
Haskell Answers 5: map and filter

Antoni Diller

4 August 2011

(1) The type String is the same as [Char]. Define a function capitalises, of type
String → String , which takes a list of characters as its argument and returns the
same list as its value except that each lower-case letter has been replaced by its
upper-case equivalent. Thus, capitalises "Minority Report" = "MINORITY

REPORT".

capitalises :: String -> String

capitalises = map toUpper

(2) Define a function squareall :: [Int] → [Int] which takes a list of integers and
produces a list of the squares of those integers. For example, squareall [6, 1,

(-3)] = [36, 1, 9].

squareall :: [Int] -> [Int]

squareall = map (\x -> x*x)

(3) Define a function nestedreverse which takes a list of strings as its argument
and reverses each element of the list and then reverses the resulting list. Thus,
nestedreverse ["in", "the", "end"] = ["dne", "eht", "ni"].

nestedreverse :: [String] -> [String]

nestedreverse = reverse . map reverse

(4) Define a function atfront :: a → [[a]] → [[a]] which takes an object and a list
of lists and sticks the object at the front of every component list. For example,
atfront 7 [[1,2], [], [3]] = [[7,1,2], [7], [7,3]].

atfront :: a -> [[a]] -> [[a]]

atfront x xss = map (x:) xss

1

(5) Define a function lengths which takes a list of strings as its argument and re-
turns the list of their lengths. For example, lengths ["the", "end", "is",

"nigh"] = [3, 3, 2, 4].

lengths :: [String] -> [Int]

lengths = map length

(6) Define a function parity :: [String] → [Int] which takes a list of strings and
returns a list of the integers 0 and 1 such that 0 is the nth element of the value if
the nth string of the argument contains an even number of characters and 1 is the
nth element of the value if the nth string contains an odd number of characters.
For example, parity ["one", "two", "three", "four"] = [1, 1, 1, 0].

parity :: [String] -> [Int]

parity xss = map f xss

where f xs

| even (length xs) = 0

| otherwise = 1

(7) Using the higher-order function map define a function sumsq which takes an
integer n as its argument and returns the sum of the squares of the first n
integers. That is to say,

sumsq n = 12 + 22 + 32 + . . . + n2.

square :: Num a => a -> a

square x = x * x

sumsq :: Integral a => a -> a

sumsq n = sum (map square [1..n])

(8) Define a function subseqs which takes a finite list xs as its argument and returns
the list of all the subsequences of xs. (A subsequence of xs is a selection of not
necessarily adjacent elements of xs which appear in their original order.)

subseqs :: [a] -> [[a]]

subseqs [] = [[]]

subseqs (x:xs) = (subseqs xs) ++ map (x:) (subseqs xs)

(9) The function filter can be defined in terms of concat and map:

2

filter p = concat.map box where box x = ...

Complete this definition of filter by defining box .

filter1 :: (a -> Bool) -> [a] -> [a]

filter1 p = concat.map box

where box x

| p x = [x]

| otherwise = []

(10) Define a function wc (without capitals) which removes all the capital letters from
a string. Thus, wc "Mark Twain" = "ark wain".

wc :: String -> String

wc = filter (not.isUpper)

(11) Define a function wp (without primes) which removes all the primes from a list
of numbers. Thus, wp [1, 2, 3, 4, 5, 6, 7] = [1, 4, 6].

wp :: [Int] -> [Int]

wp = filter (not.prime)

auxprime :: Integral a => a -> a -> Bool

auxprime i 2 = i ‘rem‘ 2 == 0

auxprime i j = i ‘rem‘ j == 0 || auxprime i (j-1)

prime :: Integral a => a -> Bool

prime 1 = False

prime 2 = True

prime i = not (auxprime i (i-1))

(12) Define a function wtel (without the empty list) which removes every occurrence
of the empty list from a list of lists. Thus, wtel [[1, 2], [], [1, 3]] = [[1,

2], [1, 3]].

wtel :: [[a]] -> [[a]]

wtel = filter (not.null)

(13) Define a function caen (containing an even number) which takes a list of lists of
integers as its argument and removes from it every list not containing an even

3

number. Thus, caen [[1,3], [2,1], [7,9], [2, 4, 8]] = [[2,1], [2, 4,

8]].

caen :: [[Int]] -> [[Int]]

caen = filter (even.product)

(14) Define a function afoae (at front of all even) which takes an integer and a list
of lists of integers as its two arguments. It removes every element from the list
which contains at least one odd number and attaches the integer at the front
of the remaining lists. For example, afoae 7 [[2, 4], [2, 3], [3, 7], [3,

4], [6, 100]] = [[7, 2, 4], [7, 6, 100]].

afoae :: Int -> [[Int]] -> [[Int]]

afoae i jss = map (i:) (filter (and.map even) (filter (not.null) jss))

(15) Define a function wvowel (without vowels) which removes every occurrence of a
vowel from a list of characters.

wvowel :: String -> String

wvowel xs = filter f xs where f x = not (x == ’a’ ||

x == ’e’ ||

x == ’i’ ||

x == ’o’ ||

x == ’u’)

(16) Define a function wiv (without internal vowels) which takes a list of strings as its
argument and removes every occurrence of a vowel from each element. For ex-
ample, wiv ["the", "end", "is", "nigh"] = ["th", "nd", "s", "ngh"].

wiv :: [String] -> [String]

wiv = map wvowel

(17) Define a function ssp (sum the squares of primes) which takes a list of integers as
its argument, removes those that are not primes and then squares the remaining
integers and then adds the results together. For example, ssp [2, 4, 7, 1,

3] = 62.

4

ssp :: [Int] -> Int

ssp = sum . map square . filter prime

5

