Haskell Answers 1: Integers

Antoni Diller

4 August 2011

(1) Write a function sotls (sum of two largest squares) so that sotls z y z is the sum
of the squares of the two largest integers z, y and z.

sotls :: Int -> Int -> Int -> Int
sotls x y z
| (x <=7y) && (x <= 2z) = y*y + z*z
| (y <= 2) && (y <= x) = x*x + z%¥Z
| (z <= x) && (z <= y) = x*x + y*y

(2) Define a function sumsq which takes an integer n as its argument and returns
the sum of the squares of the first n integers. That is to say,

sumsqn =12 +224+3%+ ... +n°

sumsq :: Int -> Int
sumsq 0 = 0O
sumsq n = n*n + sumsq (n-1)

(3) Define the factorial function fact which behaves as follows: fact n = 1x2x...xn

fact :: Int -> Int
fact 0 = 1
fact n = n * fact (n-1)

(4) Define a function comb which takes positive integers n and m and returns the
number of combinations of n objects taken m at a time. That is to say,
n!
combnm=——————.
m! x (n —m)!
Note that comb is not defined if n < m. When this happens your definition
should return an error message.

comb :: Int -> Int -> Int
comb n m

| n < m = error "comb undefined if n < m"
(fact n) ‘div‘ (fact m * fact (n-m))

| otherwise

Define a function mygcd which takes positive integers x and y as arguments and
returns the greatest common divisor of x and y as its value. Note that myged
should return an error message when both of its arguments are zero.

mygcd :: Int -> Int -> Int

mygcd 0 O = error "gcd O O undefined"
mygcd _ 0 = 0
myged 0 _ =0
mygcd x
| y==0=x
| vy /=0 =gcd y (x ‘mod® y)

Write a program to determine whether or not a given number is prime, that is
to say, has no divisors other than 1 and itself. Call your function prime.

auxprime :: Int -> Int -> Bool

auxprime i 2 = i ‘rem‘ 2 == 0

auxprime i j = i ‘rem‘ j == 0 || auxprime i (j-1)
prime :: Int -> Bool

prime 1 = False

prime 2 = True

prime i = not (auxprime i (i-1))

A perfect number is one which is equal to the sum of its divisors, excluding itself,
but including 1. Thus, 6 is perfect because 6 = 1 4+ 2 4 3 and each of 1, 2 and 3
divide 6. Write a function perfect which tests its single argument for perfection.

onefactor :: Int -> Int -> Int
onefactor x y
| x ‘rem‘ y ==
| otherwise =

]
o<

auxsumfactors :: Int -> Int -> Int
auxsumfactors 1 =1
auxsumfactors x y

onefactor x y + auxsumfactors x (y-1)

sumfactors :: Int -> Int
sumfactors 1 =1
sumfactors x = auxsumfactors x (x-1)

perfect :: Int -> Bool
perfect x = sumfactors x == x

Suppose that you have a function coin which is such that coin ¢ is the value of
the ith coin in some currency. For example, in the United Kingdom we have:

coin 1 =1,
coin 2 = 2,
coin 3 = 9,
coin 4 = 10,
coin 5 = 20,
coin 6 = 50,
coin 7 = 100,
coin 8 = 200.

Write a function countways which is such that countways n m returns the number
of different ways to make change from an amount m using n coins (of any value).

countways :: Int -> Int -> Int
countways n m
| m ==
| m <0 ||
n == =0
| otherwise = countways n (m - (coin n)) + countways (n - 1) m

I
[N

coin :: Int -> Int
coin 1 = 1
coin 2 = 2
coin 3 = 5
coin 4 = 10
coin 5 = 20
coin 6 = 50
coin 7 = 100
coin 8 = 200

An abundant number is a natural number whose distinct proper factors have a
sum exceeding that number. Thus, 12 is abundant because 1+2+3+4+6 > 12.
Write a Boolean-valued function abundant which tests whether or not a number
is abundant.

abundant :: Int -> Bool
abundant i = sumfactors i > i

Two numbers are amicable if each is the sum of the distinct proper factors of the
other. For example, 220 and 284 are amicable because the factors of 284 are 1,
2,4, 71 and 142 and these add up to 220 and because the factors of 220 are 1,
2,4,5,10, 11, 20, 22, 44, 55 and 110 and these add up to 284. Write a function
amicable which tests whether or not two distinct numbers are amicable.

amicable :: Int -> Int -> Bool
amicable i j = i == sumfactors j && j == sumfactors i

The least common multiple of a set of numbers is the smallest number that is
exactly divisible by all of the numbers in the set. For example, the least common
multiple of 3, 5 and 10 is 30. Write a function lem3 which is such that lem3 ¢ j k
is the least common multiple of the three numbers 4, j and k,

lcm3 :: Int -> Int -> Int -> Int
lem3 i j k = 1lem i (lem j k)

