Haskell Exercises 10: Proofs by Induction

Antoni Diller

26 July 2011

1 Mathematical Induction Proofs

(1) Prove, using mathematical induction, that, for all n > 1,
n—1
Z 2 4+ 1 = n?.
i=0

(2) Prove, using mathematical induction, that, for all n > 1,
n—1
d 2i=2r -1
i=0

(3) Prove, using mathematical induction, that, for all n > 1,

23’— -

(4) Prove, using mathematical induction, that, for all n > 1,

n(n+1)(2n + 1)
Z I’ = 5

(5) Prove, using mathematical induction, that, for all n > 1,
dix2=(mn-1)x2" 42

(6) Prove, using mathematical induction, that, for all n > 3, 2n + 1 < 2.



2 Structural Induction Proofs

In the following proofs use the following definitions:

(++) :: [a] -> [a] > [a]
[l ++ ys =ys
(x:x8) ++ ys = x : (xs ++ ys)

concat :: [[al]l -> [a]
concat [] = [
concat (xs:xss) = xs ++ concat xss

reverse :: [a] -> [a]
reverse [] = [
reverse (x:xs) reverse xs ++ [x]

map :: (a -> b) -> [a] -> [b]
map f [] =[]
map f (x:xs) = f x : map f xs

(.) :: b ->c) >(a->>b) >a->c
(f.g) x = £ (g x)

filter :: (a -> Bool) -> [a] -> [a]
filter p [1 = []
filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

foldr :: (a->b ->b) -=>b -> [a] > Db
foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

foldl :: (b ->a ->b) =>b -> [a] > Db
foldl f e [] = e
foldl f e (x:xs) = foldl £ (f e x) xs

flip :: (b ->a ->c¢c) >a->b ->c
flipfxy=£fyx



Prove, using structural induction, that

xs ++ [] = xs

Prove, using structural induction, that

concat (xss ++ yss) = concat xss ++ concat yss
Prove, using structural induction, that

reverse (xs ++ ys) = reverse ys ++ reverse Xs
Prove, using structural induction, that

map (f.g) =map £ . map g

Prove, using structural induction, that

filter p . concat = concat . map (filter p)
Prove, using structural induction, that

foldr f e xs = foldl (flip f) e (reverse xs)
Prove, using structural induction, that

foldr f e . concat = foldr (flip (foldr f)) e
Prove, using structural induction, that

foldr f e . concat = foldr f a . map (foldr f e)



