
Haskell Answers 2: Lists

Antoni Diller

4 August 2011

(1) Define a function productList :: [Int ] → Int which returns the product of a list
of integers. You should take the product of the empty list to be 1.

productList :: [Int] -> Int

productList [] = 1

productList (x:xs) = x * productList xs

(2) Define a function myand :: [Bool ] → Bool which returns the conjunction of a
list. Informally,

myand [e1, e2, . . . , ei] = e1 && e2 && . . . && ei.

The conjunction of an empty list should be True.

andList :: [Bool] -> Bool

andList [] = True

andList (p:ps) = p && andList ps

(3) Define a function concatList :: [[Int ]] → [Int ] which flattens a list of lists of
integers into a single list of integers. For example,

concatList [[3, 4], [], [31, 3]] = [3, 4, 31, 3].

Informally,

concatList [e1, e2, . . . , ei] = e1 + + e2 + + . . . + + ei.

concatList :: [[Int]] -> [Int]

concatList [] = []

concatList (xs:xss) = xs ++ concatList xss

1



(4) Define the function while which is such that while pred xs returns the longest
initial segment of the list xs all of whose elements satisfy the Boolean-valued
function pred . For example,

while even [2, 4, 8, 3, 4, 8, 6] = [2, 4, 8].

while :: (a -> Bool) -> [a] -> [a]

while pred [] = []

while pred (x:xs)

| pred x = x : while pred xs

| otherwise = []

(5) The function iSort (insertion sort) is defined as follows:

iSort :: [Int] -> [Int]

iSort [] = []

iSort (x:xs) = ins x (iSort xs)

ins :: Int -> [Int] -> [Int]

ins x [] = [x]

ins x (y:ys)

| x <= y = x:y:ys

| otherwise = y:ins x ys

Use the function iSort to define two functions, minList and maxList , which find
the minimum and maximum elements of a non-empty list of integers.

minList :: [Int] -> Int

minList xs = head (iSort xs)

maxList :: [Int] -> Int

maxList xs = last (iSort xs)

(6) Define the functions minList and maxList , which return the minimum and max-
imum elements of a non-empty list of integers, respectively, without using iSort
or any other sorting function.

2



currentMin :: Int -> [Int] -> Int

currentMin x [] = x

currentMin x (y:ys)

| x <= y = currentMin x ys

| otherwise = currentMin y ys

minList1 :: [Int] -> Int

minList1 (x:xs) = currentMin x xs

currentMax :: Int -> [Int] -> Int

currentMax x [] = x

currentMax x (y:ys)

| x >= y = currentMax x ys

| otherwise = currentMax y ys

maxList1 :: [Int] -> Int

maxList1 (x:xs) = currentMax x xs

(7) Using the function iSort defined in question (5) redefine the function ins so that
the list is sorted in descending order.

iSort1 :: [Int] -> [Int]

iSort1 [] = []

iSort1 (x:xs) = ins1 x (iSort1 xs)

ins1 :: Int -> [Int] -> [Int]

ins1 x [] = [x]

ins1 x (y:ys)

| x >= y = x:y:ys

| otherwise = y:ins1 x ys

(8) Using the function iSort defined in question (5) redefine the function ins so that,
in addition to outputting a list in ascending order, duplicates are removed. For
example, iSort [2, 1, 4, 1, 2] = [1, 2, 4].

3



iSort2 :: [Int] -> [Int]

iSort2 [] = []

iSort2 (x:xs) = ins2 x (iSort2 xs)

ins2 :: Int -> [Int] -> [Int]

ins2 x [] = [x]

ins2 x (y:ys)

| x < y = x:y:ys

| x == y = x:ys

| otherwise = y:ins2 x ys

(9) Define the function memberNum :: [Int ] → Int → Int such that memberNum xs x
returns the number of times that x occurs in the list xs. For example,

memberNum [2, 1, 4, 1, 2] 2 = 2.

currentMemberNum :: [Int] -> Int -> Int -> Int

currentMemberNum [] y z = z

currentMemberNum (x:xs) y z

| x == y = currentMemberNum xs y (z+1)

| otherwise = currentMemberNum xs y z

memberNum :: [Int] -> Int -> Int

memberNum xs x = currentMemberNum xs x 0

(10) The function member :: [Int ] → Int → Bool has the property that member xs x
returns True if x occurs in the list xs and it returns False if x does not occur
in the list xs. Give a definition of member which uses the function memberNum
that you defined as the answer to question (9).

member :: [Int] -> Int -> Bool

member xs x = (memberNum xs x /= 0)

(11) Redefine the function member of question (10) so that it no longer makes use of
memberNum (from question (9)).

4



member1 :: [Int] -> Int -> Bool

member1 [] y = False

member1 (x:xs) y

| x == y = True

| otherwise = member1 xs y

(12) Using pattern matching with : (cons), define a function rev2 that reverses all
lists of length 2, but leaves all other lists unchanged.

rev2 :: [a] -> [a]

rev2 (x1:[x2]) = x2:[x1]

rev2 xs = xs

(13) Define a function position which takes a number i and a list of numbers xs and
returns the position of i in the list xs, counting the first position as 1. If i does
not occur in xs, then position returns 0.

(14) Define a function element which takes a list xs and a positive integer i and
returns the ith member of xs. Assume that the list xs is at least of length i.

(15) Define a function segments which takes a finite list xs as its argument and returns
the list of all the segments of xs. (A segment of xs is a selection of adjacent
elements of xs.) For example, segments [1, 2, 3] = [[1, 2, 3], [1, 2], [2, 3], [1], [2], [3]].

(16) A partition of a positive integer n is a representation of n as the sum of any
number of positive integral parts. For example, there are 7 partitions of the
number 5: 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 2, 1 + 1 + 3, 1 + 2 + 2, 1 + 4, 2 + 3 and 5.
Define a function parts which returns the list of distinct partitions of an integer
n. For example, parts 4 = [[1, 1, 1, 1], [1, 1, 2], [1, 3], [2, 2], [4]].

(17) A segment ys of a list xs is said to be flat if all the elements of ys are equal.
Define llfs such that llfs xs is the length of the longest flat segment of xs.

(18) A list of numbers is said to be steep if each element of the list is at least as large
as the sum of the preceding elements. Define a function llsg such that llsg xs is
the length of the longest steep segment of xs.

(19) Define a function llsq such that llsq xs is the length of the longest steep subse-
quence of xs.

(20) Given a sequence of positive and negative integers define a function msg which
returns the minimum of the sums of all the possible segments of its argument.

5


