
Haskell Unit 5: map and filter

Antoni Diller

26 July 2011

The functions map and filter

The higher-order function map can be defined like this:

map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

Intuitively, what map does is to apply the function f to each element of the list that it
is applied to:

map f [x1, x2, ..., xn] = [f x1, f x2, ..., f xn]

The higher-order function filter can be defined like this:

filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter pred (x:xs)
| pred x = x:xs’
| otherwise = xs’ where xs’ = filter pred xs

For example,

filter even [1 .. 20] = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

Every list that can be defined using ZF-expressions can also be defined using map and
filter and visa versa. First, I define map and filter using ZF-expressions:

map f xs = [f x | x <- xs]
filter pred xs = [x | x <- xs, pred x]

Next, I show the idea behind defining arbitrary ZF-expressions using map and filter:
[f x | x <- xs, pred x] is equivalent to map f (filter pred xs), which can
also be written as (map f . filter pred) xs, using function composition.

1

Newton’s method for finding positive square roots

Let x be the positive number whose square root you are trying to find. Then if y > 0
is a guess, then (y + x/y)/2 is a better guess. For example, say we want to find the
positive square root of 27.3. Let us guess 1. Applying Newton’s method, a better guess
is 14.15. Applying Newton’s method again, a still better guess is 8.03966. Applying
Newton’s method again, a still better guess is 5.71766. Applying Newton’s method
again, a still better guess is 5.24617. And so on. Newton’s method can be programmed
straightforwardly in Haskell as follows:

root :: Float -> Float
root x = rootiter x 1

rootiter :: Float -> Float -> Float
rootiter x y
| satisfactory x y = y
| otherwise = rootiter x (improve x y)

satisfactory :: Float -> Float -> Bool
satisfactory x y = abs (y*y - x) < 0.01

improve :: Float -> Float -> Float
improve x y = (y + x/y)/2

This, however, is quite an “imperative” solution. A more “functional” solution uses
the predefined Haskell function iterate:

iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)

The function iterate generates an infinte list. For example, iterate sqInt 2 would
produce: [2, 4, 16, 256, 65536, 4294967296, ..]. A more “functional” so-
lution is, therefore:

root :: Float -> Float
root x = head (filter (satisfactory x) (iterate (improve x) 1))

satisfactory :: Float -> Float -> Bool
satisfactory x y = abs (y*y - x) < 0.01

improve :: Float -> Float -> Float
improve x y = (y + x/y)/2

2

The sieve of Eratosthesnes for generating primes

(1) Make a list of all the positive integers starting at 2.

(2) The first number on the list is prime; call it p.

(3) Construct a new list in which all multiples of p have been removed.

(4) Repeat the above from step (2).

For example,

[[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...],
[3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, ...],
[5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, ...],
[7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, ...],
[11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, ...], ...]

In Haskell the sieve can be programmed like this:

primes = map head (iterate sieve [2..])
sieve (p:xs) = [x | x <- xs, x ‘mod‘ p /= 0]

Function composition

Composition is a binary operator represented by an infix full stop: (f.g) x is equiva-
lent to f (g x). The type of the section (.) is (a -> b) -> (c -> a) -> c -> b.
Function composition is useful for many reasons. One of them is that f (g (h (i (j
(k x))))), say, can be written as (f . g . h . i . j . k) x; noting that
function composition is associative. This usefulness can be illustrated by means of the
following problem: Find the sum of the cubes of all the numbers divisible by 7 in a
list xs of integers. The solution is as follows:

answer :: [Int] -> Int
answer xs = sum (map cube (filter by7 xs))

cube :: Int -> Int
cube x = x * x * x

by7 :: Int -> Bool
by7 x = x ‘mod‘ 7 == 0

But using function composition this can be written more clearly as follows:

answer :: [Int] -> Int
answer = sum . map cube . filter by7

3

Memoisation

In mathematics the Fibonacci numbers are usually defined like this:

fib 0 = 0
fib 1 = 1
fib i = fib (i - 1) + fib (i - 2)

Although this works in Haskell it is extremely inefficient. A more efficient definition
prevents the re-evaluation of the same Fibonacci number. The values are stored in a
list. The definition is as follows:

fib j = fiblist !! j
fiblist = map f [0 ..]

where
f 0 = 0
f 1 = 1
f i = fiblist !! (i - 1) + fiblist !! (i - 2)

Intuitively, fiblist contains the infinite list of Fibonacci numbers. Each element, say
the ith can be expressed in at least two ways, namely as fib i and as fiblist !!
i. This version of the Fibonacci numbers is very much more efficient.

4

