
Haskell Answers 3: Floating-point Numbers

Antoni Diller

4 August 2011

(1) The area of a general quadrilateral

H
HHH

HH

�
�
�
�
�
�
�
�
�QQ

Q
Q
Q
Q
Q
QQ

�
�
�
�
�
�

C
C
C
C
C
C
C
C
C
C
CC

���
���

���
���

a

b

c
d

p

q

is given by the formula

area =
1

4

√
4p2q2 − (b2 + d2 − a2 − c2)2,

where a, b, c and d are the lengths of the sides and p and q are the lengths of
the diagonals. Defines a Haskell function area a b c d p q which calculates the
area of a general quadrilateral. Your function should return an error message if
the arguments given to it are not those of a genuine quadrilateral. (Hint: test
whether a, b and p really are the lengths of three sides of a triangle, etc.)

1

sort :: Ord a => [a] -> [a]

sort [] = []

sort [x] = [x]

sort (x:xs) = sort [y | y <- xs, y < x] ++ [x] ++ sort [y | y <- xs, y >= x]

sort3 :: Ord a => (a,a,a) -> (a,a,a)

sort3 (x, y, z) = (p, q, r)

where p = head ws

q = head (tail ws)

r = last ws

ws = sort [x, y, z]

testTriangle :: (Num a, Ord a) => (a,a,a) -> Bool

-- x <= y <= z

testTriangle (x, y, z)

| x + y < z = error "Non-triangle encountered"

| otherwise = True

area :: (Ord a, Floating a) => a -> a -> a -> a -> a -> a -> a

area a b c d p q

| testTriangle (sort3 (a, b, p)) &&

testTriangle (sort3 (b, c, q)) &&

testTriangle (sort3 (c, d, p)) &&

testTriangle (sort3 (a, d, p))

= sqrt (4*p*p*q*q - square (b*b + d*d - a*a - c*c)) / 4

| otherwise = error "Impossible error"

square :: Num a => a -> a

square x = x*x

(2) The Fibonacci numbers are usually defined as follows:

f(1) = 1,

f(2) = 1,

f(i) = f(i− 1) + f(i− 2), if i > 2.

They can, however, be defined as follows:

f(i) =
1√
5


(

1 +
√

5

2

)i

−

(
1−
√

5

2

)i
 .

Define a Haskell function fd (Fibonacci direct) that uses this formula. Use a local
definition to avoid recalculation of

√
5 and ensure that the answer is an integer.

2

fd :: (Floating a, Num b) => b -> a

fd i = ((p - q) / sqrt 5)

where p = power ((1 + sqrt 5) / 2) i

q = power ((1 - sqrt 5) / 2) i

fdp :: (Num a, Floating b) => a -> b

fdp i = power ((1 + sqrt 5) / 2) i

fdq :: (Num a, Floating b) => a -> b

fdq i = power ((1 - sqrt 5) / 2) i

power :: (Num a, Num b) => a -> b -> a

power x 1 = x

power x y = x * power x (y-1)

(3) To decide which weekday a certain date is, you can use the formula v = A mod 7
where A = b2.6×m− 0.2c+ d + y + by4c+ b c4c − 2× c. Here, bxc is the integral
part of x. For example, b2.7c = 2. Furthermore, v is the weekday (with Sunday
as day 0), d is the day of the month, m is the month (with March being 1 and
February 12), y is the last two digits of the year and c is the century. What is the
weekday of the following dates: 10 July 1776, 16 April 1834 and 9 June 1901?

weekday :: RealFrac a => Int -> a -> Int -> Int

weekday dd mm yy

= (floor (2.6*mm - 0.2) + dd + y +

floor (fromInt y/4) +

floor (fromInt c/4) - 2* fromInt c) ‘mod‘ 7

where y = yy ‘rem‘ 100

c = yy ‘div‘ 100

(4) The harmonic series is the following infinite series:

1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . . +

1

i
+

Write a function sumHarmonic such that sumHarmonic i is the sum of the first i
terms of this series. For example, sumHarmonic 4 = 1 + 1

2 + 1
3 + 1

4 = 2.08333

sumHarmonic :: Fractional a => a -> a

sumHarmonic 1 = 1

sumHarmonic i = 1/i + sumHarmonic (i-1)

3

(5) The logarithmic series is the following alternating series:

1− x2

2
+

x3

3
− . . . + (−1)n−1x

n

n
+

Write a function sumLog such that sumLog n x is the sum of the first n terms
of this series.

sumLog :: Double -> Double -> Double

sumLog 1 x = x

sumLog n x = (power (-1) (n-1)) * ((x ** n) / n) + sumLog (n-1) x

4

