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Introduction

Some examples:

( "height", 7 ) :: ( [ Char ], Int )
( 10, 30, "time" ) :: ( Int, Int, [ Char ] )
( True, "eat", 8 ) :: ( Bool, [ Char ], Int )

Two useful functions defined on tuples are:

fst :: (a,b) -> a
fst (x,_) = x

snd :: (a,b) -> b
snd (_,y) = y

Tuples can be used inside ZF-expressions:

[ (x, y) | x <- [1, 2, 3], y <- "st" ]

This evaluates to:

[ (1, ’s’), (1, ’t’), (2, ’s’), (2, ’t’), (3, ’s’), (3, ’t’) ]

Tuples have many uses. One of them is to enable you to define functions that return
tuples which contain several pieces of information. For example, a more efficient version
of Quicksort can be defined by using the following split function:

split :: Ord a => a -> [a] -> ([a],[a])
split x [] = ([], [])
split x (y:ys)
| y < x = (y:less, greater)
| otherwise = (less, y:greater)

where (less, greater) = split x ys

Quicksort can now be defined as follows:
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quick :: Ord a => [a] -> [a]
quick [] = []
quick [x] = [x]
quick (x:xs) = quick less ++ [x] ++ quick greater

where (less, greater) = split x xs

The functions zip and curry

More information on zip can be found in section 4.4 of Bird, Introduction to Func-
tional Programming using Haskell (1998). More information on curry can be found
in chapter 1 of the same book.¡p¿ Some examples:

zip [7, 8, 2] "cat" = [(7, ’c’), (8, ’a’), (2, ’t’)]

zip [5, 1, 3, 4] "on" = [(5, ’o’), (1, ’n’)]

unzip [(True, 8), (False, 3), (True, 11) ] =
([True, False, True], [8, 3, 11])

To illustrate the usefulness of zip consider the following problem: Calculate the scalar
product of two vectors. In other words, define a function sp which does the following:

sp [x1, x2, ..., xn] [y1, y2, ..., yn] =
x1 * y1 + x2 * y2 + ... + xn * yn

I will present the solution in several stages. Step 1:

zip [x1, x2, ..., xn] [y1, y2, ... , yn] =
[(x1, y1), (x2, y2), ..., (xn, yn)]

Let xs be [x1, x2, ..., xn] Let ys be [y1, y2, ..., yn] and times (x, y) be
x * y. Then step 2 is:

map times (zip xs ys) = [x1 * y1, x2 * y2, ..., xn * yn]

Step 3:

sum (map times (zip xs ys)) = x1 * y1 + x2 * y2 + ... + xn * yn

Thus, the solution is:

sp :: Num => [a] -> [a] -> [a]
sp xs ys = sum (map times (zip xs ys))

where times (x, y) = x * y

As another example of the usefulness of zip consider the following problem: Decide
whether or not a list is in non-decreasing order. In other words, define a function
nondec which does the following:
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nondec [x1, x2, ..., xn] =
x1 <= x2 && x2 <= x3 && ... && x(n-1) <= xn

I will present the solution in several stages. Step 1: Let xs be [x1, x2, ..., xn].
Then we have:

zip xs (tail xs) = [(x1, x2), (x2, x3), ..., (x(n-1), xn)]

Step 2: Define leq (x, y) = x <= y. Then we have:

map leq (zip xs (tail xs)) =
[x1 <= x2, x2 <= x3, ... , x(n-1) <= xn]

Step 3:

and (map leq (zip xs (tail xs)) =
x1 <= x2 && x2 <= x3 && ... && x(n-1) <= xn

So, the solution of the problem is as follows:

nondec :: Ord a => [a] -> Bool
nondec xs = and (map leq (zip xs (tail xs)))

where leq (x, y) = x <= y

Currying

Consider the following two definitions:

minof2 :: Ord a => a -> a -> a
minof2 x y
| x <= y = x
| otherwise = y

mint :: Ord a => (a, a) -> a
mint (x, y)
| x <= y = x
| otherwise = y

The predefined functions curry and uncurry are defined as follows:

curry :: ((a, b) -> c) -> a -> b -> c
curry f x y = f (x, y)

uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry g (x, y) = g x y

Using curry and uncurry the functions minof2 and mint can be defined in terms of
each other:
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minof2 = curry mint

mint = uncurry minof2

In what follows it will be useful to have uncurried versions of the operators * and <=.
These can be defined in several ways:

times (x, y) = x * y
times = uncurry (*)

leq (x, y) = x <= y
leq = uncurry (<=)

The function zipWith is defined as follows:

zipWith op xs ys = map (uncurry op) (zip xs ys)

To see why zipWith is useful, recall the definitions of the scalar product of two vectors
sp and the function which determins whether or not a list of numbers is in non-
decreasing order nondec:

sp xs ys = sum (map times (zip xs ys))
where times (x, y) = x * y

nondec xs = and (map leq (zip xs (tail xs))
where leq (x, y) = x <= y

Using zipWith these can be readily defined:

sp xs ys = sum (zipWith (*) xs ys)

nondec xs = and (zipWith (<=) xs (tail xs))

Using zipWith the memoised definition of the Fibonacci numbers can be made even
more elegant:

fiblist = 0 : 1 : zipWith (+) fiblist (tail fiblist)
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