   

Variable          Coefficient  Asymptot t-stat    z-probability  

const                1.551050         7.848747         0.000000  

emp. density         0.024102         7.012217         0.000000  

rho                  0.709987        20.026740         0.000000 

Variable          Coefficient  Asymptot t-stat    z-probability  

const                5.653089       167.098250         0.000000  

emp. density         0.022036         5.003729         0.000001  

lambda               0.748979        21.960853         0.000000 

Variable            Coefficient  Asymptot t-stat    z-probability  

const                  1.885826         8.063784         0.000000  

emp. density           0.019625         4.447737         0.000009  

W*emp. density         0.014092         2.206810         0.027327  

rho                    0.643981        14.874570         0.000000 

loglikelihood = 468.2947 df = N – k = 408 – 4 = 404 

loglikelihood = 452.2114 df = N – k = 408 – 3 = 405 

loglikelihood = 465.5458 df = N – k = 408 – 3 = 405 

Created by demo_1.m 



Inference via Maximum likelihood 

• commencing with our most complex model, the spatial Durbin 
model (D), we are more likely to have well behaved errors 
that are consistent with what is assumed for ML 

–  This is referred to as the so-called top-down approach 

• impose the restriction to reduce from D to C (the Spatial error 
model) gives 
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Inference via Maximum likelihood 

• reduce from D to B, reducing the unrestricted 
spatial Durbin model to the Spatial lag model 

 

 

• reduce from D to A, reducing the unrestricted 
spatial Durbin model to the OLS model 
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Some limitations of ML 

• the calculation of  the determinant of A is a major computational 
problem for data sets that are medium size, meaning 1000 areas 
and above 

• Similarly there are problems in calculating the information matrix 
which provides the standard errors of the parameter estimates. This 
involves calculation of eigenvalues and inverses of large matrices 
that are not easily done for large samples 

•  the ML approach requires an explicit error probability distribution. 
A common assumption, which has been made here, is that the 
errors are normally distributed. However, this may not always be 
realistic 

• The standard single equation methods only allow one endogenous 
variable, Wy, but we may wish to introduce additional endogenous 
variables  
 



Two stage least squares (2sls or TSLS) 

• does not assume an explicit probability distribution for 
the errors so robust to non-normality 
– But not asymptotically the most efficient, ML more 

efficient when errors are normal, efficiency depends on 
instruments chosen 

• avoids some of the computational problems of ML 

• Allows several endogenous right hand side variables 

• Consistent estimates, so plim of estimates are true 
values 

• It is a familiar approach, being identical to 2sls in 
mainstream econometrics 

 



In general : 2 main reasons for endogeneity 

with cross-sectional data 

1. Simultaneous equations bias 

2. Omitted variables bias 

 

 

3. Also we might have errors-in-variables 
– This is when we cannot measure the true X variable, so that 

there is uncertainty attached to the measured value 

– See Le Gallo J, Fingleton B (2012) ‘Measurement errors in a 
spatial context’   Regional Science and Urban Economics 42 
114-125 for more on this…. 

 



1) Simultaneous equations bias 
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2) Omitted variable bias 
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3) Errors in variables  
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Suppose  is measured imprecisely by  but we want to

estimate the true relationship 

In fact using  the true relationship becomes
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Solving the problem 

• Endogeneity lead to inconsistent OLS estimation 

• Ideally we should eliminate measurement error, introduce omitted 
variables, estimate a system of simultaneous equations etc. 

• Often these solutions are not achievable in practice, thus…… 

• The solution is to use an alternative estimation method known as 
instrumental variables (IV) or equivalently two-stage least squares 
(2sls) 

• this involves replacing the endogenous variable(s) X, Wy (which are 
correlated with the error term) by ‘proxy’ variables. To do this we 
make use of (one or more)  instrumental variable, that is 
independent of the error term.   



Some conditions for a valid 

instrument 

• Let Wy  denote an endogenous variable (X 
could also be endogenous) 

• Instrument relevance:   corr(Q, Wy) ≠ 0 

• Instrument exogeneity: corr(Q, εi) = 0 

 

• Q may be a single variable or a set of 
instruments hence a matrix 



Two Stage Least Squares (TSLS) 

• Stage 1: Isolate the part of Wy that is 

uncorrelated with the error 
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Two Stage Least Squares (TSLS) 

 

 

ˆNext regress  on  (the predicted  from the first stage regression)

ˆ                    (2)
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In practice we do not need to carry out two 

stages, one stage is sufficient to get the 

same answer, making use of the projection 

matrix  

1ˆ ( ) HWy Q Q Q Q Wy P Wy  

Q is an N x q matrix of instruments. Matrix Q includes at least one instrument for the 

endogenous variable Wy , together with the other exogenous variables in the matrix X, 

including the constant, which act as instruments for themselves. 

The parameter estimates from the second stage regression 

are given by the 2sls estimator  
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estimated standard errors as the main 

diagonal of the asymptotic variance matrix 

given by 

where K is number of exogenous variables (including the constant) and G is the 

number of endogenous explanatory variables (here G = 1, corresponding to Wy). 

Notice here that in order to obtain the fitted values ŷ  we apply the 2sls parameter 

estimates to Z and not to Ẑ  



Instruments recommended by Kelijian and 

Prucha(1998) 
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Lee (2003) argue that in cross-section 

spatial autoregressive model, the 

optimal instruments are  

1( , ) ( , ( )) ( , ( ) )E X Wy X WE y X W I W X   

They show that this 2SLS estimator is 

consistent under some general regularity 

conditions 



Inference using 2sls  

• Statistical inference proceeds in the usual way. 

• The justification is (as usual) based on large samples 

• In large samples, the sampling distribution of the 2sls/TSLS 
estimator is normal.  

• Inference (hypothesis tests, confidence intervals) proceeds in the 
usual way, e.g. estimated coefficient value ± 1.96SE 

• This all assumes that the instruments are valid 

• Note however that the standard errors from the second-stage OLS 
regression are not valid, because they do not take account of the 
fact that the first stage is also estimated 

• So it is necessary to use a dedicated regression package that 
carries out 2sls with correct standard errors and hence t-ratios, 
rather than do two separate OLS regressions manually 



model of wage rates by UALAD across GB. The 
dependent variable is the ln wage rate in each 
area, and this is dependent on the ln 
employment density (employment per square 
km) in each area.  The data and theory are 
discussed in more detail in Fingleton(2006).  

Fingleton B (2006) ‘The new economic geography versus urban economics : an evaluation using local wage rates in Great Britain’,   
Oxford Economic Papers 58  501-530  

 



B) Spatial lag model 

y Wy X      
2~ (0, )N I   

C) Spatial error model 

 

y X    

W u     
2~ (0, )u N I  

D) Unrestricted spatial Durbin model 

 

y Wy X WX        
2~ (0, )N I   

Variable          Coefficient  Asymptot t-stat    z-probability  

const                1.551050         7.848747         0.000000  

emp. density         0.024102         7.012217         0.000000  

rho                  0.709987        20.026740         0.000000 

Variable          Coefficient  Asymptot t-stat    z-probability  

const                5.653089       167.098250         0.000000  

emp. density         0.022036         5.003729         0.000001  

lambda               0.748979        21.960853         0.000000 

Variable            Coefficient  Asymptot t-stat    z-probability  

const                  1.885826         8.063784         0.000000  

emp. density           0.019625         4.447737         0.000009  

W*emp. density         0.014092         2.206810         0.027327  

rho                    0.643981        14.874570         0.000000 

loglikelihood = 468.2947 df = N – k = 408 – 4 = 404 

loglikelihood = 452.2114 df = N – k = 408 – 3 = 405 

loglikelihood = 465.5458 df = N – k = 408 – 3 = 405 

Created by demo_1.m 



2sls estimates of spatial lag model 
Two Stage Least-squares Regression Estimates  

Dependent Variable =     y             

R-squared      =    0.6469  

Rbar-squared   =    0.6451  

sigma^2        =    0.0102  

Durbin-Watson  =    2.0804  

Nobs, Nvars    =    408,     3  

*************************************************************** 

Variable          Coefficient      t-statistic    t-probability  

Wy                   0.807218        11.407593         0.000000  

const                1.013644         2.589266         0.009965  

emp. density         0.019414         4.215630         0.000031 
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R-squared is ‘explained’ variance of y, 2ˆ( )Var y   as a proportion of total variance 

of y ( )Var y , and therefore is on a scale from 0 to 1. Because R-squared does not take 

account of how many variables there are, and may be high simply because there are 

lots of explanatory variables, it makes sense to control for this  



Multiple endogenous variables 
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 Data for 2003, taken from  

Fingleton B, Fischer M (2010) Neoclassical Theory versus New Economic Geography. 
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What is market potential? 

• Intuitively, it is the access to supply and demand at a 
particular location i.  

• It depends on the on the level of income and prices in 
each area i,j,k,l,m…. 

• However remoter areas (eg m) add less to the market 
potential of location i because of transport costs between 
m and i. 

• Where market potential is high, workers can bid up wage 
rates reflecting the advantages to producers in high 
market potential locations 



Dependent variable Y = log(GVApw) 

Model 2: OLS estimates using the 255 observations 1-255 

Dependent variable: lnGVApw 

 

             coefficient   std. error   t-ratio    p-value  

  --------------------------------------------------------- 

  const       -2.51682      1.19136     -2.113    0.0356    ** 

  lnMP         1.28870      0.117013    11.01     2.66E-023 *** 



Why is ln MP endogenous? 

NEG (new economic geography) theory gives a 

set on nonlinear simultaneous equations

involving wage rates and market potential 

wage rates depend on 

but   is partially determined by wage rates

M

iw MP

MP

MP

 It simply takes the value 1 or zero 

according to whether a region is in a new 

entry country 

Is there an omitted variable, also affecting wages? 

We propose that ‘New Entrants’ should also be entered into our model 

New Entrants 



Two reasons why lnMP and ε might be 

correlated 
• Simultaneous equations bias 

– Market potential ( lnMP) depends on wages (hence ε)  hence 

corr(lnMP, ε) ≠0 

• BUT also 

• Omitted variables bias : New Entrants 

–  New Entrants have low lnMP, so  

– corr(New Entrants ,lnMP) < 0 

– Since New Entrants is in ε,  

    corr(lnMP ,ε) ≠0  

• AND 

– New Entrants possibly depends on wages hence  

    corr(New Entrants , ε) ≠0  

• So to avoid ov bias, we need to introduce an extra 

‘endogenous’ var New Entrants  

 

 

 



Some instruments 

• Q1 =ln area of region in sq. km = ln(sqkm) 
• Sqkm is fixed, it is the area of the region and will not change 

in response to wage rates, or as a result of taking logs 

• Regions with smaller areas are cities, which are 

concentrations of economic activity with high market potential 

 

• Q2 =weighted average of log of areas of 

surrounding regions  in sq. km = Wa(ln(sqkm)) 
• Likewise, we do not alter the exogeneity by taking the 

weighted mean of  ln(sqkm) 

• Having ‘cities’ nearby will add to an areas market potential 

 

 



Some instruments 

 

• Q3 = log employment density  
– Equal to workers per square km 

– It may not be exogenous, we need to test this and the 

other instruments  



Typically  

• we have more than one rhs endogenous 

variable 

• we want to use more than one 

instrumental variable 



 
 

Why include additional 

instruments?  

 
• with more than one instrument each the 

coefficient is said to be overidentified in this case 

• In the case of just one instrument per 
endogenous variable,  2sls will work, we have in  
this case exact identification. 

• but if we had less than one instrument per 
endogenous variable, then this would not work, 
the coefficients to be estimated would be 
underidentified 



2sls with > 1 endogenous variable 

• Assume that whether or not a country is a new entrant 
depends on its GVA per worker 

• Then we have 2 endogenous variables. lnMP, 
new_entrant 

• The 2 stages are as before but 

• Take care that there are enough instrumental  variables 
so as to avoid under-identification.  

• With 3 instruments for our 2 endogenous variables we 
have overidentification 

• can test for the validity of the instruments via the Sargan 
test 



Two Stage Least-squares Regression Estimates  

Dependent Variable =      lnGVApw      

R-squared      =    0.8226  

Rbar-squared   =    0.8212  

sigma^2        =    0.0524  

Durbin-Watson  =    1.0356  

Nobs, Nvars    =    255,     3  

*************************************************************** 

Variable         Coefficient      t-statistic    t-probability  

lnMP                0.298355         2.840966         0.004865  

new_entrant        -1.210214        -3.694551         0.000270  

const               7.748651         7.001371         0.000000  

 

instruments 

ln_sqkm    

WA_ln_sqkm 

ln_empdens 

 

endogenous vars 

lnMP        

new_entrant 

Created by demo_2.m 



Sargan test 

• The Sargan test is a test of the validity of 

instrumental variables.  

• It is a test of the overidentifying restrictions. The 

hypothesis being tested is  

–  the instrumental variables are uncorrelated with the 

residuals 

– And therefore they are acceptable instruments. 

• If the null hypothesis is confirmed statistically 

(that is, not rejected), the instruments pass the 

test; they are valid by this criterion. 

 



Sargan test 

• Instruments should be independent of the errors 

• To test whether this is the case, we take the 2sls 
residuals as the dependent variable 
– 2sls residuals use the 2sls coefficient estimates and the original 

variables, not the instruments 

• Then take the instruments (Q) and the other exogenous 
variables as regressors 

• For valid instruments, the Q should be unrelated to the 
2sls residuals 
– This assumes that the set of regressors is correct and there is no 

model misspecification  

– For instance we assume that the instruments do not have a 
direct effect, are not regressors  

 



Sargan test : overidentifying restrictions  

• Overidentification is when we have more 

Instruments than endogenous variables 

• On its own each instrument will give a different 

estimate 

• But we expect valid individual instruments to 

give more or less the same estimates 

• If they differ, that suggests ‘something is wrong 

with the instruments’ 

 

 



Sargan test : overidentifying restrictions  

• They are called ‘over-identifying restrictions’ 

 because we test the null hypothesis that, 

 in the regression of the 2sls residuals depending on the 

regressors and Q,  

the coefficients on the set of instruments (Q) can be 

restricted to zero 

• This is what we would expect of all the 

instruments were valid, that is valid Q 

should be unrelated to the residuals  

 

 



Sargan test : overidentifying restrictions  

• It only works with over-identification, the test 

cannot be carried out with exact identification 

– If you have exact identification, and regress the 

instrument(s) on the 2sls residuals, the coefficient(s) 

is(are) exactly zero.  

– The same thing happens if you regress an exogenous  

variable on OLS residuals. By definition, the residuals 

are independent of the regressor, so you cannot test 

whether this is the case  

• Thus we need more instruments than 

endogenous variables 

 



Sargan test : overidentifying restrictions  

Sargan test 

 

LM test statistic is N*R
2 

N is the number of regions 

R
2
 is from the regression of the X variables and instruments on the 2sls residuals 

 

LM test statistic = 0.318418 

test statistic referred to 
2  

with degrees of freedom =  3-2 = 1 

 

degree of overidentification = no. of instruments-no. of end. vars = 3 - 2 

 

Hence 0.318418 has an upper tail probability = 0.57256 in 
2

1  

if tail probability below 0.05 (
2

1,0.05 3.84  ) then we reject the null and  

conclude that the instruments are endogenous and/or the model is misspecified 

Created by demo_2.m 



Wu-Hausman : checking the 

exogeneity of  variables  

• An exogenous variable does not need to 

be instrumented, an endogenous one 

does 

• Sometimes theory tells us that a variable 

is endogenous  (eg lnMP) 

• But we can also use diagnostics to tell us 

whether a variable is endogenous 



Wu-Hausman : checking the 

exogeneity of  variables  

• The test, often referred to as the Wu-Hausman 
test, comprises 2 regressions 

• Regression 1  
– (each possible) ‘endogenous’  variable is the 

dependent variable  

– the exogenous variables and the  instruments Q are 
the independent variables,  

– save the fitted values OR the residuals (both give 
identical conclusions) 



Wu-Hausman : checking the 

exogeneity of  variables  

• Regression 2 
– y variable is the dependent variable and ‘endogenous’, 

exogenous and fitted endogenous variable values (or residuals) 
are independent variables 

– If the fitted endogenous variables are  significant, then they carry 
explanatory information additional to that that already contained 
in ‘endogenous’ and exogenous regressors  

– The fitted endogenous variables are exogenous and consistent 
by definition 

– If the ‘endogenous’ variables are also exogenous & consistent, 
then the fitted endogenous variables will be redundant 

– If the fitted endogenous variables are significant, this suggests 
that the ‘endogenous’ variables are not exogenous and 
consistent, and thus are truly endogenous 



 regressions for Wu-Hausman test 

Model 9: OLS estimates using the 255 observations 1-255 

Dependent variable: lnGVApw 

 

                coefficient   std. error   t-ratio     p-value  

  ------------------------------------------------------------- 

  const          7.74865      1.09497        7.077    1.48E-011 *** 

  new_entrant   -1.13052      0.0610374    -18.52     8.43E-049 *** 

  lnMP           0.742390     0.173650       4.275    2.72E-05  *** 

  fvMP          -0.444035     0.202362      -2.194    0.0291    ** 

  fv_ne         -0.0796919    0.329784      -0.2416   0.8093    

 

 

Model 10: OLS estimates using the 255 observations 1-255 

Dependent variable: lnGVApw 

 

                coefficient   std. error   t-ratio    p-value  

  ------------------------------------------------------------ 

  const           7.12069     0.708099      10.06    3.20E-020 *** 

  new_entrant    -1.22644     0.0458748    -26.73    1.56E-075 *** 

  lnMP            0.360292    0.0692045      5.206   4.00E-07  *** 

 

Comparison of Model 9 and Model 10: 

 

  Null hypothesis: the regression parameters are zero for the variables 

 

    fvMP 

    fv_ne 

 

  Test statistic: F(2, 250) = 2.87768, with p-value = 0.0581311 

Created by demo_2.m 



Wu-Hausman : checking the 

exogeneity of  variables  

• This indicates (p = 0.058) that the two 

variables lnMP and new entrants possibly 

are endogenous 

• The outcome depends primarily on the 

significance of fv_lnMP 

• It is likely that new entrants could be 

treated as exogenous 

 



Weak instruments 

 

• we wish to avoid weak instruments, which 

itself leads to bias and size distortion 

(Stock, Wright and Yogo, 2002, Stock and 

Yogo, 2005 ) 

• our instruments should be sufficiently 

correlated with the endogenous regressors  

and  while remaining orthogonal to the 

disturbances 

 

 



Weak instruments 

 

• Weak instruments can lead to serious 

problems in IV regression: biased 

estimates and/or incorrect size of 

hypothesis tests, with rejection rates well 

in excess of the nominal significance level 

 

 



Weak instruments 

• The first stage regressions indicate that while the 

instruments are strong for lnMP they are weak for new 

entrants 

• lnMP 

• R-squared      =    0.7281    Created by demo_2.m 

• Rbar-squared   =    0.7248 

• new entrants 

• R-squared      =    0.0329  

• Rbar-squared   =    0.0213  

• However we treat new entrants as exogenous as a result 

of the Wu-Hausman test 


