
Haskell Unit 1: Introduction and Integers

Antoni Diller

26 July 2011

System commands

The following are the most important HUGS system commands:

:q ending session
:? getting help
:e editing file
:t getting type

Integral types

Haskell is a strongly typed language and it is good programming practice, though not a
requirement enforced by the HUGS system, to always include the type of any function
that you define. Haskell has two integral types:

Int limited-precision or single-precision integers
Integer arbitrary-precision integers

Basic arithmetical operators

Haskell has the usual binary infix arithmetical operators:

+ addition
- subtraction
* multiplication
^ exponentiation

It also has the unary prefix operator - (minus or negative) and the following binary
prefix operators:

1

min minimum
max maximum
gcd greatest common divisor
lcm lowest common multiple
div integer division
mod remainder after integer division

The functions div and mod satisfy the following identity:

(div x y) * y + (mod x y) = x

Haskell also has a Boolean datatype Bool, two of whose values are True and False.
It has the usual binary infix Boolean-valued operators:

== equals
/= not equal
< less than
> greater than
<= less than or equal to
>= greater than or equal to

There are also two infix binary logical operators:

|| or
&& and

There is also a prefix unary logical operator:

not not

Defining functions

Functions are defined like this in Haskell:

sqInt :: Int -> Int
sqInt x = x * x

smallerInt :: Int -> Int -> Int
smallerInt x y
| x <= y = x
| otherwise = y

Repetition or iteration is obtained by using recursion. The following function, for
example, given an integer x as its argument, returns the sum of all integers between 0
and x:

sumInt :: Int -> Int
sumInt x
| x == 0 = 0
| otherwise = x + sumInt (x - 1)

2

Using pattern-matching this can also be defined like this:

sumInt :: Int -> Int
sumInt 0 = 0
sumInt x = x + sumInt (x - 1)

This, however, fails miserably for negative arguments. These can be caught as follows:

sumInt :: Int -> Int
sumInt 0 = 0
sumInt x
| x < 0 = error "sumInt undefined when x < 0"
| otherwise = x + sumInt (x - 1)

Type classes and qualified types

In addition to types like Int and Integer Haskell also has type classes. To motivate
these consider the problem of defining a square function for arbitrary-precision integers:

sqInteger :: Integer -> Integer
sqInteger x = x * x

This largely duplicates the earlier definition of sqInt. It is better to define a function
sqIntegral:

sqIntegral :: Integral a => a -> a
sqIntegral x = x * x

Here, Integral is a type class whose elements are the two types Int and Integer and
a is a type variable. The type Integral a => a -> a is called a qualified type.

Turning prefix functions into infix ones

Haskell has a mechanism for converting prefix functions into infix ones. Enclosing a
binary prefix operator in single opening quotation marks turns it into an infix operator.
For example:

div 7 2 is equivalent to 7 ‘div‘ 2

3

Turning infix functions into prefix ones

There is also a mechanism for turning infix operators into prefix ones. Enclosing a
binary infix operator in parentheses turns it into a prefix operator. For example,

(+) 2 3 is equivalent to 2 + 3
(==) 3 4 is equivalent to 3 == 4
(*2) 7 is equivalent to 7 * 2
(0<) 8 is equivalent to 0 < 8

An expression of the form (+) or (0<) is called a section.

4

