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Aim of Course 

• To set out the basic approach of spatial 
econometrics 

• To illustrate the practices and usefulness of 
spatial econometrics for applied economists 

• To highlight some of the pitfalls  



Structure of course 

• Regression and spatial dependence 
– Residual Spatial autocorrelation 

• Modelling spatial dependence 
– Spatial lag model, Spatial error model,Spatial Durbin model 

• Estimation methods  
– Maximum likelihood estimation (ML) 
– Two stage least squares (2SLS) 
– Generalized Method of Moments (GMM) and Feasible Generalized Spatial 2SLS (FGS2SLS) 

• Spatial panel models 
– GMM, FGS2SLS, random effects and spatial dependence 
– Prediction  

 
  
• Focus on computational aspects and ‘how to do spatial econometrics’ in an 

applied sense – demonstration programs in MATLAB 



Session 1 

• The reasons for spatial econometrics :  

• Why spatial econometrics? 

• What is spatial econometrics? 

• Spatial versus time series 



Why spatial econometrics? 
 

• Spatial economics now widely recognised in the 
economics/econometrics mainstream  

• Krugman’s Nobel prize for work on economic geography 
• Importance of network economics (eg Royal Economic 

Society Easter 2009 School , on ‘Auctions and Networks’) 
• LSE ESRC Centre for Spatial Economics 
• Increasing policy relevance : World Bank (2008), World 

Development Report 2009, World Bank, Washington. 
• Importantly, much insight can be gained by using spatial 

econometric tools in addition to more standard time series 
methods 

• Time series methods and spatial econometrics come 
together in the analysis of spatial panels, which we will look 
at towards the end of the course 
 



What is spatial econometrics? 
 

• the theory and methodology appropriate to 
the analysis of spatial series relating to the 
economy  

• spatial series means each variable is 
distributed not in time as in conventional, 
mainstream econometrics, but in space.  

 



Spatial versus time series 
 

• DGP for time series 
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Spatial versus time series 

• DGP for time series 
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Spatial versus time series 

• DGP for time series 

 

 is a T x 1 vector 

 is a scalar parameter that is estimated

 is an T x 1 vector of disturbances
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DGP for time series 

 y Wy  

0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

W 

W is a TxT matrix with 1s on the minor diagonal, thus for T = 10 

The 1s  indicate  location pairs that are close to each other  

                        in time  



DGP for time series 

 y Wy  

Provided Wy and   are contemporaneously independent  

we can estimate  by OLS and get consistent estimates,  

although there is small sample bias.  

 



DGP for spatial series 

In spatial econometrics, we have an N x N W matrix 

  N is the number of places. 

The 1s  indicate  location pairs that are close to each other  

                        in space 

N= 353 

a portion of the W matrix for  Luton(1), Mid Bedfordshire(2),  

Bedford(3) , South Bedfordshire(4), Bracknell Forest(5),   

Reading(6), Slough(7),  West Berkshire(8),    

Windsor and Maidenhead(9), Wokingham(10) 

0 0 0 1 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 1 0 1 

0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 1 0 0 0 1 

0 0 0 0 1 0 1 0 0 1 

0 0 0 0 1 1 0 1 1 0 

W = 



DGP for spatial series  

District.shp

40703 - 89013

89013 - 129966

129966 - 176349

176349 - 274395

274395 - 639049

Residential property prices in England, 2001

N= 353 

We refer to these small areas 
As UALADs 

Fingleton B  (2006) ‘A cross-sectional analysis 
of residential property prices:  the effects of  
income, commuting, schooling, the housing 
stock and spatial interaction in the English 
regions'  Papers  in Regional Science 85  339-
361 



DGP for spatial series 
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DGP for spatial series 

                            y Wy    

 This is an almost identical set-up to the time series case 

 And one might think that it can also be consistently estimated by OLS 

 

 But now there is one big difference 

 

 we cannot estimate the spatial autoregression  by OLS 

 and obtain consistent estimates of  . 

 

 Reason - Wy and   are not independent. 

 

 Wy  determines y but is also determined by y. 

 

But more about this later…… 



Regression and spatial dependence 

• Typically in economics we working with 
regression models, thus  

 

 

• But in spatial economics typically the analysis 
is cross-sectional, so that  
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Regression and spatial dependence 

i ik k i

k

y x   

iy  = Observed value of dependent variable y  at location i ( i = 1,…,N) 
 

ikx = Observation on explanatory variable 
kx  at location i, with k = 1,…,K 

 

k = regression coefficient for variable kx  

 

i = random error term or disturbance term at location i 

Let us assume as in the classic regression model that the errors 
i  simply represent 

unmodelled effects that appears to be random. We therefore commence by assuming 

that  2( ) 0, ( ) , ( , ) 0i i i jE Var E        for all i,j . The assumption is that the errors 

are identically and independently distributed. For the purposes of inference we might 

specify the error as a normal distribution.   



Regression and spatial dependence 

• Writing our model in matrix terms gives 

 

 

 

 

 

• And spatial dependence manifests itself as 
spatially autocorrelated residuals 
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Residual Spatial autocorrelation 
 

• This term is analogous to autocorrelation in time 
series, which is when the residuals at points that 
are close to each other in time/space are not 
independent. 

• For instance they may be more similar than expected 
(positive autocorrelation) for some reason.  

• suggesting that something is wrong with the 
model specification that is assuming they are 
independent.  

• For example the errors/disturbances/residuals may contain 
the effects of omitted effects that vary systematically across 
space. 



Moran’s I 

• Based on W matrix 
• A spatial weights matrix is an N x N with non-zero elements  

in each row  i for those columns j that are in some way 
neighbours of location i 

• The notion of neighbour is a very general one, it may mean 
that they are close together in terms of miles or driving 
time, or it may be distance in some more abstract economic 
space or social space that is not really connected to 
geographical distance.  

• The simplest form of distance might be contiguity, with Wij= 
1 if  locations i and  j are contiguous, and Wij = 0 otherwise. 

• Usually (but not necessarily)  W is standardised so that all 
the values in row  i are divided by the sum of the row  i 
values.  



Calculating Moran’s I 
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data 1

   linear

Hence -0.1250= 0.5 x -0.35 + 0.5 x 0.1. 

think of Moran’s I as approximately the correlation between the two 
vectors          and   . We can show this for a 5 location analysis in graphical 
form, known as a Moran scatterplot. 

ˆW ̂



Average House prices in local authority 
areas in England (UALADs)  

 

District.shp

40703 - 89013

89013 - 129966

129966 - 176349

176349 - 274395

274395 - 639049

Residential property prices in England, 2001

N= 353 



Calculating Moran’s I in practice 

• Let us look at our map of house prices.  

• Can we build a model explaining this 
variation? 

• Do we have spatially autocorrelated residuals? 

– The presence of spatial autocorrelation would 
suggest there is some specification error,  

• either omitted spatially autocorrelated variable 

•  residual heterogeneity 

•  or a spatial autoregressive error process 

 



Calculating Moran’s I in practice 

1 1 2 2 3 3 4 4 5 5y X X X X X          

y = mean residential property price in each of N local authority areas 

1X = 1, the constant, an N x 1 vector of 1s 

2X = total income in each local authority area 

3X = income earned within commuting distance of each local authority area 

4X = local schooling quality in each local authority area 

5X = stock of properties in each local authority area 

 is a N x k matrix

 is a k x1 vector
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Dependent 

variable 

y 

  

  

  

  estimate t ratio 

Constant 

           (X1) 

  

-571.874 

  

-6.47 

Local income  

(X2 ) 

  

  

864.0059 

  

  

10.02 

Within-

commuting- 

distance income 

(X3) 

  

  

  

  

57.7055 

  

  

  

  

14.08 

Schooling quality  

(X4) 

  

175802.9235 

  

7.74 

Number of 

households 

 (X5) 

  

  

-0.7112 

  

  

-6.46 

R2 adjusted 0.567   

Standard Error   

42.113 

  

 

Moran's I 

  

0.39369 

   

11.29 

Degrees of 

freedom 

  

348 

  

the value for Moran’s I  is 11.29 
 standard errors above expectation. 
Expectation is the expected value 
 of I  under the null hypothesis  
of no residual autocorrelation. 
 It is clear that there is very  
significant residual autocorrelation.  

Created by demo_0.m 



Calculating Moran’s I in practice 

• What is W? 
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Calculating Moran’s I in practice 

• Unfortunately calculating Moran’s I is not easy 
without the help of software. I give the formulae 
below just to show how difficult this is! 
 
 
 

• We have seen all of these terms except  
• If we row-standardise, so that each row sums to 1 

then  
• So then  
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Calculating Moran’s I in practice 

• Given I, we need to compare it with what we would expect under 
the null hypothesis of no residual autocorrelation 
 
 
 
 
 
 
 
 
 

• These are the moments we would expect if the residuals were 
independent draws from a normal distribution 
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Calculating Moran’s I in practice 

• The test statistic is Z, which has the following distribution 
under the null hypothesis 
 
 
 

• if Z > 1.96 or Z < -1.96 then we reject the null of no spatial 
autocorrelation and infer that there is spatial 
autocorrelation in the regression residuals.  In making this 
conclusion, we should add the caveat that there is a 5% 
chance of a Type I error, false rejection of the null 

• In the case of our house price data, I is 19.96 standard 
deviations above expectation, a really clear indication that 
there is positive residual spatial autocorrelation 
 

( )
~ (0,1)

( )

I E I
Z N

Var I






Calculating Moran’s I in practice 

• Positive spatial autocorrelation is when residuals than are 
close to each other take similar values. Negative spatial 
autocorrelation would be when the residuals (coded black 
for negative and white for positive) formed a chequer 
board pattern if the regions were squares.  

• There are several alternatives to Moran’s I, and Moran’s I 
may also detect things other than spatially autocorrelated 
residual 
– Moran’s I will also tend to detect heteroscedasticity, that is 

when the residuals have different variances rather than a 
common variance.  

• However despite this it is the most famous and commonly 
used method of detecting spatial autocorrelation in 
regression residuals.  
 



Modelling spatial dependence 

• Say we have a significant Moran’s I static, what 
next? 

• We need to eliminate the spatial dependence 

• one way to do this is to introduce an 
autoregressive lag (spatial lag model)  
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Spatial lag model  

• Here I list the values of these variables for the 
first 10 of the UALADs. 

   district                       uaname          y          Wy 

         1.0                        Luton       87464      168313 

         2.0             Mid_Bedfordshire      138856      151526 

         3.0           North_Bedfordshire      117530      137574 

         4.0           South_Bedfordshire      126650      157673 

         5.0             Bracknell_Forest      167633      200166 

         6.0                      Reading      150094      186756 

         7.0                       Slough      126361      222769 

         8.0               West_Berkshire      209543      170172 

         9.0       Windsor_and_Maidenhead      273033      183066 

        10.0                    Wokingham      203059      205737 

We can check whether Wy is a significant 
variable by adding it to our model y Wy X    



Dependent 

variable 

y 

  

 ols 
  

  estimate t ratio 

Constant 

           (X1) 
  

-571.874 

  

-6.47 

Local income  

(X2 ) 
  

864.0059 

  

10.02 

Within-

commuting- 

distance income 

(X3) 

  

  

57.7055 

  

  

 14.08 

Schooling quality  

(X4) 
  

175802.9235 

  

7.74 

Number of 

households 

 (X5) 

  

 -0.7112 

  

-6.46 

 

 

R2 adjusted 0.567   

Standard Error   

42.113 
  

 

Moran's I 
  

0.39369 

   

11.29 

Degrees of 

freedom 

  

348 
  

Dependent 

variable 

y 

Spatial lag  

ML   
  

  estimate t ratio 

Constant 

           (X1) 
-541.135534 -8.02 

Local income  

(X2 ) 
  

393.33 

  

5.58 

Within-

commuting- 

distance income 

(X3) 

  

  

27.45 

  

  

  6.89 

Schooling quality  

(X4) 
  

149842.21 

  

8.61 

Number of 

households 

 (X5) 

  

-0.35 

  

 -4.10 

Spatial lag  

(Wy) 

  

0.6089 

  

14.90 

R2 adjusted 0.6330   

Standard Error   

32.13 
  

     

Degrees of 

freedom 

  

347 
  

Fingleton B  (2006) ‘A cross-sectional analysis of residential property prices:  the effects of  income, commuting, schooling, the housing stock and  
spatial interaction in the English regions'  Papers  in Regional Science 85  339-361 

 

Created by demo_0.m 



Direct, indirect and total effects in 
spatial lag model  

• With Wy, the true effect of a variable, which typically is not 
the same as β, as emphasized by LeSage and Pace (2009) 

• the effects on dependent variable  of a unit change in an 
exogenous variable , the derivative ∂y/∂X is not simply 
equal to the regression coefficient β 

• the true derivative also takes account of the spatial 
interdependencies and simultaneous feedback embodied in 
the model, leading to a total effect that differs somewhat 
(typically) from β  

• This derivative is somewhat complicated because it 
depends on the individual observations but can be 
represented by a mean   

• See also Corrado and Fingleton(2012) 

Corrado L. & Fingleton B.  (2012)  Where is the economics in spatial econometrics?    
Journal of Regional Science 52 210-239 
 



Direct, indirect and total effects in 
spatial lag model  

• Total effect = direct effect + indirect effect 
• So we can partition the average total effect into a direct 

and an indirect component  
• The average direct effect gives the effect of X on y when the 

locations of X and y are the same 
– direct effect is somewhat different from β because at location r, 

a change in X affects y, which then affects y at location s (s n.e. 
r) and so on, cascading through all areas and coming back to 
produce an additional effect on y at r 

• The difference between the total effect and the direct 
effect is the average indirect effect of a variable   

• The average indirect effect gives the effect of X on y when X 
and y are not in the same location 



Variable              Coefficient  Asymptot t-stat    z-probability  

const                 -541.135534        -8.023904         0.000000  

local_income           393.326396         5.577120         0.000000  

commuting_income        27.450614         6.894253         0.000000  

supply                  -0.353572        -4.104351         0.000041  

schooling           149842.210059         8.613959         0.000000  

rho                      0.608979        14.898820         0.000000  

 

Direct                Coefficient           t-stat           t-prob           

local_income           439.507710         5.895381         0.000000        

commuting_income        30.341573         7.244365         0.000000        

supply                  -0.394318        -4.179838         0.000037       

schooling           167313.290102         8.807929         0.000000     

 

Indirect              Coefficient           t-stat           t-prob      

local_income           578.415728         5.010304         0.000001     

commuting_income        39.749552         6.981685         0.000000       

supply                  -0.520811        -3.590056         0.000377       

schooling           222208.985696         4.900776         0.000001    

 

Total                 Coefficient           t-stat           t-prob       

local_income          1017.923438         5.870218         0.000000     

commuting_income        70.091125         8.466974         0.000000     

supply                  -0.915129        -3.999705         0.000077      

schooling           389522.275797         6.582510         0.000000   

Direct, indirect and total effects given lagged dependent variable 
ML estimates : spatial lag model 

Created by demo_0.m 



Spatial error model 

• a second way we may model the residual dependence detected by 
Moran’s I 

• spatial autocorrelation does not enter as an additional variable. But it is 
captured by the covariance structure of the errors 

• The linear regression with spatially autoregressive errors is the most 
relevant in many cases, since spatial dependence in the error term is likely 
to be present in most data sets for contiguous spatial areas 

 Usually in regression models we assume that 2( ) 0, ( )E E I    , which implies 

that for each area k the expected value of the error is 0, and the variance of the error 

distribution is 2 . We also assume no covariance across areas, so that ( , ) 0j kE     . 

The error at j is unrelated to the error at k, for all j,k. Now when we model spatial 

error dependence, we assume that ( , ) 0j kE    . 
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Dependent 

variable 

y 

  

 ols 
  

  estimate t ratio 

Constant 

           (X1) 
  

-571.874 

  

-6.47 

Local income  

(X2 ) 
  

864.0059 

  

10.02 

Within-

commuting- 

distance income 

(X3) 

  

  

57.7055 

  

  

 14.08 

Schooling quality  

(X4) 
  

175802.9235 

  

7.74 

Number of 

households 

 (X5) 

  

 -0.7112 

  

-6.46 

 

 

R2 adjusted 0.567   

Standard Error   

42.113 
  

 

Moran's I 
  

0.39369 

   

11.29 

Degrees of 

freedom 

  

348 
  

Dependent 

variable 

y 

Spatial error  

ML   
  

  estimate t ratio 

Constant 

           (X1) 
-412.944662 -5.87 

Local income  

(X2 ) 
  

291.17 

  

 3.15 

Within-

commuting- 

distance income 

(X3) 

  

  

49.06 

  

  

   7.83 

Schooling quality  

(X4) 
  

134152.03 

  

7.29 

Number of 

households 

 (X5) 

  

-0.29 

  

  -3.03 

Spatial error   

lambda 

  

 0.740976 

  

19.53 

R2 adjusted 0.7453   

Standard Error   

32.07 
  

     

Degrees of 

freedom 

  

347 
  

Fingleton B  (2006) ‘A cross-sectional analysis of residential property prices:  the effects of  income, commuting, schooling, the housing stock and  
spatial interaction in the English regions'  Papers  in Regional Science 85  339-361 
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The spatial Durbin model: a ‘catch all’ 
spatial model 

y Wy X WX      

y = the dependent variable, an N x 1 vector  

Wy = the spatial lag, an N x 1 vector 

X = an N x K matrix of regressors, with the first column equal to the constant 

 = a K x 1 vector of regression coefficients 

 = the spatial lag coefficient 

 = an N x1 vector of errors 

WX  is the N by K matrix of exogenous lags resulting from the matrix product of W 

and X 

  is the corresponding coefficient vector. 

This includes a spatial lag Wy and a set of 
spatially lagged exogenous regressors WX 

Restricting the parameters of the spatial 
Durbin leads back to the spatial lag model or 
to the spatial error model 



Variable               Coefficient  Asymptot t-stat    z-probability  

const                  -513.835677        -4.146915         0.000034  

local_income             -7.730616        -0.083091         0.933780  

commuting_income         40.795703         6.257112         0.000000  

supply                   -0.103221        -1.106877         0.268347  

schooling            134249.627896         7.733356         0.000000  

Wlocal_income           974.661531         6.096601         0.000000  

Wcommuting_income       -25.325850        -3.358633         0.000783  

Wsupply                  -0.496569        -3.109303         0.001875  

Wschooling             8596.323682         0.265708         0.790464  

rho                       0.621996        13.257551         0.000000  

 

Rbar-squared       =    0.6549  

Standard Error     =  873.1750^0.5 = 29.55 

spatial Durbin model : ML estimates 

Created by demo_0.m 



spatial lag
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Endogeneity of the spatial lag 

y Wy X    

yi depends on yk which is part of Wy 

yk depends on yi so is a cause of yi  via Wy and  a response to yi   hence also  



Endogeneity of the spatial lag 

 iy  depends on all other y s, including ky  

 because they are within Wy . 

 But ky  also depends on all other y s, including iy  

 because they are within Wy . 

 So Wy  determines 
iy  and is determined by it. 

 

 So we have to use the appropriate likelihood function 

 or 2sls to obtain consistent estimates. 
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to estimate  by OLS it is convenient to multiply 
through by x and sum over all i 
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So far we have been talking about bias, but it might be argued that this will 
disappear as the sample size gets large.  
In other words an estimator can be biased but consistent.  
 
In fact for our OLS estimator this is not the case. Summing over a larger 
number of cases increases both the numerator and the denominator in  

1

2

1

i i

i

i

i

x

x





So the bias cannot be removed by simply increasing the size of the sample. 
In order for an estimator to be consistent, it should tend towards 
unbiasedness as the sample size goes to infinity.  
 Using the OLS estimator this will not happen so the OLS estimator is both 
biased and inconsistent. 
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Consistent OLS estimation requires

plim ( ) a finite nonsingular matrix

plim ( ) 0

The first constraint can be satisfied with proper constraints 

on  and   (more about this later)
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econd condition does not hold for spatial data

Instead

plim ( ) plim ( )n Wy n W I W       

The existence of W leads to a quadratic form, so that the  
plim does not equal zero (unless ρ = 0) 



Inconsistency : simulation 

assume that we have 81 regions forming a 9 by 9 lattice (like a chessboard). Assume 

that with ijW = 1 if  locations i and  j are contiguous, and ijW = 0 otherwise 

regions are contiguous if they share an edge 

W is standardised so that all the values in row  i are divided by the sum of the row  i 

values 

y Wy X    

y = the dependent variable, an N=81 x 1 vector  

Wy = the spatial lag, an N=81 x 1 vector 

X = an N x K=3 matrix of regressors, with the first column equal to the constant, other 

two columns sampled from a uniform distribution 

 = a K x 1 vector of regression coefficients, values 1,4,5 

 = the spatial lag coefficient, value 0.75 

 = an N x1 vector of errors, drawn from an N(0,1) distribution  



Outcome of 500 Monte Carlo simulations, in each case drawing  
The errors from an N(0,1) distribution to obtain y, and then regressing y  
On Wy and X  



Spatial error model 
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Spatial error model 
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Typically the true standard error will be greater than the OLS s.e. 
and therefore using the OLS s.e. we will often reject the null hypothesis 
that β1 = 0 when we should not reject.  


