
Haskell Unit 2: Lists

Antoni Diller

26 July 2011

Introduction

The most important datatype in a functional language is the list. A list is a linearly
ordered collection of elements. All elements of a list must be of the same type. Some
examples:

[3, 7, 5, 88] :: [Int]
[’t’, ’i’, ’m’, ’e’] :: [Char]

"time" :: [Char]
[[2, 3], [4, 8, 17]] :: [[Int]]

Haskell provides many list operators. Some are:

: binary infix sticks an element at the front of a list
head unary prefix extracts the first element of a non-empty list
tail unary prefix returns the tail of a non-empty list
length unary prefix returns the length of a list
!! binary infix extracts an element of a list

A function to sum the elements of a list of integers can be defined like this:

sum :: Integral a => [a] -> [a]
sum ys
| ys == [] = 0
| otherwise = head ys + sum (tail ys)

It is better, however, to use pattern-matching thus:

sum :: Integral a => [a] -> [a]
sum [] = 0
sum (y:ys) = y + sum ys

List addition and subtraction

Two useful binary infix functions on lists are ++ (list addition) and \\ (list subtraction).
List addition takes two lists as its arguments and sticks them together. List subtraction
removes elements from a list, for example:

1

[1, 2, 3, 4, 5] \\ [1, 4] is equivalent to [2, 3, 5]
[1, 1, 1, 1] \\ [1, 4] is equivalent to [1, 1, 1]
[1, 1, 1, 1] \\ [1, 1] is equivalent to [1, 1]

List subtraction is not predefined in the version of Haskell used here, but it can be
defined like this:

(\\) :: Eq a => [a] -> [a] -> [a]
[] \\ _ = []
xs \\ [] = xs
(x:xs) \\ (y:ys)
| x == y = xs \\ ys
| otherwise = (x : (xs \\ [y])) \\ ys

Local definition

Haskell supports local definitions, for example:

foo x
| x > 0 = p + q
| x <= 0 = p - q

where
p = x^2 + 1
q = 3*x^3 - 5

Local defintions obey Landin’s offside rule:

The southeast quadrant that just contains the phrase’s first symbol must
contain the entire phrase, except possibly for bracketted subexpressions.

Programming style

The following two definitions of a leap year illustrate bad and good programming style:

leap1 y = (y ‘mod‘ 4 == 0) &&
(y ‘mod‘ 100 /= 0 ||
y ‘mod‘ 400 == 0)

leap2 y
| y ‘mod‘ 100 == 0 = y ‘mod‘ 400 == 0
| otherwise = y ‘mod‘ 4 == 0

In Haskell leap2 is considered more elegant than leap1.

2

