
Making Abstraction Behave by
Rerepresenting Combinators

Antoni Diller

November 5, 1999

Abstract

When bracket abstraction is being used to implement a functional programming
language, it is desirable, according to Turner, that the algorithm used produces
short abstracts, uses only a finite number of combinators, is uni-variate and also
well-behaved under self-composition. In this paper I show that it is impossible
to devise an algorithm using a finite number of combinators that is always well-
behaved under self-composition. It is better to retain the property of being well-
behaved under self-composition, but then we need to choose our infinite set of
combinators carefully. By using an iconic representation for combinators an easily
implementable set can be devised. The resulting algorithm, namely (yn), produces
abstracts that are never longer than those produced by Turner’s algorithm and it
is always well-behaved. By further exploiting the iconic notation an even better
algorithm, namely (yin), can be devised, but this is no longer so well-behaved.

1



2 Rerepresenting Combinators

1 Introduction

Bracket abstraction, denoted by [x] X, in weak combinatory logic is a syntactic op-
eration which removes a variable x from a term X. Abstraction algorithms can be
designed for a variety of purposes and algorithms that are going to be used differently
may require distinct properties. Turner [11] is interested in the use of abstraction to
implement a functional programming language and so am I. He lays down a num-
ber of requirements that such an algorithm has to possess. It should produce short
abstracts, make use of only a finite number of combinators and be uni-variate. Al-
though Turner wants a uni-variate algorithm, he requires that this algorithm should
be well-behaved under what he calls self-composition [11, p. 270]. However, as I show
below, it is impossible for an algorithm using only a finite number of combinators to
be always well-behaved under self-composition. Before showing this I need first to
present Turner’s algorithm. (One of the new algorithms to be presented in this paper,
namely (yn), is always well-behaved in this way, but it uses combinators drawn from
a countably infinite set.)

Although a large number of algorithms have been devised since the publication of
Turner’s article, his is still surprisingly good. Bunder [2], for example, after surveying a
number of algorithms, concludes that Turner’s is one of the best and still of substantial
interest [2, p. 657]. Turner’s algorithm, when applied to relatively short terms (Bunder
is not more precise), generally produces the shortest abstracts. I have no quarrel with
this analysis of Bunder’s and will not reproduce his discussion here. Both of the
algorithms to be presented in this paper never produce abstracts longer than those
produced by Turner’s algorithm. (Joy, Rayward-Smith and Burton [6] work out the
efficiency of a large number of algorithms including Turner’s.)

Turner begins his presentation of his algorithm of choice by considering the fol-
lowing algorithm [11, p. 268], which elsewhere [4, pp. 93–94] I have called algorithm

(A):

[x] x = I,

[x] e = K e, if e is an atom distinct from x,

[x] P Q = S ([x] P ) ([x] Q).

This algorithm ‘tends to produce needlessly long-winded abstracts’ [11, p. 268], but
the length of the abstract that it produces can be considerably shortened by the use
of the following group of optimisations [11, p. 268]:

S (K P ) (K Q) ⇒ K (P Q),

S (K P ) I ⇒ P,

S (K P ) Q ⇒ B P Q,

S P (K Q) ⇒ C P Q.

Turner calls this second algorithm, comprising of algorithm (A) and his first group of
optimisations, the Curry algorithm [11, p. 269]. The Curry algorithm is sometimes



Antoni Diller 3

presented in the following form:

[x] E = K E,

[x] x = I,

[x] E x = E,

[x] E X = B E ([x] X),

[x] X E = C ([x] X) E,

[x] X Y = S ([x] X) ([x] Y ),

where E is a term in which x does not occur and X and Y are terms in which x
definitely does occur. This is Curry’s algorithm (abcdef) [3, p. 190] and elsewhere
[4, p. 96] I call it algorithm (B). The Curry algorithm is considerably better than
algorithm (A), but it can still produce large abstracts. To shorten the length of the
abstract Turner introduced a second group of optimisations:

S (B K P ) Q ⇒ S
� K P Q,

B (K P ) Q ⇒ B
� K P Q,

C (B K P ) Q ⇒ C
� K P Q,

where K is a term consisting entirely of constants [11, p. 270]. Turner’s algorithm is
sometimes presented in the following way [7, p. 2]:

[x] E = K E,

[x] x = I,

[x] E x = E,

[x] E F X = B
� E F ([x] X),

[x] E X F = C
� E ([x] X) F,

[x] E X Y = S
� E ([x] X) ([x] Y ),

[x] E X = B E ([x] X),

[x] X E = C ([x] X) E,

[x] X Y = S ([x] X) ([x] Y ),

where x does not occur in either E or F , but it does occur in X and Y . Elsewhere [4,
p. 98] I have called this algorithm (C). Before Bunder’s article [2] it was widely assumed
that algorithm (B) is equivalent to algorithm (A) together with Turner’s first group of
optimisations and that algorithm (C) is equivalent to algorithm (A) together with both
of Turner’s two groups of optimisations. This, however, is not correct. For example,
using algorithm (B) to abstract x from S(Ku)v producesK(S(Ku)v), whereas algorithm
(A) followed by Turner’s first group of optimisations produces K(Buv). Furthermore,
using algorithm (C), the result of abstracting x from B(Bv)w is K(B(Bv)w), whereas
algorithm (A) followed by Turner’s two groups of optimisations produces K(B�

Bvw).
(Note that these counter-examples are different from those that Bunder gives.)



4 Rerepresenting Combinators

The Curry algorithm is considerably better than algorithm (A), yet it is not well-
behaved under what Turner calls self-composition [11, p. 270]. What he means by this
can be illustrated by means of the following example [11, p. 269]. Consider a term of
the form P1P2 from which we want to abstract the variables x1, x2, . . . , xa. We assume
that each of these variables occurs at least once in both P1 and P2. Let P �

i be [x1]Pi,
P ��
i be [x2]([x1]Pi), and so on. Using the Curry algorithm we get the following sequence

of abstracts, where the length of the abstract is at least proportional to the square of
the number of variables abstracted [11, p. 269]:

P1P2 initial term
SP �

1P
�
2 first abstract

S(BSP ��
1 )P

��
2 second abstract

S(BS(B(BS)P ���
1 ))P ���

2 third abstract
S(BS(B(BS)(B(B(BS))P ����

1 )))P ����
2 fourth abstract

Using Turner’s algorithm we get the following sequence, where the lengths of the
abstracts form a linear progression [11, p. 269]:

P1P2 initial term
SP �

1P
�
2 first abstract

S
�
SP ��

1 P
��
2 second abstract

S
�(S�

S)P ���
1 P ���

2 third abstract
S
�(S�(S�

S))P ����
1 P ����

2 fourth abstract

He notes that by using his algorithm the structure of the abstract is left unaltered in the
formKQ1Q2, whereK is a term consisting entirely of combinators [11, p. 269]. (Turner
wants a uni-variate algorithm that is well-behaved under self-composition rather than a
multi-variate one because ‘in the compilation process the need to abstract on different
variables arises at successive stages’ rather than all at the same time [11, p. 270].)
Although this is true for terms of the form P1P2, it is not the whole story. In fact, it
is impossible to devise an algorithm which uses only a finite number of combinators
and which is always well-behaved under self-composition. If we consider a term of the
form P1P2P3, then we see that Turner’s algorithm no longer possesses this property.

P1P2P3 initial term
S(SP �

1P
�
2)P

�
3 first abstract

S
�
S(S�

SP ��
1 P

��
2 )P

��
3 second abstract

S
�(S�

S)(S�(S�
S)P ���

1 P ���
2 )P ���

3 third abstract
S
�(S�(S�

S))(S�(S�(S�
S))P ����

1 P ����
2 )P ����

3 fourth abstract

The abstracts here do not have the form KQ1Q2Q3 and so are not well-behaved under
self-composition. (A pattern can be discerned, namely each abstract has the form
K1(K2Q1Q2)Q3, though this is not so useful as having the form KQ1Q2Q3.) To
produce abstracts with this form we would need to have combinators S2 and Φ3 at our
disposal:

S2QRST → QT (RT )(ST ),

Φ3PQRST → P (QT )(RT )(ST ).



Antoni Diller 5

(These are defined by Curry and Feys [3, p. 169]. Note that S1 = S and that Turner’s
S
� is Φ or, equivalently, Φ2.) The clauses in an abstraction algorithm corresponding to

these combinators are the following:

[x]XY Z → S2([x]X)([x]Y )([x]Z),

[x]EXY Z → Φ3E([x]X)([x]Y )([x]Z),

where x does not occur in E, but does in X, Y and Z. An algorithm augmented with
these clauses would produce the following abstracts:

P1P2P3 initial term
S2P �

1P
�
2P

�
3 first abstract

Φ3S2P ��
1 P

��
2 P

��
3 second abstract

Φ3(Φ3S2)P ���
1 P ���

2 P ���
3 third abstract

Φ3(Φ3(Φ3S2))P ����
1 P ����

2 P ����
3 fourth abstract

These abstracts do have the form KQ1Q2Q3, but if we consider a term of the form
P1P2P3P4 then the following abstracts are produced:

P1P2P3P4 initial term
S2(SP �

1P
�
2)P

�
3P

�
4 first abstract

Φ3S2(S
�
SP ��

1 P
��
2 )P

��
3 P

��
4 second abstract

Φ3(Φ3S2)(S
�(S�

S)P ���
1 P ���

2 )P ���
3 P ���

4 third abstract
Φ3(Φ3(Φ3S2))(S

�(S�(S�
S))P ����

1 P ����
2 )P ����

3 P ����
4 fourth abstract

Clearly, an algorithm that employs only a finite number of combinators cannot always
be well-behaved under self-composition. Algorithm (yn), to be presented below, is al-
ways well-behaved in this way. This is achieved by using countably many combinators.
Using an idea of Stevens’s [10], these are represented iconically. This has two main
advantages, namely their behaviour can be read off from their representation and they
can be easily implemented.

Bracket abstraction usually satisfies the following property, where → represents
weak reduction:

([x]X)x → X. (1)

Turner’s way of presenting abstraction algorithms has them produce abstracts which
do not always satisfy the property (1). They do, however, satisfy the following weaker
property:

([x]X)x =βη X. (2)

Bunder follows Turner in producing several algorithms all of which satisfy (2) rather
than (1). He devises algorithms better than Turner’s by adding extra optimisations.
Both of the algorithms presented in this paper satisfy property (1).

To summarise what I do in this paper: Two uni-variate algorithms are presented.
Both of them produce abstracts that are never longer than those produced by Turner’s
algorithm. Algorithm (yn) is well-behaved under self-composition. Both of the algo-
rithms make use of combinators drawn from a fixed set of countably many combinators.
These are, however, well suited to computer implementation being, in the case of (yn),
easily represented as bit strings. Both of them satisfy property (1).



6 Rerepresenting Combinators

2 Fixing Terminology

A term of combinatory logic (or CL-term or term) is defined recursively as follows:

(a) Every variable is a CL-term.

(b) Every constant is a CL-term.

(c) If P and Q are CL-terms, then so is (P Q).

In this paper the letters E, F , K, M , N , P , Q, R, S, T , X, Y and Z, sometimes
with subscripts or primes, will be used for arbitrary terms. An atom is either a
variable or a constant and a term of the form (PQ) is known either as a combination

or an application. When writing terms that are combinations, the outermost pair of
parentheses will usually be omitted. Furthermore, application associates to the left,
so it is possible to write PQRST instead of (((PQ)R)S)T . The idea of a subterm is
defined as follows: P is a subterm of P and P is a subterm of QR if either P is a
subterm of Q or P is a subterm of R.

In order to complete the definition of a term it is only necessary to specify what
constitutes a variable and what constitutes a constant. In this paper the letters u, v,
w, x, y and z, with or without subscripts, will be used as variables. The notation used
for constants later on in this paper is unusual and will be explained in due course,
but to begin with combinatory logic will be presented in the conventional way. In
this combinators are referred to by means of identifiers which consist of a single letter.
These are usually printed using a bold, sans serif font. There are several versions of
combinatory logic and one of the ways in which they differ involves the set of constants
that are taken to be primitive or basic. In one common version, and this is the version
that will be presented here, the only two primitive constants are the letters K and S.
These stand for combinators. Because combinatory logic contains no variable-binding
operators every variable that occurs in a term is free. The notation FV (P ) is used to
denote the set of free variables in the term P . The length of a term is the number of
occurrences of atoms that it contains. If P is a term, then the length of P is denoted
by #P and is defined like this:

#(P ) = 1, if P is a variable or a constant;

#(PQ) = #P +#Q, otherwise.

Every term P can be uniquely expressed in the form P1 P2 . . . Pm, where P1 is an
atom and m ≥ 1. Note that it is not just combinations that can be expressed in this
form. When P is an atom, then m = 1 and P1 is the same as P . When a term is
expressed as P1 P2 . . . Pm, where P1 is an atom, then P1 is known as the head or
leading element of P and, following Abdali [1, p. 223], the terms Pi, for 1 ≤ i ≤ m, are
called the primal components of P . Note that the head of P is also one of its primal
components. For example, the primal components of the term x y (z y) (w x y) are
the terms x, y, z y and w x y.

Let P be a term which, if #P > 1, is represented as a binary tree whose internal
nodes are application nodes. Then rp(P ) is the number of application nodes in P



Antoni Diller 7

whose right child is also an application node. If P is an atom, then rp(P ) is taken
to be zero. If P is represented in a linear form using the fewest possible parentheses,
then rp(P ) is equal to the number of right parentheses in P . (Equivalently, rp(P ) is
the number of left parentheses in P or half the total number of parentheses in P .) For
example, rp(w x y z) = 0 and rp(x (x (x x))) = 2. Note that in these examples the left
parenthesis immediately following the rp operator and its matching right parenthesis
are used solely in order to indicate the argument of the rp operator and are not included
in the rp count. If #P ≥ 2, then the maximum value that rp(P ) can take is #P − 2
(because the number of application nodes in a tree representation of P is #P − 1) and
the minimum value that rp(P ) can take is 0. We also have that if P = P1 P2 . . . Pm,
where P1 is an atom, then

rp(P ) =
m�

i=1

if #Pi = 1 then 0 else 1 + rp(Pi).

Let P be a term which, if #P > 1, is represented as a binary tree whose internal
nodes are application nodes. Furthermore, let us say that an application node covers a
variable x if x occurs in the term whose main operator is the application corresponding
to that node. Then rpx (x, P ) is the number of application nodes in P whose right child
is an application node which also covers x. If P is represented in a linear form using the
fewest possible parentheses, then rpx (x, P ) is equal to half the number of parentheses
that enclose subterms containing the variable x. For example, rpx (x, y(uv(wy))) = 0
and rpx (x, y(x(vy)y)x) = 1. If #P ≥ 2, then the maximum value of rpx (x, P ) is
#P − 2 and its minimum value is 0. Let P = P1 P2 . . . Pm, where P1 is an atom.
Then

rpx (x, P ) =
m�

i=1

if Pi �= x and x ∈ FV (Pi) then 1 + rpx (x, Pi) else 0.

3 An Algorithm Using y and n

3.1 Rerepresenting Combinators

Many bracket abstraction algorithms have been proposed in the literature. Although
some of these contain interesting ideas, almost all of them use the conventional notation
of representing combinators. One exception is Stevens [10]. The method employed here
is a variant of Stevens’s approach. Stevens introduces a new notation for representing
combinators. In one version of this notation the names of combinators are identifiers
consisting of two occurrences of one or more of the four letters o, k, i or s. He calls such
identifiers iconic representations [10, p. 727]. Examples of such representations are ks,
ii and is. The traditional names of the combinators referred to by these identifiers are
B, M and O, respectively. The meaning of an iconic representation depends upon the
choice of a particular reference expression. A reference expression, for a clause in a
bracket abstraction algorithm, is the shape or form of the term to which that clause
is applied. Stevens restricts his attention to “square” expressions of various levels. In



8 Rerepresenting Combinators

this paper I present a variant of Stevens’s method which does not use a fixed reference
expression. The shape of the reference expression is determined by the form of the term
to which the abstraction algorithms presented here are applied and the notation used
to refer to combinators is intimately related to the shape of the reference expression
that is used.

Instead of using single-letter identifiers for combinators multi-letter identifiers are
used. These are strings made up out of the letters y and n and are known as yes-no

representations. (The reason why they are called this is explained near the beginning
of section 3.2 in which algorithm (yn) is discussed.) The collection of all yes-no rep-
resentations is defined by means of the following left-linear grammar in which A, the
start symbol, is the only non-terminal and y and n are the two terminals:

A ::= y | n | Ay | An.

In the case of the standard representations for combinators, such as K, I, B and so on,
the reduction property of a combinator has to be explicitly given, whereas in the case
of the yes-no representations the reduction property of a combinator can be read off
from its representation, thus:

β1β2 . . .βm P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm,

where, for 1 ≤ i ≤ m,

Qi =

�
Pi Pm+1, if βi = y,

Pi, if βi = n.

As an example, consider the yes-no representation ynyyn:

ynyyn P1 P2 P3 P4 P5 P6 → P1 P6 P2 (P3 P6) (P4 P6) P5.

The size of a yes-no representation β is the number of occurrences the letters y or n

that it contains and it is denoted by size(β). For example, size(ynyyn) = 5. The arity
of any yes-no representation β is 1+size(β). The Greek letters α, β and γ will be used
for iconic representations. If α is an iconic representation, then αi, for 1 ≤ i ≤ size(α),
is the ith iconic letter in α.

It is possible to translate every yes-no representation into a combination of the
constants K and S. First, the constants B, I and C are defined in terms of K and S.
Then we define the series of constants Bi, for i ≥ 1. These are taken from a book by
Smullyan [9, pp. 316–317 and 341] and they can be defined as follows:

Bi =

�
B, if i = 1,

B Bi−1 B, if i > 1.

The translation proceeds as follows:

trans(y) = B I,

trans(n) = K,

trans(αy) = Bi S trans(α), if size(α) ≥ 1,

trans(αn) = Bi C trans(α), if size(α) ≥ 1,



Antoni Diller 9

where i = size(α). For example, trans(ynyyn) = B4 C (B3 S (B2 S (B1 C (B I))). The
new abstraction algorithm presented in this section makes use of yes-no representations
in order to refer to combinators. In discussing this algorithm the collection of constants
used in the definition of a term will consist of all the yes-no representations and the
constant I. Although I can be defined in terms of yes-no representations, it is more
convenient to take it as a primitive constant. Note that as every yes-no representation
β is taken to be a constant this means that #β = 1. This is acceptable from a
mathematical point of view, but from a computing perspective we would need to take
account of the amount of space required to store a yes-no representation.

There is some superficial resemblance between yes-no representations and the di-
rector strings of Kennaway and Sleep [8]. There are, however, a number of important
differences. Chief amongst these is the fact that Kennaway and Sleep’s director string
calculus is a formal system completely different from combinatory logic, whereas the
approach taken in this paper is to work within the theory of combinatory logic, but to
use a different notation for representing combinators.

Proposition 1 The translation function trans is correct in the sense that if

β P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm,

where the Qi, for 1 ≤ i ≤ m, are as given above, then

trans(β) P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm.

Proof In order to prove that the translation is correct it is necessary to show that

trans(β1β2 . . .βm) P1 P2 . . . Pm Pm+1 → Q1 Q2 . . . Qm,

where, for 1 ≤ i ≤ m,

Qi =

�
Pi Pm+1, if βi = y,

Pi, if βi = n.

The proof is by induction on the size of β1β2 . . .βm. In the base case m = 1. There
are two cases to consider. In the first β1 = y and in the second β1 = n. When β1 = y,
we have that trans(y) P1 P2 = B I P1 P2 → I (P1 P2) → P1 P2. When β1 = n, we
have that trans(n) P1 P2 = K P1 P2 → P1. Both of these accord with the behaviour
of y and n given above. Thus, the base case has been established.

To prove the inductive step we first assume that the result holds when m = n− 1.
There are two cases to consider. In the first we look at β1β2 . . .βn−1y and in the second
we consider β1β2 . . .βn−1n. In the first case we have:

trans(β1β2 . . .βn−1y) P1 P2 . . . Pn Pn+1

= Bn−1 S trans(β1β2 . . .βn−1) P1 P2 . . . Pn Pn+1

→ S (trans(β1β2 . . .βn−1) P1 P2 . . . Pn−1) Pn Pn+1

→ trans(β1β2 . . .βn−1) P1 P2 . . . Pn−1 Pn+1 (Pn Pn+1)

→ Q1 Q2 . . . Qn−1 (Pn Pn+1),



10 Rerepresenting Combinators

where, for 1 ≤ i ≤ n− 1,

Qi =

�
Pi Pn+1, if βi = y;

Pi, if βi = n;

by the inductive hypothesis. In the second case we have:

trans(β1β2 . . .βn−1n) P1 P2 . . . Pn Pn+1

= Bn−1 C trans(β1β2 . . .βn−1) P1 P2 . . . Pn Pn+1

→ C (trans(β1β2 . . .βn−1) P1 P2 . . . Pn−1) Pn Pn+1

→ trans(β1β2 . . .βn−1) P1 P2 . . . Pn−1 Pn+1 Pn

→ Q1 Q2 . . . Qn−1 Pn,

where, for 1 ≤ i ≤ n− 1,

Qi =

�
Pi Pn+1, if βi = y;

Pi, if βi = n;

by the inductive hypothesis. Combining these two cases yields:

trans(β1β2 . . .βn) P1 P2 . . . Pn Pn+1 → Q1 Q2 . . . Qn,

where, for 1 ≤ i ≤ n,

Qi =

�
Pi Pn+1, if βi = y,

Pi, if βi = n.

This accords with the reduction rule for β1β2 . . .βn given above. The result follows by
induction. QED.

3.2 Algorithm (yn)

Algorithm (yn) is shown in Figure 1. Note that a different algorithm would result if
P1 was not required to be an atom. The reference expressions for the three clauses of
algorithm (yn) are x, E x and P1 P2 . . . Pm, where x �∈ FV (E), P1 is an atom and
there is no restriction on whether or not x occurs in any of the Pi, for 1 ≤ i ≤ m. An
example of the application of algorithm (yn) should make its operation clear.

[x] x (y z) (z y x) (z (x y)) = ynyy I (y z) ([x] z y x) ([x] z (x y))

= ynyy I (y z) (z y) (ny z ([x] x y))

= ynyy I (y z) (z y) (ny z (yn I y)).

In the context of abstraction, when algorithm (yn) is being used, the letter y means
that the primal component to which it corresponds contains the abstraction variable.
(The letter βi, for 1 ≤ i ≤ m, is said to correspond to the primal component Pi.) That
primal component could either be identical to the abstraction variable or it could be
a combination that contains the abstraction variable. The letter n means that the



Antoni Diller 11

In this algorithm E is any term such that x �∈ FV (E) and P1 is an atom. The clauses
of this algorithm have to be applied in the order in which they occur here.

[x] x = I,

[x] E x = E,

[x] P1 P2 . . . Pm = β1β2 . . .βm Q1 Q2 . . . Qm,

where, for 1 ≤ i ≤ m,

βi = y and Qi = I, if Pi = x,

βi = y and Qi = [x] Pi, if Pi �= x, but x ∈ FV (Pi),

βi = n and Qi = Pi, if x /∈ FV (Pi).

Figure 1: Algorithm (yn).

primal component to which it corresponds does not contain the abstraction variable.
That primal component could either be an atom distinct from the abstraction variable
or it could be a combination that does not contain the abstraction variable. It should
be noted that in the context of abstraction the meanings of the letters y and n are not
absolute. They are, rather, relative to a specific algorithm. These comments, however,
apply only to the process of abstraction. When it comes to reduction, no matter which
algorithm has been used to obtain the abstract, then the meaning of the letters y and
n in the reduction process is always the same. (The reason why yes-no representations
are so-called is because the first algorithm involving them that I devised was similar to
algorithm (yn). In using algorithm (yn) to abstract x, say, from a term P1 P2 . . . Pm

one looks at each primal component Pi in turn and asks, ‘Does x occur in Pi?’ If the
answer is ‘yes’, then the letter βi is y, that is to say, the first letter of the word ‘yes’,
and if the answer is ‘no’, the letter βi is n, that is to say, the first letter of the word ‘no’.
It was only after a period of experimentation with different algorithms that I realised
that the meaning of the letters y and n was fixed only in reduction, but variable in
abstraction. I decided, however, to keep the name and the form of representation.)
Some of the basic properties of algorithm (yn) are stated in the following proposition.

Proposition 2 Let P be any term. Then algorithm (yn) has the following properties:

(a) If algorithm (yn) is applied to P , then it will terminate.

(b) Algorithm (yn) has the property that ([x] P ) x → P .

(c) Let algorithm (yn\c) be the same as (yn) except that the clause [x] E x = E has

been deleted. Then, if #P ≥ 2, we have that #([x]P ) = 1 +#P + rpx (x, P ).

(d) Using algorithm (yn) we have that #([x]P ) ≤ 1 + #P + rpx (x, P ).

(e) Let [x]C P represent the result of applying algorithm (C) to P and let [x]yn P rep-

resent the result of applying algorithm (yn) to P . Then #([x]yn P ) ≤ #([x]C P ).



12 Rerepresenting Combinators

(f) Using algorithm (yn\c) we have that, if #P ≥ 2, then:

#([xa]([xa−1](. . . ([x2]([x1] P )) . . .))) = a+#P +
a�

i=1

rpx (xi, P ).

Proof The proofs of parts (a), (b) and (c) are all by induction on the value of
rpx (x, P ). Part (d) is a straightforward corollary of part (c). The proof of part (e) is
by induction on the length of P and proceeds by analysing each clause of algorithm
(C) in turn. The proof of part (f) is by induction on a and it makes use of the fact
that rpx (y, [x]P ) = rpx (y, P ).

The proofs are all relatively straightforward and so only that of part (c) will be
given here.

Proof of part (c): The proof is by induction on the value of rpx (x, P ). In the base
case rpx (x, P ) = 0. Let P = P1 P2 . . . Pm, where m ≥ 2. For 1 ≤ i ≤ m, either
Pi = x or Pi is a term such that x /∈ FV (Pi). Using algorithm (yn\c) we have that
[x]P = β Q1 Q2 . . . Qm, where the Qi, for 1 ≤ i ≤ m, are as specified in Figure 1.
When Pi = x, then Qi = I. When Pi is a term such that x /∈ FV (Pi), then Qi = Pi.
In both cases #Qi = #Pi, for 1 ≤ i ≤ m. Thus, #([x]P ) = 1 + #P . Thus the base
case has been established.

In the inductive step rpx (x, P ) > 0. Let P = P1 P2 . . . Pm, where m ≥ 2. For
1 ≤ i ≤ m, either Pi = x or Pi is a term such that x /∈ FV (Pi) or Pi �= x and
x ∈ FV (Pi). Using algorithm (yn\c) we have that [x]P = β Q1 Q2 . . . Qm, where the
Qi, for 1 ≤ i ≤ m, are as specified in Figure 1. When Pi = x, then Qi = I. When Pi

is a term such that x /∈ FV (Pi), then Qi = Pi. When Pi �= x and x ∈ FV (Pi), then
Qi = [x]Pi and #Qi = 1+#Pi+ rpx (x, Pi), by the inductive hypothesis. Note that in
this case #Pi ≥ 2. We thus have:

#([x]P ) = 1 +
m�

i=1

if x = Pi or x /∈ FV (Pi) then #Pi else

if x �= Pi and x ∈ FV (Pi) then 1 + #Pi + rpx (x, Pi)

= 1 +#P +
m�

i=1

if x �= Pi and x ∈ FV (Pi) then 1 + rpx (x, Pi) else 0

= 1 +#P + rpx (x, P ),

by properties of rpx (x, P ). The result follows by induction. QED.
Note that, if #P ≥ 2, then the length of [x] P can equal 1 + #P + rp(P ). This

happens, for example, when every atom in P is the same as the abstraction variable
and rpx (x, P ) has its maximum value. For example, let Q = x (x (x (x x))). Then
[x] Q = yy I (yy I (yy I (yy I I))) and #([x] Q) = 9 = 1+#Q+ rp(Q). Note also that
algorithm (yn) is well-behaved under self-composition:



Antoni Diller 13

P1 P2 . . . Pm initial term
yy· · · y� �� �
m times

P �
1 P �

2 . . . P �
m first abstract

n yy· · · y� �� �
m times

yy· · · y� �� �
m times

P ��
1 P ��

2 . . . P ��
m second abstract

nn yy· · · y� �� �
m times

n yy· · · y� �� �
m times

yy· · · y� �� �
m times

P ���
1 P ���

2 . . . P ���
m third abstract

nnn yy· · · y� �� �
m times

nn yy· · · y� �� �
m times

n yy· · · y� �� �
m times

yy· · · y� �� �
m times

P ����
1 P ����

2 . . . P ����
m fourth abstract

This means that not only does algorithm (yn) produce abstracts that are never longer
than those produced by algorithm (C) but the form of the abstracts that it produces
are well suited to repeated abstraction. For example, let P = x y z x x. Then using
algorithm (yn) we have:

[x]P = ynnyy I y z I I;

[y]([x]P ) = nnynnn ynnyy I I z I I;

[z]([y]([x]P )) = nnnnynn nnynnn ynnyy I I I I I.

Using algorithm (C), however, produces the following sequence of abstracts:

[x]P = S(S(C(CIy)z)I)I;

[y]([x]P ) = C
�
S(C�

S(C�
C(CI)z)I)I;

[z]([y]([x]P )) = C
�(C�

S)(C�(C�
S)(C�

C(CI))I)I.

4 An Algorithm Using y, i and n

4.1 Preliminaries

Consider the following example of the application of algorithm (yn):

[x] x y z x x = ynnyy I y z I I.

To each occurrence of the abstraction variable in the input term there is an occurrence
of the combinator I in the abstract. The abstract could be shortened if the information
conveyed by the presence of I could somehow be incorporated in the representation used
for the combinator produced by the abstraction algorithm. The algorithm presented in
this section uses yin combinators that allow this to be done. This algorithm produces
the following result:

[x] x y z x x = innii y z.

The occurrence of the letter i in the representation means that the corresponding
primal component in the input term is the same as the abstraction variable.

The collection of yin representations consists of all strings made up out of the letters
y, i and n. It can be defined more formally by the following left-linear grammar, where



14 Rerepresenting Combinators

the start symbol is B and y, i and n are the three terminals of the language being
defined:

B ::= y | i | n | By | Bi | Bn.

The function ic(β) returns the number of occurrences of the letter i in the representa-
tion β. If βi, for 1 ≤ i ≤ m, is one of the letters y, i and n and β = β1β2 . . .βm, then
ic(β) =

�m
i=1 if βi = i then 1 else 0. There are a number of other functions that will

be used in what follows.

ac(x, P ) This is the number of primal components in P that are equal to x.
tac(x, P ) This is the total number of occurrences of x in P .
posi(j,β) This is the position of the jth occurrence of the letter i in β. If there

are fewer than j occurrences of i in β, then this function is undefined.

The new iconic representations behave as follows:

β1β2 . . .βm P1 P2 . . . Pn → Q1 Q2 . . . Qm,

where n = m+ 1− ic(β1β2 . . .βm) and, for 1 ≤ i ≤ m, we have that

Qi =






Pn, if βi = i;

Pf(i) Pn, if βi = y;

Pf(i), if βi = n;

where f(i) = i− ic(β1β2 . . .βi). For example, innii y z x → x y z x x.
The iconic representations made up out of y, i and n can be translated into the

usual combinators. If the representation β does not contain i, then we can use the
translation given earlier. If β does contain i, then the following translation suffices:

trans(β1β2 . . .βm) = B2 B2 . . . B2� �� �
q times

Ca1 Ca2 . . . Cap γ1γ2 . . . γm I I . . . I� �� �
p times

,

where

p = ic(β1β2 . . .βm);

q =
p−1�

i=1

i =
p(p− 1)

2
;

Ci =






B I, if i = 0;

C, if i = 1;

B C (B C), if i = 2;

B C (B Ci−1), if i > 2;

ai = posi(i,β)− 1, for 1 ≤ i ≤ p;

γi =

�
βi, if βi �= i,

y, if βi = i, for 1 ≤ i ≤ m.



Antoni Diller 15

The definition of the Ci is based on that given by Smullyan [9, pp. 320 and 343], though
he only defines Ci, for i ≥ 2. Note that Ci P Q R1 R2 . . . Ri → P R1 R2 . . . Ri Q,
for i ≥ 1. The order of Ci is i + 2, for i ≥ 0. The following is an example of this
translation function: trans(innii) = B2 B2 B2 C0 C3 C4 ynnyy I I I.

Proving that this translation is correct is quite convoluted. Before presenting the
proof it is helpful to establish a number of lemmas.

The series of combinators Hi, for i ≥ 1, are defined as follows:

Hi =

�
B2, if i = 1;

BiB2Hi−1, if i > 1.

It is straightforward to verify the following result

HiP1P2 . . . Pi → B2(B2(. . . (B2(B2P1P2)P3) . . .)Pi−1)Pi), (3)

in which there are i occurrences of B2. The following lemma can now be proved:

Lemma 3 For j ≥ 1, we have

HjP1P2 . . . P2j+3 → P1(P2(. . . (Pj(Pj+1Pj+2Pj+3)Pj+4) . . .)P2j+2)P2j+3. (4)

Proof The proof is by induction on j. In the base case j = 1. We have from the
definition of H1 and the behaviour of B2:

H1P1P2P3P4P5 = B2P1P2P3P4P5 → P1(P2P3P4)P5.

Thus the base case has been established.
In the inductive step, we have to prove that (4) holds on the assumption that it

holds when j is replaced by j − 1. From the definition of Hi we have:

HjP1P2 . . . P2j+3 = BjB2Hj−1P1P2 . . . P2j+3

→ B2(Hj−1P1P2 . . . Pj)Pj+1 . . . P2j+3

→ Hj−1P1P2 . . . Pj(Pj+1Pj+2Pj+3)Pj+4 . . . P2j+3

→ P1(P2(. . . (Pj(Pj+1Pj+2Pj+3)Pj+4) . . .)P2j+2)P2j+3,

by the inductive hypothesis. The result follows by induction. QED.
The series of combinators Gi, for i ≥ 1, are defined as follows:

Gi =






B2, if i = 1;

Gi−1B2B2 . . .B2� �� �
i times

, if i > 1.

The following lemma can now be proved:

Lemma 4 For j ≥ 1, we have that

GjP1P2 . . . P2j+3 → P1(P2(. . . (Pj(Pj+1Pj+2Pj+3)Pj+4) . . .)P2j+2)P2j+3.



16 Rerepresenting Combinators

Proof The proof is by induction on j. In the base case, when j = 1, we have:

G1P1P2P3P4P5 = B2P1P2P3P4P5 → P1(P2P3P4)P5.

Thus the base case has been established.
In the inductive step, we note that

GjP1P2 . . . P2j+3 = Gj−1B2B2 . . .B2� �� �
j times

P1P2 . . . P2j+3

→ B2(B2(. . . (B2(B2P1P2)P3) . . .)Pj)Pj+1 . . . P2j+3,

where there are j occurrences of B2, by the inductive hypothesis,

→ P1(P2(. . . (Pj(Pj+1Pj+2Pj+3)Pj+4) . . .)P2j+2)P2j+3,

by (3) and Lemma 3. The result follows by induction. QED.

Lemma 5 Let 0 ≤ a1 < a2 < . . . < at. Then

Ca1(Ca2(. . . (Cat−1(CatMP1)P2) . . .)Pt−1)PtPt+1 . . . Pat+1

→ MPf(1)Pf(2) . . . Pf(t)Pf(t+1) . . . Pf(at+1),

where

f(i) =






i+ t, i < a1 + 1;

t, i = a1 + 1;

i+ (t− 1), a1 + 1 < i < a2 + 1;

t− 1, i = a2 + 1;

i+ (t− 2), a2 + 1 < i < a3 + 1;

t− 2, i = a3 + 1;
.
.
.

i+ 1, at−1 + 1 < i < at + 1;

1, i = at + 1;

i, at + 1 < i.

Proof The proof is by induction on t. In the base case, when t = 1, we have:

Ca1MP1P2 . . . Pa1+1 → MPf(1)Pf(2) . . . Pf(a1+1),

where

f(i) =






i+ 1, i < a1 + 1;

1, i = a1 + 1;

i, a1 + 1 < i.

This accords with the behaviour of Ca1 given above. Thus the base case has been
established.



Antoni Diller 17

In the inductive step, we begin by noting that by the inductive hypothesis we have:

Ca1(Ca2(. . . (Cat−1(Cat−1NQ1)Q2) . . .)Qt−1)QtQt+1 . . . Qat−1+1

→ NQφ(1)Qφ(2) . . . Qφ(t)Qφ(t+1) . . . Qφ(at−1+1),

where

φ(i) =






i+ (t− 1), i < a1 + 1;

t− 1, i = a1 + 1;

i+ (t− 2), a1 + 1 < i < a2 + 1;

t− 2, i = a2 + 1;

i+ (t− 3), a2 + 1 < i < a3 + 1;

t− 3, i = a3 + 1;
...

i+ 1, at−2 + 1 < i < at−1 + 1;

1, i = at−1 + 1;

i, at−1 + 1 < i.

Let N = CatMP1 and Pi = Qi−1, for i > 1. Then

NQφ(1)Qφ(2) . . . Qφ(t)Qφ(t+1) . . . Qφ(at−1+1)

= CatMP1Pφ(1)+1Pφ(2)+1 . . . Pφ(at−1+1)+1

= CatMPψ(1)Pψ(2) . . . Pψ(t)Pψ(t+1) . . . Pψ(at−1+2),

where ψ(1) = 1 and ψ(i) = φ(i− 1) + 1, for i > 1,

→ MPθ(1)Pθ(2) . . . Pθ(at+2).

where

θ(i) =






ψ(i+ 1), i < at + 1;

ψ(1), i = at + 1;

ψ(i), at + 1 < i.

Simplifying, this becomes:

θ(i) =






φ(i) + 1, i < at + 1;

1, i = at + 1;

φ(i− 1) + 1, at + 1 < i.



18 Rerepresenting Combinators

Spelt out in full, this is:

θ(i) =






i+ t, i < a1 + 1;

t, i = a1 + 1;

i+ (t− 1), a1 + 1 < i < a2 + 1;

t− 1, i = a2 + 1;
...

i+ 2, at−2 + 1 < i < at−1 + 1

2, i = at + 1;

i+ 1, at−1 + 1 < i < at + 1;

1, i = at + 1;

i, at + 1 < i.

Thus the inductive step has been established. The result follows by induction. QED.

Proposition 6 The translation function trans is correct in the sense that if

β P1 P2 . . . Pn → Q1 Q2 . . . Qm,

where the Qi, for 1 ≤ i ≤ m, are as given above, then

trans(β) P1 P2 . . . Pn → Q1 Q2 . . . Qm.

Proof In order to prove that the translation is correct it is necessary to show that

trans(β1β2 . . .βm) P1 P2 . . . Pn → Q1 Q2 . . . Qm,

where n = m+ 1− ic(β1β2 . . .βm) and, for 1 ≤ i ≤ m, we have that

Qi =






Pn, if βi = i;

Pf(i) Pn, if βi = y;

Pf(i), if βi = n;

where f(i) = i− ic(β1β2 . . .βi). From the definition of trans we have that

trans(β1β2 . . .βm) P1 P2 . . . Pn

= B2 B2 . . . B2� �� �
q times

Ca1 Ca2 . . . Cap γ1γ2 . . . γm I I . . . I� �� �
p times

P1 P2 . . . Pn

→ Ca1(Ca2(. . . (Cap−1(Capγ1γ2 . . . γm I)I) . . .)I)IP1 P2 . . . Pn,

by Lemma 4,

→ γ1γ2 . . . γm Rf(1) Rf(1) . . . Rf(m+1),



Antoni Diller 19

where

f(i) =






i+ p, i < a1 + 1;

p, i = a1 + 1;

i+ (p− 1), a1 + 1 < i < a2 + 1;

p− 1, i = a2 + 1;

i+ (p− 2), a2 + 1 < i < a3 + 1;

p− 2, i = a3 + 1;
...

i+ 1, ap−1 + 1 < i < ap + 1;

1, i = ap + 1;

i, ap + 1 < i.

Here Ri = I, for 1 ≤ i ≤ p, and Ri+p = Pi, for 1 ≤ i ≤ n. We now have that

γ1γ2 . . . γm Rf(1) Rf(2) . . . Rf(m+1) → S1 S2 . . . Sm,

where

Si =

�
Rf(i), if γi = n;

Rf(i) Rf(m+1), if γi = y.

In order to prove the correctness of the translation we need to show that this is equiv-
alent to the following:

β1β2 . . .βm P1 P2 . . . Pn → Q1 Q2 . . . Qm,

where n = m+ 1− ic(β1β2 . . .βm) and, for 1 ≤ i ≤ m, we have that

Qi =






Pn, if βi = i;

Pg(i) Pn, if βi = y;

Pg(i), if βi = n;

where g(i) = i− ic(β1β2 . . .βi).
When βi = i, then Qi = Pn. Because βi = i, we have that ai = posi(i,β)− 1. When

that happens, looking at the definition of f , we have that f(i) = p− i. Therefore,
Rf(i) = Rp−i = I. Also, when βi = i, then γi = y and Si = Rf(i) Rf(m+1) = I Pn, as
m+ 1 = p+ n. Thus, Si → Qi.

When βi = n, we have that Qi = Pg(i). Because βi �= i, i �= aj + 1, for any j such
that 1 ≤ j ≤ p. Therefore, either i < a1 + 1 or aj + 1 < i < aj+1 + 1, for some j such
that 1 ≤ j ≤ p− 1, or ap + 1 < i. I will look at each of these three cases in turn.

When i < a1+1 = posi(1,β), then ic(β1) = 0 and g(i) = i. Thus, Qi = Pi = Ri+p.
We also have that Si = Rf(i) = Ri+p, because i < a1 + 1. Therefore, Qi = Si.

When posi(j,β) = aj + 1 < i < aj+1 + 1 = posi(j + 1,β), then we have that
ic(βi) = j and g(i) = i− j. This means that Qi = Pi−j = Ri−j+p. We also have that
Si = Rf(i) = Ri+p−j . Therefore, Qi = Si.



20 Rerepresenting Combinators

In this algorithm E is any term such that x �∈ FV (E) and P1 is an atom. The clauses
of this algorithm have to be applied in the order in which they occur here.

[x] E x = E,

[x] P1 P2 . . . Pm = β1β2 . . .βm Q1 Q2 . . . Qn,

where n = m− ac(x, P1 P2 . . . Pm) and, for 1 ≤ i ≤ m,

βi = i, if Pi = x;

βi = y and Qf(i) = [x] Pi, if Pi �= x, but x ∈ FV (Pi);

βi = n and Qf(i) = Pi, if x /∈ FV (Pi);

where f(i) = i− ac(x, P1 P2 . . . Pi).

Figure 2: Algorithm (yin).

When posi(p,β) = ap + 1 < i, then ic(βi) = p and g(i) = i − p. This means that
Qi = Pi−p = Ri. We also have that Si = Rf(i) = Ri. Therefore, Qi = Si.

When βi = y, the reasoning is similar to that employed when βi = n. In addition,
however, we need to note that Rf(m+1) = Rm+1 = Rn+p = Pn.

Thus, the translation function trans has been shown to be correct. QED.

4.2 Algorithm (yin)

Algorithm (yin) is shown in Figure 2. An example of its application should make its
operation clear:

[x] x (y z) (z y x) (z (x y))

= inyy (y z) ([x] z y x) ([x] z (x y))

= inyy (y z) (z y) (ny z ([x] x y))

= inyy (y z) (z y) (ny z (in y)).

Note that algorithm (yin) is not well-behaved under self-composition as that has been
explained so far in this paper. However, if the input to algorithm (yin) has the form
KQ1Q2 . . . Qi, then the output has the form KQ1Q2 . . . Qj , where 0 ≤ j ≤ i.

Proposition 7 Let P be any term. Then algorithm (yin) has the following properties:

(a) Algorithm (yin) terminates.

(b) Algorithm (yin) has the property that ([x]P )x → P .

(c) Let algorithm (yin\c) be the same as (yin) except that the clause [x] E x = E
has been deleted. Then using algorithm (yin\c) we have that

#([x]P ) = 1 +#P + rpx (x, P )− tac(x, P ).



Antoni Diller 21

(d) Let [x]yin P represent the result of applying algorithm (yin) to P and let [x]yn P

represent the result of applying (yn) to P . Then #([x]yin P ) ≤ #([x]yn P ).

(e) Using algorithm (yin\c) we have that

#([xa]([xa−1](. . . ([x2]([x1] P )) . . .))) = a+#P +
a�

i=1

(rpx (xi, P )− tac(xi, P )).

Proof The proofs of parts (a), (b), (c) and (d) are all by induction on the value of
rpx (x, P ). Part (e) can be proved by induction on a using part (c) and the fact that
rpx (y, [x]P ) = rpx (y, P ), when (yin\c) is being used.

The proofs are all fairly straightforward and so only that for part (c) will be given
here.

Proof of part (c): The proof is by induction on the value of rpx (x, P ). In the base
case rpx (x, P ) = 0. Let P = P1 P2 . . . Pm. We thus have:

[x] P1 P2 . . . Pm = β1β2 . . .βm Q1 Q2 . . . Qn,

where n = m− ac(x, P ) and the Qi, for 1 ≤ i ≤ m, are as shown in Fig. 2. Therefore,

#([x] P ) = 1 +m− ac(x, P )

= 1 +#P − tac(x, P ) + rpx (x, P ),

because, in this case, ac(x, P ) = tac(x, P ) and rpx (x, P ) = 0. Thus, the base case has
been established.

In order to establish the inductive step, first let P = P1 P2 . . . Pm. We thus have:

[x] P1 P2 . . . Pm = β1β2 . . .βm Q1 Q2 . . . Qn,

where n = m− ac(x, P ) and the Qi, for 1 ≤ i ≤ m, are as shown in Fig. 2. Therefore,

#([x] P ) = 1 +
m�

i=1

if Pi = x then 0 else

if Pi �= x and x ∈ FV (Pi) then #([x]Pi) else

if x /∈ FV (Pi) then #Pi

= 1 +
m�

i=1

if Pi = x then 0 else

if Pi �= x and x ∈ FV (Pi) then

1 + #Pi + rpx (x, Pi)− tac(x, Pi) else

if x /∈ FV (Pi) then #Pi,

by the inductive hypothesis,

= 1 + #P − ac(x, P ) +
m�

i=1

if Pi �= x and x ∈ FV (Pi) then

1 + rpx (x, Pi)− tac(x, Pi) else 0,



22 Rerepresenting Combinators

because #P =
�m

i=1#Pi, but we need to subtract 1 each time Pi = x in order to
obtain the number we need,

= 1 +#P − tac(x, P ) + rpx (x, P ),

because tac(x, P ) = ac(x, P ) +
�m

i=1 if Pi �= x then tac(x, Pi) else 0. The result
follows by induction. QED.

5 Conclusion

Although a great deal of effort has been put into devising bracket abstraction algo-
rithms since Turner published his in 1979, that algorithm still remains one of the best
for the purpose of implementing a functional language. In addition, Turner’s work
on bracket abstraction has proved to be very fruitful. Bunder [2], for example, anal-
yses the role of optimisations in Turner’s algorithm and improves that algorithm by
adding a large number of additional optimisations. In this paper I have focused on
another of Turner’s ideas, namely that of an algorithm’s being well-behaved under self-
composition. By employing Stevens’s idea of representing combinators iconically [10]
it is possible to devise algorithms that are always well-behaved under self-composition,
no matter how many primal components the terms to which they are applied have.
Algorithm (yn) is such an algorithm. That algorithm, however, has its own limitations.
The abstracts produced can contain a large number of occurrences of the combinator
I. These can be eliminated by introducing yin representations. Algorithm (yin) makes
use of these. Although the resulting algorithm is not, strictly speaking, well-behaved
under self-composition, it always produces abstracts of the form KQ1Q2 . . . Qi, for
some i. Furthermore, both algorithms presented in this paper never produce abstracts
longer than those produced by algorithm (C) and both of them have the property that
([x]X)x → X.

In recent years research effort in the implementation of functional programming
languages has tended to be directed towards super-combinator methods (introduced by
Hughes [5] in the early 1980s) and research on combinator-based techniques has been
partially eclipsed by the success of those super-combinator methods. I believe that
the full potential of combinator-based techniques has yet to be realised. Bunder [2],
Stevens [10] and the work presented in this paper show that there are still interesting
ways of improving bracket abstraction algorithms. I hope that this work will encourage
others to look for new ideas that can be used to further improve bracket abstraction
algorithms and deepen our understanding of those algorithms.

Acknowledgements

I would like to thank David Stevens for many useful conversations about bracket ab-
straction and Donald Peterson for introducing me to the idea of rerepresentation and
for showing me its importance. I am grateful to Debra Barton for reading through a
draft of this paper and for making a number of helpful suggestions for improving it.



Antoni Diller 23

References

[1] S. K. Abdali. An abstraction algorithm for combinatory logic. The Journal of

Symbolic Logic, 41:222–224, 1976.

[2] M. W. Bunder. Some improvements to Turner’s algorithm for bracket abstraction.
The Journal of Symbolic Logic, 55:656–669, 1990.

[3] Haskell B. Curry and Robert Feys. Combinatory Logic, volume 1. North-Holland,
Amsterdam, 1958.

[4] Antoni Diller. Compiling Functional Languages. Wiley, Chichester, 1988.

[5] John Hughes. Graph reduction with super-combinators. Technical Monograph
PRG–28, Programming Research Group, Oxford University Computing Labora-
tory, 1982.

[6] M. S. Joy, V. J. Rayward-Smith, and F. W. Burton. Efficient combinator code.
Computer Languages, 10:211–224, 1985.

[7] J. R. Kennaway. The complexity of a translation of λ-calculus to combinators.
Internal Report CSA/13/1984, School of Information Systems, University of East
Anglia, 1984.

[8] J. R. Kennaway and M. R. Sleep. Variable abstraction in O(n log n) space. Infor-
mation Processing Letters, 24:343–349, 1987.

[9] Raymond M. Smullyan. Diagonalization and Self-reference, volume 27 of Oxford

Logic Guides. Oxford University Press, Oxford, 1994.

[10] David Stevens. Variable substitution with iconic combinators. In Andrzej M.
Borzyszkowski and Stefan Soko�lowski, editors, Mathematical Foundations of Com-

puter Science, volume 711 of Lecture Notes in Computer Science, pages 724–733,
Berlin, 1993. Springer-Verlag.

[11] David A. Turner. Another algorithm for bracket abstraction. The Journal of

Symbolic Logic, 44:267–270, 1979.


