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Abstract

Z is gaining ground in the software development community as a specification
language, but there is at present no standard way of relating a Z specification
to program code. Hoare logics have been around for about 20 years. They
are well understood and widely taught as a method of proving that a program
meets its specification. In this paper I look at how a software development
might use both techniques and both notations to provide a path from a high-
level Z specification to program code. Rules and conventions for combining
the two notations are given and their use is illustrated by two case studies.

1 Introduction

The use of formal specification methods in general and Z in particular is gaining
ground in the programming community. Some evidence for this can be found in the
growing number of books available on the subject. Restricting my attention to Z,
recent years have seen the publication of the following textbooks: Ince (1988), Wood-
cock and Loomes (1988), Diller (1990), Potter, Sinclair and Till (1991), Lightfoot
(1991) and Norcliffe and Slater (1991). Spivey (1989) is a comprehensive reference
manual, the denotational semantics of Z is provided in Spivey (1988) and Hayes
(1987) is a collection of specification case studies.

The general approach to constructing and developing a formal specification is
now well established. First, a high-level specification is written employing math-
ematical data types the implementability of which is ignored for the time being.
Then a lower-level specification is written which makes use of data types that are
closer to the sorts of data type found in modern imperative programming languages
(like Pascal and Modula). Various proof-obligations have to be discharged in or-
der for the lower-level specification to be a correct refinement or reification of the
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higher-level specification.1 This process of decomposition may have to be repeated
several times. Eventually, a fairly low-level and concrete specification is arrived at.

At present, however, there is no universally accepted method within the Z com-
munity of obtaining a program from a low-level Z specification. Spivey (1989),
pp. 12–19, uses the reification approach; Morgan (1990) has devised a special refine-
ment calculus;2 while Wordsworth (1988) makes use of Dijkstra’s guarded command
language. In this paper I wish to suggest a different approach and that is to use
a Hoare logic to bridge the gap between a low-level Z specification and the pro-
gram that implements it. (Refining abstract specifications to concrete ones is still
done as mentioned above.) The use of Hoare logics is well understood. (See, for
example, the books by Alagić and Arbib, (1978), Gries (1981), Backhouse (1986),
Baber (1987), Gumb (1989), Dromey (1989) and Kaldewaij (1990).) In this paper
I show that it is straightforward to relate a program to a Z specification by means
of a few partial correctness specifications. (The complications found in chapter 10
of Jones (1986) arising from the combination of VDM specifications and Hoare log-
ics do not appear here. Sticking to a few simple conventions allows us to use the
standard form of a Hoare logic.) As the purpose of this paper is to show how Z can
be linked to a Hoare logic I do not attempt to compare the method presented here
with alternatives. That would be a suitable task for another paper.

Thus, the model of software development that I am proposing is as follows:3

Specification: using Z.

Data development: using Z.

Translation: new program variables are introduced and partial correct-
ness specifications are generated (containing dummy commands)
from the schemas of the lowest-level specification.

Implementation: suitable commands (from a programming language
of your choice) are worked out to satisfy the partial correctness
specifications and they are proved to meet their specifications.

The plan of this paper is as follows: In section 2 I present a concise statement
of the translation phase of the above model and in section 3 I list some rules that
I have found useful in manipulating the partial correctness specifications that are
generated in the translation phase. In section 4 I work through a small example
concentrating especially on showing how partial correctness specifications are gener-
ated from the schemas of a Z specification and in section 5 I apply this approach to
a larger example and for this I have chosen the specification of a computerised class
manager’s assistant found in King (1990). An appendix contains a brief account of
the Hoare logic rules and axioms that I use in this paper. Throughout this paper
I refer exclusively to partial correctness and I say nothing about total correctness.
The reason for this is that the purpose of this paper is to show how Z and a Hoare
logic can be combined. The method of combination that I present works both for
partial correctness and also for total correctness specifications. To discuss issues
of termination, however, would introduce a needless complication which would not
add anything to my account of how a Z specification can be combined with a Hoare
logic.

1Details can be found in Diller (1990), chapter 13, and Spivey (1989), pp. 3ff.
2King (1990) shows how the refinement calculus can be combined with a Z specification.
3Compare King (1990), p. 6.
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2 The Translation Phase

In this paper I show how a Z specification can be related to a programming language
by means of a Hoare logic. The essential features of the translation that I employ
are as follows:

(1) Program variables must be chosen that are different from all the variables used
in the Z specification we are trying to implement.4

(2) No specification variable can occur as a program variable.5

(3) Let Op be a Z schema. Then the partial correctness specification correspond-
ing to Op is {PreOp σ∧ ident} Γ {Op τ} where σ and τ are substitutions and
ident is a predicate built up as follows:

(a) For every input variable i? in Op, whose corresponding program variable
is I, both σ and τ must contain [I/i?].

(b) For every output variable o! in Op, whose corresponding program variable
is O, τ must contain [O/o!].

(c) For every variable having a before (x) and after (x′) form in Op ident
must contain a conjunct X = x and τ must contain a substitution [X/x′],
where X is the corresponding program variable.

The function of the predicate ident in (3) is to give an initial value to program
variables like X, which correspond to specification variables having both a before
and after form.

The reason for the separation that I make between specification and program
variables is that they are very different kinds of thing. A specification variable is
a mathematical variable whose meaning remains constant in any scope in which it
occurs; whereas a program variable can have many values inside a single scope.

3 Useful Rules

In working through a number of examples I have found the following rules useful.
Not all of them are used in this paper. The first three rules express results about
the interdeducibility of certain pairs of formulas:

A ∧ (A⇐⇒B) a` B ∧ (A⇐⇒B), (A)

¬A ∧ (A⇐⇒B) a` ¬B ∧ (A⇐⇒B). (B)

If 1 ≤ i, j ≤ n and i 6= j and Pj is x = y, then

P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn a` P1 ∧ . . . ∧ Pi[x/y] ∧ . . . ∧ Pn. (C)

Note that Pj occurs on both sides of this logical equivalence.

4The need to clearly distinguish between program variables and specification variables in a
Hoare logic is well explained by Nielson and Nielson (1992), p. 176, where specification variables
are called logical variables. Concerning them they say, ‘The role of these variables is to “remember”
the initial values of the program variables.’

5This does not apply to bound specification variables like i in (∃i: 1 . .NUM • CL i = S).
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The next group of rules concern properties of a Hoare logic. First, I have an
alternative version of the rule for introducing the conditional:

{P ∧ A} Γ1 {Q1} {P ∧ ¬A} Γ2 {Q2}
{P} if A then Γ1 else Γ2 {Q1 ∨Q2} (D)

This is proved straightforwardly from the standard rule for introducing the condi-
tional and postcondition weakening.

If P a` Q, then both the following hold:

{P} Γ {R} a` {Q} Γ {R}, (E)

{R} ∆ {P} a` {R} ∆ {Q}. (F )

These are easily proved using postcondition weakening and precondition strength-
ening.

If 1 ≤ i, j ≤ n and i 6= j and Pj is x = y, then both the following hold:

{P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn} Γ {Q} a` {P1 ∧ . . . ∧ Pi[x/y] ∧ . . . ∧ Pn} Γ {Q}, (G)

{R} ∆ {P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn} a` {R} ∆ {P1 ∧ . . . ∧ Pi[x/y] ∧ . . . ∧ Pn}.(H)

These follow by combining (C) with (E) and (F).
If B is a new Boolean-valued program variable not occurring in A, Γ1 or Γ2,

then:

{P} if A then Γ1 else Γ2 {Q} a` {P} B := A; if B then Γ1 else Γ2 {Q}. (I)

The final rule—rule (J)—states that the precondition operator distributes through

schema disjunction. Let S and T be schemas and SorT
∧
= S∨T . Then PreSorT and

PreS ∨ PreT are the same schema. This follows from the fact that the existential
quantifier distributes through disjunction. (Note that Spivey (1989), p. 72, defines

PreS
∧
= preS. Thus PreSorT is the same as pre SorT .)

4 A Small Example

4.1 The Specification

In order to illustrate how Z specifications can be related to programs by means of
a Hoare logic I shall consider a very simple specification as my example. This spec-
ification makes use of only one user-defined type, namely Report , which is defined
as follows:

Report ::= okay | out of bounds .

The state of this specification is given by the schema Table. This contains just one
variable t and no predicates. The variable t is an array of ten integers.

Table
t: 1 . . 10→ Z

The schemas ∆Table and ΞTable are defined in the usual way.

∆Table
∧
= Table ∧ Table ′,

ΞTable
∧
= ∆Table | t′ = t.
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In the initial state all the elements of the array t′ are 0.

InitTable ′ ∧
= Table ′ | ∀i: 1 . . 10 • t′(i) = 0.

Several operations will now be defined on this simple specification. The first, namely
CoreUpdate, just alters the value of one element in the array. The new value is
represented by v? and the number p? indicates which array element is being updated.

CoreUpdate
∆Table
p?: N
v?: Z

p? ∈ 1 . . 10
t′ = t⊕ {p? 7→ v?}

The schema Success is used to indicate the successful completion of an operation:

Success
rep!: Report

rep! = okay

The Update schema is then defined as follows:

Update
∧
= CoreUpdate ∧ Success .

The schema OutOfBounds specifies what happens when the variable p? is out of
bounds:

OutOfBounds
ΞTable
p?: N
rep!: Report

p? 6∈ 1 . . 10
rep! = out of bounds

The schema DoUpdate is then defined as:

DoUpdate
∧
= Update ∨OutOfBounds .

The second operation, namely CoreLookUp, finds out what the value of a particular
array element is. The position of the required element is given by p? and the result
is placed in v!

CoreLookUp
ΞTable
p?: N
v!: Z

p? ∈ 1 . . 10
v! = t(p?)
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The operation LookUp is then defined as:

LookUp
∧
= CoreLookUp ∧ Success .

The schema DoLookUp is then defined as:

DoLookUp
∧
= LookUp ∨OutOfBounds .

The third operation, namely CoreSum, sums together the values of all the elements
in the array and puts the result into the output variable out !

CoreSum
ΞTable
out !: Z

out ! =
∑
i: 1 . . 10 • t(i)

Summation is not part of standard Z as defined by Spivey (1989), but its meaning
is so clear that there can be no harm in using it in specifications.6 The operations
Sum and DoSum can then be defined like this:

Sum
∧
= CoreSum ∧ Success ,

DoSum
∧
= Sum.

4.2 Obtaining Partial Correctness Specifications

Given a Z schema, like Update, it is easy to derive a partial correctness specification
{P} Γ {Q} from it that any command Γ must satisfy in order to be a correct
implementation of the original Z schema. The Greek letter Γ here takes the place of
the command that we have to find in order to implement the Z schema we started
from.

The first step in deriving {P} Γ {Q} is to calculate the precondition schema of
Update. A precondition schema is obtained from a given schema by hiding all the
after and output variables. Thus, PreUpdate is given as follows:

PreUpdate
t: 1 . . 10→ Z
p?: N
v?: Z

∃t′: 1 . . 10→ Z; rep!: Report •
p? ∈ 1 . . 10 ∧ t′ = t⊕ {p? 7→ v?} ∧ rep! = okay

This can be simplified to the following form:

PreUpdate
t: 1 . . 10→ Z
p?: N
v?: Z

p? ∈ 1 . . 10

6The notation used to represent summation in the schema CoreSum was suggested by an anony-
mous referee.
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The next step in deriving the partial correctness specification is to chose some pro-
gram variables. These must be entirely new, that is to say, they must be distinct
from every variable occurring in our Z specification. In this paper I use the con-
vention that program variables are written entirely in uppercase letters. For the
schema Update in this Z specification I need the program variables T , P , V and
REP . These correspond to the specification variables t, p?, v? and rep! As Update
makes use of t′ the program variable T also corresponds to this in a way that will
soon become clear.

The precondition P of the partial correctness specification that we are after is
formed by constructing the conjunction of two predicates. The first conjunct is the
predicate part of PreUpdate with the program variables P and V substituted for the
specification variables p? and v?, respectively. The second conjunct is T = t. Thus,
the precondition that we are after is the predicate:

PreUpdate[P/p?][V/v?] ∧ T = t.

The postcondition of the partial correctness specification that we after is formed by
substituting the program variables P , V , REP and T for the specification variables
p?, v?, rep! and t′, respectively. Note that specification variables having a before
and after variety are treated in a special way. Thus, the postcondition we are after
is:

Update[P/p?][V/v?][REP/rep!][T/t′].

Putting all this together we obtain the partial correctness specification:

{P ∈ 1 . . 10 ∧ T = t}
Γ1

{P ∈ 1 . . 10 ∧ T = t⊕ {P 7→ V } ∧ REP = okay}.
(1)

Here, Γ1 represents the programming language command that we are trying to find
in order to implement Update. A suitable command Γ1 is not difficult to find. It is:

T := T ⊕ {P 7→ V }; REP := okay

The proof that this is indeed a correct implementation is straightforward using the
assignment axiom twice and the sequencing rule. The command T := T ⊕{P 7→ V }
is usually written in imperative programming languages as T [P ] := V .7

We go through the same steps with the schema OutOfBounds . First, we form
the precondition schema PreOutOfBounds :

PreOutOfBounds
t: 1 . . 10→ Z
p?: N

∃t′: 1 . . 10→ Z; rep!: Report •
p? 6∈ 1 . . 10 ∧ t′ = t ∧ rep! = out of bounds

This simplifies to the following:

7Using the notation T := T ⊕{P 7→ V } for altering the component of an array allows us to use
the usual Hoare logic axiom for assignment.
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PreOutOfBounds
t: 1 . . 10→ Z
p?: N

p? 6∈ 1 . . 10

The required partial correctness specification is:

{PreOutOfBounds [P/p?] ∧ T = t}
Γ2

{OutOfBounds [P/p?][REP/rep!][T/t′]},

which, when written out in full is:

{P 6∈ 1 . . 10 ∧ T = t}
Γ2

{P 6∈ 1 . . 10 ∧ T = t ∧ REP = out of bounds}.
(2)

And a suitable Γ2 is REP := out of bounds .
From (1) and (2) we can obtain—by means of rule (D)—the following partial

correctness specification:

{T = t}
if P ∈ 1 . . 10

then (T := T ⊕ {P 7→ V }; REP := okay)

else REP := out of bounds

{(P ∈ 1 . . 10 ∧ T = t⊕ {P 7→ V } ∧ REP = okay) ∨
(P 6∈ 1 . . 10 ∧ T = t ∧ REP = out of bounds)}.

The precondition of this is equivalent to PreDoUpdate∧T = t and the postcondition
to:

DoUpdate[P/p?][V/v?][REP/rep!][T/t′].

Thus, we could have achieved the same final result had we started from the schema
DoUpdate.

We can go through the same steps with the schema LookUp. First, we form the
precondition schema PreLookUp:

PreLookUp
t: 1 . . 10→ Z
p?: N

∃t′: 1 . . 10→ Z; v!: Z; rep!: Report •
p? ∈ 1 . . 10 ∧ v! = t(p?) ∧ t′ = t ∧ rep! = okay

This simplifies to the following:

PreLookUp
t: 1 . . 10→ Z
p?: N

p? ∈ 1 . . 10
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Thus, the required partial correctness specification is:

{PreLookUp[P/p?] ∧ T = t}
Γ3

{LookUp[P/p?][W/v!][REP/rep!][T/t′]}.

Note that I have used the program variable W to correspond to the specification
variable v! When written out in full this partial correctness specification is as follows:

{P ∈ 1 . . 10 ∧ T = t}
Γ3

{P ∈ 1 . . 10 ∧W = t(P ) ∧ REP = okay ∧ T = t}.
(3)

And a suitable Γ3 is W := T [P ]; REP := okay .8 The proof that this is indeed
correct is straightforward. Combining (2) and (3)—by means of rule (D)—gives us:

{T = t}
if P ∈ 1 . . 10

then (W := T [P ]; REP := okay)

else REP := out of bounds

{(P ∈ 1 . . 10 ∧W = t(P ) ∧ REP = okay ∧ T = t) ∨
(P 6∈ 1 . . 10 ∧ T = t ∧ REP = out of bounds)}.

Things are slightly more interesting when we come to the operation specified by
the schema Sum. First, we work out the precondition schema PreSum:

PreSum
t: 1 . . 10→ Z

∃t′: 1 . . 10→ Z; out !: Z; rep!: Report •
out ! =

∑
i: 1 . . 10 • t(i) ∧ t′ = t ∧ rep! = okay

This simplifies to the following:

PreSum
t: 1 . . 10→ Z

The partial correctness specification that we are after is, therefore:

{PreSum ∧ T = t} Γ4 {Sum[OUT/out !][REP/rep!][T/t′]}.

Here, Γ4 represents the programming language command that we are after which
will implement the schema Sum. Writing out this partial correctness specification
in full gives us:

{T = t} Γ4 {OUT =
∑

i: 1 . . 10 • t(i) ∧ REP = okay ∧ T = t}. (4)

8When subscripting arrays I write, for example, T [I], but when applying a function to an
argument I use the notation t(i). It would have been possible to use the same notation for both,
but the practice employed is more common.
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In trying to find a suitable command Γ4 it is easiest to work in stages. First, I will
obtain a command Γ5 which satisfies the partial correctness specification:

{T = t} Γ5 {OUT =
∑

i: 1 . . 10 • T [i] ∧ T = t}. (5)

It is not difficult to see that the following command is a suitable Γ5:

begin new I;

∆



OUT := T [1];
I := 1;

}
∆1

while I 6= 10 do

∆3

{
I := I + 1;
OUT := OUT + T [I]

∆2

end

It is straightforward to show that this command is a suitable Γ5 by means of the
usual axioms and rules of a Hoare logic as found, for example, in Hoare (1969) and
Hoare (1971). I will just give a sketch of the proof here. As I do not allow any
specification variables, such as t, to occur in the commands that implement them,
(5) follows by specification conjunction from {T = t} Γ5 {T = t} and:

{true} Γ5 {OUT =
∑

i: 1 . . 10 • T [i]}. (6)

So, I will concentrate my attention on establishing (6).
Using the assignment axiom twice and the sequencing rule it is easy to show

that:
OUT =

∑
i: 1 . . I • T [i],

is an invariant of the command ∆3. So, by precondition strengthening we get:

{OUT =
∑

i: 1 . . I • T [i] ∧ I 6= 10} ∆3 {OUT =
∑

i: 1 . . I • T [i]}.

From this, by the rule for the while-loop, we can infer that:

{OUT =
∑

i: 1 . . I • T [i]} ∆2 {OUT =
∑

i: 1 . . I • T [i] ∧ I = 10},

and this is clearly the same as:

{OUT =
∑

i: 1 . . I • T [i]} ∆2 {OUT =
∑

i: 1 . . 10 • T [i]}. (7)

This completes that part of this proof dealing with the while-loop.
Using the assignment axiom twice and the sequencing rule it is straightforward

to show that:
{true} ∆1 {I = 1 ∧OUT = T [I]}.

As the postcondition of this implies the precondition of (7) we have:

{true} ∆ {OUT =
∑

i: 1 . . 10 • T [i]}.

From this, by means of the block rule we can infer:

{true} Γ5 {OUT =
∑

i: 1 . . 10 • T [i]},
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which is what I set out to prove. This completes this part of the proof.
The following is obviously correct (as REP occurs neither in the precondition

nor in the postcondition):

{OUT =
∑

i: 1 . . 10 • T [i] ∧ T = t}
REP := okay

{OUT =
∑

i: 1 . . 10 • T [i] ∧ T = t},

and from that and (5) above—by the sequencing rule—we have:

{T = t} Γ5; REP := okay {OUT =
∑

i: 1 . . 10 • T [i] ∧ T = t}.

This completes the correctness proof.
In real-life schemas are usually implemented by procedures (or functions). This

could be done in this case. The resulting procedures might be:

procedure DO UPDATE (in P : N;V : Z; out REP : Report);

if P ∈ 1 . . 10

then (T := T ⊕ {P 7→ V }; REP := okay)

else REP := out of bounds

procedure DO LOOKUP (in P : N; out W : Z; REP : Report);

if P ∈ 1 . . 10

then (W := T [P ]; REP := okay)

else REP := out of bounds

procedure SUM (out OUT : Z; REP : Report);

Γ5; REP := okay

In doing this the array variable T is being treated as a global variable. To complete
this example I just need to show how the initial state gets implemented. The above
approach works here as well and we get:

{PreInitTable ′ ∧ T = t} for I := 1 to 10 do T [I] := 0 {InitTable ′[T/t′]}.

5 A Larger Example

In this section I show how the method introduced in the last section can be applied to
a slightly more complicated example. For this purpose I have chosen the specification
used in King (1990). This has the added advantage that readers familiar with the
refinement calculus can compare the two methods.

King (1990), pp. 11–14, presents a specification of a computerised class manager’s
assistant and then refines it. In the approach presented in this paper that would
be done in the same way. So, in order to illustrate the differences between the two
approaches, I will just make use of his lower-level specification. This comes from

69



pp. 12–13 and 14–16 of his paper. The specification makes use of two user-defined
types:

[Student ,Response].

The type Response is defined like this:

Response ::= ok | found | full | missing .

The specification uses a single global constant, namely max , which gives the maxi-
mum capacity of the class:

max : N

max > 0

The state space of the system is defined by the schema Class 1 :

Class 1
cl : 1 . . max → Student
ex : 1 . . max → Boolean
num: 0 . . max

((1 . . num) � cl) ∈ (N 7→� Student)

The array cl records the students who are members of the class and ex records which
of them has done the exercise. The number num indicates how much of the arrays
cl and ex are being used. The predicate ensures that no student occurs twice in the
array cl .

The successful completion of an operation is indicated by the schema Success :

Success
resp!: Response

resp! = ok

The schema Enrol ok 1 specifies the operation of a student successfully becoming
a member of the class:

Enrol ok 1
∆Class 1
s?: Student

s? 6∈ {i: 1 . . num • cl i}
num < max
cl ′ = cl ⊕ {num ′ 7→ s?}
ex ′ = ex ⊕ {num ′ 7→ false}
num ′ = num + 1

This operation can go wrong in two ways: either the class is full already or the
student is already enrolled. These two error-conditions are specified by Full 1 and
Found 1 , respectively.
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Full 1
ΞClass 1
resp!: Response

num = max
resp! = full

Found 1
ΞClass 1
s?: Student
resp!: Response

∃i: 1 . . num • cl i = s?
resp! = found

The schema Enrol 1 is the total operation of someone attempting to join the class:

Enrol 1
∧
= (Enrol ok 1 ∧ Success) ∨ Full 1 ∨ Found 1

This completes the material that I have taken from King (1990). For my purposes
I need a schema Enrol okay 1 defined in this way:

Enrol okay 1
∧
= Enrol ok 1 ∧ Success

The partial correctness specification corresponding to the schema Enrol okay 1 is
the following, where S, CL, EX , NUM and RESP are new program variables:9

{PreEnrol okay 1 [S/s?] ∧ CL = cl ∧ EX = ex ∧ NUM = num}
Γ6

{Enrol okay 1 [S/s?][CL/cl ′][EX /ex ′][NUM /num ′][RESP/resp!]}.

Expanding this and using rule (G) results in the following:

{S 6∈ {i: 1 . . NUM • CL i} ∧ NUM < max ∧ CL = cl ∧ EX = ex ∧ NUM = num}
Γ6

{S 6∈ {i: 1 . . num • cl i} ∧ num < max ∧ CL = cl ⊕ {NUM 7→ S} ∧
EX = ex ⊕ {NUM 7→ false} ∧ NUM = num + 1 ∧ RESP = ok}.

A suitable Γ6 is the following:

NUM := NUM + 1;

CL := CL⊕ {NUM 7→ S};
EX := EX ⊕ {NUM 7→ false};

RESP := ok

The partial correctness specification corresponding to the error schema Full 1 is as
follows:

{PreFull 1 [S/s?] ∧ CL = cl ∧ EX = ex ∧ NUM = num}
Γ7

{Full 1 [S/s?][CL/cl ′][EX /ex ′][NUM /num ′][RESP/resp!]}.
9Following King (1990) I regard the state invariant as a precondition of the entire specification.
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Expanding this and using rule (G) results in the following:

{NUM = max ∧ CL = cl ∧ EX = ex ∧ NUM = num}
Γ7

{num = max ∧ RESP = full ∧ CL = cl ∧ EX = ex ∧ NUM = num}.

A suitable Γ7 is RESP = full .
The partial correctness specification corresponding to the error schema Found 1

is as follows:

{PreFound 1 [S/s?] ∧ CL = cl ∧ EX = ex ∧ NUM = num}
Γ8

{Found 1 [S/s?][CL/cl ′][EX /ex ′][NUM /num ′][RESP/resp!]}.

Expanding this and using rule (G) results in the following:

{(∃i: 1 . . NUM • CL i = S) ∧ CL = cl ∧ EX = ex ∧ NUM = num}
Γ8

{(∃i: 1 . . num • cl i = S) ∧
CL = cl ∧ EX = ex ∧ NUM = num ∧ RESP = found}.

A suitable Γ8 is RESP := found .
Putting the above results together gives us the following command as an imple-

mentation of the schema Enrol 1 :

if (∃i: 1 . . NUM • CL i = S)

then RESP := found

else if NUM = max

then RESP := full

else NUM := NUM + 1;

CL := CL⊕ {NUM 7→ S};
EX := EX ⊕ {NUM 7→ false};
RESP := ok

There are standard ways of implementing such searches as represented by (∃i: 1 . .
NUM • CL i = S).10 Using one of these and rule (I) would result in an executable
command which could be made into a procedure.

6 Conclusion

In this paper I have presented a method for combining the schemas of a Z specifi-
cation with the partial correctness specifications of a Hoare logic. Readers familiar
with my earlier paper—Diller (1991)—will notice that the translation method con-
tained in this paper is simpler than the one used in that paper.

I think that the model of software development presented in this paper has much
to recommend it. In particular, I would like to mention the following:

10See, for example, Backhouse (1986), pp. 173–174.
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(1) The method used in this paper works perfectly well with the current standard
version of Z. No changes need to be made to Z in order to make it combine
smoothly with a Hoare logic.

(2) Hoare logics are well understood and widely taught. Having been around
for over 20 years they are part of the intellectual toolbox of the modern
programmer.11 (The refinement calculus presented in Morgan (1990), for ex-
ample, is an elegant formal system, but it will take a long time for it to become
part of our intellectual furniture.)

(3) As is widely known it is impossible to write an algorithm which always suc-
ceeds whose input is a specification of a programming task and whose output
is an algorithm that meets that specification, but verification condition gener-
ators can be written for Hoare logics.12 These enable the process of program
verification and falsification to be automated. Such tools would make the
techniques introduced in this paper easier to use in practice.

Concerning the future development of the approach presented in this paper, I think
that three avenues should be pursued. The first is that more rules should be devised
to make the manipulation of the special form of partial correctness specifications
generated easier. The second is that tools should be written to automate those parts
of the method presented here that can be automated. For example, the translation
phase could easily be automated. The third is the most important. All that I
have done in this paper is to present a syntactic or notational transformation of a
schema in a Z specification into the pre- and postcondition of a Hoare triple. Both Z
and Hoare logics have semantics associated with them. I believe that the syntactic
transformation presented here can be justified by linking the semantics of Z and
that of a Hoare logic. This I hope to do in a future paper.

Appendix: Hoare Logic Proof Rules Used

Assignment
{P [E/V ]} V := E {P},

where P [E/V ] stands for the result of substituting E for all the free occurrences of
V in P .

Sequencing
{P0} Γ1 {P1} {P1} Γ2 {P2}

{P0} Γ1; Γ2 {P2}
;-int

The Conditional

{P ∧ S} Γ1 {Q} {P ∧ ¬S} Γ2 {Q}
{P} if S then Γ1 else Γ2 {Q}

if-int

11See, for example, Cousot (1990).
12See chapter 3 of Gordon (1988) for details.
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While-loops
{P ∧ S} Γ {P}

{P} while S do Γ {P ∧ ¬S} while-int

For-loops There is both an axiom and a rule governing the for-loop. First, the
axiom:

{P ∧ (E2 < E1)} for V := E1 to E2 do Γ {P}

and, second, the rule:

{P ∧ (E1 ≤ V ) ∧ (V ≤ E2)} Γ {P [V + 1/V ]}
{P [E1/V ] ∧ (E1 ≤ E2)} for V := E1 to E2 do Γ {P [E2 + 1/V ]} for-int

The side condition for the for-loop is that neither V nor any variable occurring in
either E1 or E2 can occur on the left-hand side of an assignment in Γ.

Blocks and Local Variables The rule for blocks that I have used is from Hoare
(1971) where, on p. 109, it is stated in this form:

{P} Γ[Y/X] {Q}
{P} begin new X; Γ end {Q} block-int

where Y is not free in P or Q and it does not occur in Γ, unless Y is the same
variable as X.

Postcondition Weakening

{P} Γ {R} R ` Q

{P} Γ {Q} post-weak

Precondition Strengthening

P ` R {R} Γ {Q}
{P} Γ {Q} pre-strength

Specification Conjunction

{P1} Γ {Q1} {P2} Γ {Q2}
{P1 ∧ P2} Γ {Q1 ∧Q2}

spec-conj
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