Haskell Answers 2: Lists

Antoni Diller

4 August 2011

(1) Define a function productList :: [Int] — Int which returns the product of a list

of integers. You should take the product of the empty list to be 1.

productlist :: [Int] -> Int
productList [] =1
productlist (x:xs) = x * productlist xs

Define a function myand :: [Bool] — Bool which returns the conjunction of a
list. Informally,

myand [e1, e, ..., 6] =e1 && ey && ... && e;.

The conjunction of an empty list should be True.

andList :: [Bool] -> Bool
andList [] = True
andList (p:ps) = p && andList ps

Define a function concatList :: [[Int]] — [Int] which flattens a list of lists of
integers into a single list of integers. For example,

concatList [[3,4],]],[31,3]] = [3,4, 31, 3].
Informally,

concatList [e1,ea,....e;] =€ ++ e ++ ... ++ €.

concatlList :: [[Int]] -> [Int]
concatList [] = [
concatList (xs:xss) = xs ++ concatlList xss

(4)

Define the function while which is such that while pred xs returns the longest
initial segment of the list xs all of whose elements satisfy the Boolean-valued
function pred. For example,

while even [2,4,8,3,4,8,6] = [2,4,8].

while :: (a -> Bool) -> [a] -> [a]
while pred [1 = []
while pred (x:xs)
| pred x = x : while pred xs
| otherwise]

The function iSort (insertion sort) is defined as follows:

iSort :: [Int] -> [Int]
iSort [] = [
iSort (x:xs) = ins x (iSort xs)

ins :: Int -> [Int] -> [Int]
ins x [1 = [x]
ins x (y:ys)

| x <=y = x:y:ys

| otherwise = y:ins x ys

Use the function iSort to define two functions, minList and mazList, which find
the minimum and maximum elements of a non-empty list of integers.

minList :: [Int] -> Int
minList xs = head (iSort xs)

maxList :: [Int] -> Int
maxList xs = last (iSort xs)

Define the functions minList and maxList, which return the minimum and max-
imum elements of a non-empty list of integers, respectively, without using iSort
or any other sorting function.

currentMin :: Int -> [Int] -> Int
currentMin x [] = x
currentMin x (y:ys)

| x <=y = currentMin x ys

| otherwise = currentMin y ys

minListl :: [Int] -> Int
minlListl (x:xs) = currentMin x xs

currentMax :: Int -> [Int] -> Int
currentMax x [] x
currentMax x (y:ys)

| x >=y = currentMax x ys
| otherwise = currentMax y ys

maxListl :: [Int] -> Int
maxListl (x:xs) = currentMax x xs

Using the function iSort defined in question (5) redefine the function ins so that
the list is sorted in descending order.

iSortl :: [Int] -> [Int]
iSort1 [] = []
iSortl (x:xs) ins1l x (iSortl xs)

insl :: Int -> [Int] -> [Int]
insl x [1 = [x]
insl x (y:ys)

| x >=y = X:y:ys

| otherwise = y:insl x ys

Using the function iSort defined in question (5) redefine the function ins so that,
in addition to outputting a list in ascending order, duplicates are removed. For
example, iSort [2,1,4,1,2] = [1,2,4].

iSort2 :: [Int] -> [Int]
iSort2 [] = [
iSort2 (x:xs) = ins2 x (iSort2 xs)

ins2 :: Int -> [Int] -> [Int]
ins2 x [] = [x]
ins2 x (y:ys)

| x <y = X:y:ys
| x ==y = x:ys
| otherwise = y:ins2 x ys

Define the function memberNum :: [Int] — Int — Int such that memberNum s x
returns the number of times that x occurs in the list zs. For example,

memberNum [2,1,4,1,2] 2 = 2.

currentMemberNum :: [Int] -> Int -> Int -> Int
currentMemberNum [] yz=2z
currentMemberNum (x:xs) y z

| x ==y = currentMemberNum xs y (z+1)

| otherwise = currentMemberNum xs y z

memberNum :: [Int] -> Int -> Int
memberNum xs x = currentMemberNum xs x O

The function member :: [Int] — Int — Bool has the property that member zs x
returns True if x occurs in the list s and it returns False if does not occur
in the list zs. Give a definition of member which uses the function memberNum
that you defined as the answer to question (9).

member :: [Int] -> Int -> Bool
member xs x = (memberNum xs x /= 0)

Redefine the function member of question (10) so that it no longer makes use of
memberNum (from question (9)).

(12)

(14)

(15)

(19)

(20)

memberl :: [Int] -> Int -> Bool
memberl [] y = False
memberl (x:xs) y

| x == = True

| otherwise = memberl xs y

Using pattern matching with : (cons), define a function rev2 that reverses all
lists of length 2, but leaves all other lists unchanged.

rev2 :: [a] -> [a]
rev2 (x1:[x2]) = x2:[x1]
rev2 Xs = Xs

Define a function position which takes a number ¢ and a list of numbers zs and
returns the position of ¢ in the list xs, counting the first position as 1. If ¢ does
not occur in zs, then position returns 0.

Define a function element which takes a list xs and a positive integer ¢ and
returns the ith member of zs. Assume that the list xs is at least of length 3.

Define a function segments which takes a finite list xs as its argument and returns
the list of all the segments of zs. (A segment of zs is a selection of adjacent
elements of zs.) For example, segments [1,2,3] = [[1,2,3],[1,2],2, 3], [1], [2], [3]].

A partition of a positive integer n is a representation of n as the sum of any
number of positive integral parts. For example, there are 7 partitions of the
number 5: 14+14+1+141,14+14+1+2,14+14+3,14+2+2,1+4,2+3 and 5.
Define a function parts which returns the list of distinct partitions of an integer
n. For example, parts 4 = [[1,1,1,1],[1,1,2],[1, 3], [2, 2], [4]]-

A segment ys of a list zs is said to be flat if all the elements of ys are equal.
Define lifs such that [ifs zs is the length of the longest flat segment of ws.

A list of numbers is said to be steep if each element of the list is at least as large
as the sum of the preceding elements. Define a function llsg such that llsg zs is
the length of the longest steep segment of zs.

Define a function llsq such that llsq zs is the length of the longest steep subse-
quence of zs.

Given a sequence of positive and negative integers define a function msg which
returns the minimum of the sums of all the possible segments of its argument.

