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Abstract

We introduce inference metaprogramming for probabilistic
programming languages, including new language constructs,
a formalism, and the first demonstration of effectiveness
in practice. Instead of relying on rigid black-box inference
algorithms hard-coded into the language implementation
as in previous probabilistic programming languages, infer-
ence metaprogramming enables developers to 1) dynamically
decompose inference problems into subproblems, 2) apply in-
ference tactics to subproblems, 3) alternate between incorpo-
rating new data and performing inference over existing data,
and 4) explore multiple execution traces of the probabilis-
tic program at once. Implemented tactics include gradient-
based optimization, Markov chain Monte Carlo, variational
inference, and sequental Monte Carlo techniques. Inference
metaprogramming enables the concise expression of proba-
bilistic models and inference algorithms across diverse fields,
such as computer vision, data science, and robotics, within a
single probabilistic programming language.

CCS Concepts « Mathematics of computing — Prob-
abilistic inference problems; « Software and its engi-
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1 Introduction

Probabilistic modeling and inference are becoming central
computational tools across a broad range of fields [10, 12,
21, 29, 35, 42]. To better support this increasingly prominent
class of computations, researchers have designed and imple-
mented probabilistic programming languages, which pro-
vide direct support for defining probabilistic models and per-
forming probabilistic inference within the language [2, 13-
16, 20, 24, 27, 43, 45]. This stands in contrast to standard
practice in probabilistic modeling and inference, in which
programmers directly implement models and inference algo-
rithms using ordinary programming language constructs.

Practitioners today know that no one approach works well
(or even at all) for all problems. Effective inference requires
matching the characteristics of the inference algorithm to the
functional requirements, modeling assumptions, and even
the data. Over the last several decades the field has devel-
oped a wide range of inference algorithms as well as a body
of knowledge that matches these algorithms to problems
from a diverse range of fields. Prominent themes include
particle methods that explore multiple solutions at once and
hybrid strategies that break inference problems down into
subproblems and apply specialized inference algorithms as
appropriate to each subproblem [1, 9, 46].

Current probabilistic programming languages, however,
typically provide a small set of black-box inference strategies
hard-coded into the implementation. This limitation renders
current probabilistic programming languages unsuitable for
most potential applications of probabilistic inference.

1.1 Programmable Inference

We introduce novel inference metaprogramming constructs
for custom inference algorithms. These constructs enable
probabilistic programmers to 1) dynamically decompose in-
ference problems into subproblems, 2) apply exact and/or
approximate inference tactics to fully or partially solve these
inference subproblems, 3) alternate between incorporating
new data and performing inference over existing data, and
4) explore multiple execution traces of the probabilistic pro-
gram at once.
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We have implemented these constructs in the context of
the Venture probabilistic programming language [24]. Expe-
rience using these constructs to implement probabilistic mod-
eling and inference algorithms in a range of fields, including
probabilistic robotics [7, 31], computer vision [26], inverse
planning [6], geophysics [36], and data science [5, 25, 38]
highlights the effectiveness of inference metaprogramming
in this context.

1.2 Inference Metaprogramming Concepts

Most probabilistic programming languages support two types
of code: generative code and observation code. The stochastic
choices in the generative code define a probability distri-
bution over program execution traces. These traces record
all the stochastic choices that the program makes when it
runs. Observation code links these stochastic choices to the
observed data. Together, the generative and the observation
code can be viewed as inducing a Bayesian posterior distri-
bution that concentrates on program execution traces that
are likely in light of the prior modeling assumptions encoded
in the generative code and the observed data.

We introduce inference code for writing inference metapro-
grams, which explictly specify how to find generative code
executions that are likely in light of the constraints from
the observation code. While it is sometimes possible for
metaprograms to sample program executions from the exact
Bayesian posterior, in practice most metaprograms deliver
approximate samples that nevertheless satisfy the functional
requirements of the application.

Inference metaprogramming constructs enable developers
to identify subproblems by selecting target stochastic choices
from the generative code. Corresponding absorbing stochas-
tic choices insulate the remaining computation from changes
to the target stochastic choices. Resampling constructs select
likely traces from sets of traces that execute the program
together in lock step. All of this code interoperates seam-
lessly with standard code from the underlying probabilistic
programming language.

Programmable inference enables programmers to express,
evaluate, and deploy a broad range of probabilistic inference
and modeling algorithms, including state of the art inference
algorithms in widespread use as well as novel custom/hybrid
algorithms that deliver accuracy and performance tradeoffs
tailored specifically for the problem at hand.

1.3 Soundness

Several notions of soundness are relevant in practice. Exact
Bayesian inference algorithms generate traces according to
the exact Bayesian posterior distribution [3, 13]. The stochas-
tic choices define the prior and the constraints define the
posterior given the prior. Maximum a posteriori (MAP) infer-
ence delivers traces that maximize the posterior probability
density [19]. Maximum likelihood inference delivers a trace
that maximizes the likelihood of the data, without taking the
prior probability density of the trace into account [23].
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Obtaining any of these notions of soundness is computa-
tionally intractable for many problems of interest [4]. There-
fore, practitioners routinely use either 1) asymptotically
sound techniques, such as Markov chain and sequential
Monte Carlo inference [1, 2, 9, 13, 43, 45], or 2) unsound
techniques, such as variational inference [20, 44, 46]. Asymp-
totically sound algorithms generate traces from a distribu-
tion that converges to the exact Bayesian posterior as some
parameter increases without limit. In Markov chain Monte
Carlo algorithms, this number is the number of Markov chain
iterations, while in sequential Monte Carlo algorithms, this
number is the number of independent particles or replicates.
Unsound algorithms are designed to have some conceptual
connection to the Bayesian posterior that is intended to cap-
ture the key properties needed for the given application.

These soundness questions apply to both 1) the tactics
used for inference subproblems and 2) the inference metapro-
gram taken as a whole. Venture’s built-in library of inference
tactics includes sound, asymptotically sound, and unsound
algorithms. These tactics can be used to create sound, asymp-
totically sound, or unsound inference metaprograms.

1.4 Contributions

This paper makes the following contributions:

e Inference Metaprogramming: It introduces the con-
cept of inference metaprogramming, which enables
probabilistic programmers to specify customized prob-
abilistic inference algorithms as appropriate for the
probabilistic inference problem at hand.

e Language Constructs: It presents novel inference
metaprogramming constructs that interoperate seam-
lessly with standard probabilistic programming con-
structs. These new constructs enable developers to dy-
namically decompose inference problems into subprob-
lems, apply custom inference tactics to subproblems,
and explore multiple execution traces concurrently.

Case Studies: It presents case studies that highlight

the range of application areas and custom inference

strategies that inference metaprogramming supports.

A key empirical observation is that different inference

metaprograms and strategies are appropriate for dif-

ferent inference problems and probabilistic programs.

e Formalism: It presents a precise formal character-
izion of key concepts in inference metaprogramming.

Inference metaprogramming comprises a fundamental change
to the conceptual model of probabilistic programming. The

inference algorithms used by practitioners vary widely across

fields, problems, and even problem instances, but probabli-
istic programming languages previously only supported a

small set of built-in algorithms. Inference metaprogramming

thus eliminates a key obstacle to the widespread adoption of

probabilistic programming in practice.
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// Generative code defining a two-variable

// probabilistic model and associating labels infer resample(100);
// to the choices. infer reset_to_prior();
assume x = normal(@, 1) #latents:"x"; repeat (1000, {

assume y = normal(@, 1) #latents:"y

" infer gradient_ascent(
minimal_subproblem(/?latents/*), 0.01)});
repeat (100, {
infer resimulation_mh(
minimal_subproblem(
random_singleton(/?latents/*)))});

(a) Generative code

// Observation code defining a likelihood model, based
// on a Gaussian latent variable, and an observed

// value for this variable.

observe normal(x +y, 1.0) = 3; (c) Inference metaprogram

(b) Observation code
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(i) Sequences of trace values for three of the 100 traces, showing how individual traces evolve under the inference metaprogram

Figure 1. Inference metaprogramming example. The generative code (1a) defines a prior distribution over x and y. The
observation code (1b) defines the posterior distribution over x and y given the prior. Figure 1d graphically presents the prior;
Figure 1le graphically presents the posterior. The goal of probabilistic inference is to convert samples from the prior (1f) into
samples from the posterior. The inference metaprogram (1c) first performs gradient steps to move samples from the prior
towards the peak of the posterior (1g), then Single-Variable Metropolis-Hastings (SVMH) steps to spread out the samples to
more accurately represent the posterior (1h). Figure 1i presents the time evolution of three of the traces. The white crosses
represent gradient steps; the white circles represent SVMH steps.
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2 Example

We next present an example that illustrates inference metapro-
gramming in Venture. The goal is to obtain likely values for
two latent model variables x and y that explain a (noisy)
observation that the sum of the two variables equals three.
Generative Code: Venture programs often start with a se-
quence of stochastic choices that define the values of latent
model variables. We call this code generative code. Figure 1a
presents the generative code in our example. Each possible
execution of the generative code corresponds to a complete
setting of all the latent variables in an associated probabilis-
tic generative model. The assume statements in Figure 1a
execute stochastic choices that define the values of the x and
y latent model variables. They also associate the stochas-
tic choices with labels: /?1atents/* names both stochastic
choices, /?1latents/?x names the x choice, /?1atents/?y
names the y choice, and random_singleton(/?latents/x)
names a single randomly selected x or y choice. The infer-
ence code uses the labels to identify stochastic choices to
include in subproblems.

Together, the stochastic choices in Figure 1a define a con-
ceptual prior probability distribution over possible program
executions. Figure 1d graphically presents this prior for the
x and y latent model variables. As illustrated in Figure 1f,
executions of the generative code sample from this prior.
Observation Code: Venture programs often next define a
likelihood model by executing code that makes additional
stochastic choices and associates observed data values with
these choices. We call this code observation code. Figure 1b
presents the observation code in our example. The observe
statement adds a new stochastic choice — from a Gaussian
distribution with mean x+y and standard deviation 1.0 —and
associates this choice with the observed value 3. Together,
the generative and observation code induce a posterior dis-
tribution on program execution traces (Figure 1e).
Probabilistic Inference: The next step is to perform prob-
abilistic inference to (typically approximately) convert sam-
ples from the prior into samples from the posterior with the
goal of obtaining values for the latent model variables that
acceptably explain the observed data.

Inference Metaprogram: Figure 1c presents the inference
metaprogram. Over the course of its execution, this infer-
ence metaprogram evolves a set of traces inside the Venture
runtime from an initial set drawn from the prior into sets of
traces drawn from different approximations to the posterior.

The metaprogram first executes resample (100) command.
This command takes the current set of executing traces, each
of which has a weight that captures the likelihood of that
trace relative to the other executing traces, samples 100 traces
randomly from this set in proportion to their weights, then
replaces the current set with the sampled set. Here there is
only one trace when the resample command executes, so the
command simply creates 100 replicas of that trace.
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The following reset_from_prior() command replaces
each of these 100 traces with a new trace drawn from the
prior, updating the weights to correspond to the likelihood
of the observations under the new values, i.e., the log prob-
ability density of the normal(x+y,1.0) distribution at the
value 3. The white crosses in Figure 1f present the x, y values
from this set of traces overlaid on the prior. The samples
match the prior but not the posterior.

The remainder of the metaprogram updates the set of
traces by executing two different probabilistic inference al-
gorithms in sequence. The first uses gradient ascent to update
the values of x and y in a direction that locally increases the
probability density of the execution traces. The algorithm
selects stochastic choices, creates an inference subproblem
from those choices, and applies a gradient search inference
tactic to update the subtrace internal to that subproblem.

Figure 1g shows the resulting set of traces, again with
the white crosses presenting the x, y values of each trace.
These traces concentrate in the center of the probability den-
sity of the posterior distribution. Note that the inference
metaprogram executed so far is highly unsound from the
subjective Bayesian viewpoint, i.e., the inferred trace dis-
tribution does not correspond closely to the full posterior
distribution. Also note that for some applications, this kind
of unsound approximation is more useful than a sound result
in which traces are randomly drawn from the full posterior
distribution — some applications are best served with just
the single highest probability density trace selected from a
large set of candidate traces.

The second algorithm executes after the first. It repeatedly
applies a variant of the Metropolis-Hastings algorithm that 1)
randomly selects a single stochastic choice from among the
/?latents/* choices, 2) constructs a minimal subproblem
from this choice (i.e., the smallest subproblem that includes
this choice, see Section 4), 3) proposes a new subtrace for
this subproblem by reexecuting the program fragment cor-
responding to this subproblem, and 4) accepts or rejects
the new subtrace according to the Metropolis-Hastings rule.
We call this algorithm Single-Variable Metropolis-Hastings
(SVMH). Figure 1h shows the resulting set of traces. The set
now represents a good approximation to the full posterior
distribution, not just its highest probability density regions.

Figures 1i presents three examples of the x, y trajectories
generated by the execution of the inference metaprogram in
Figure 1c. Each trajectory starts with a sequence of white
crosses presenting the sequence of x and y values generated
during the gradient ascent inference algorithm. The sequence
shows the path from each different sampled prior curving
into the center of the posterior probability density function.

This sequence is followed by a sequence of white cir-
cles presenting the sequence of x and y values from the
Metropolis-Hastings algorithm. These sequences show the
traces spreading out to more accurately represent the poste-
rior via the Metropolis-Hastings algorithm.
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For the gradient-ascent algorithm, the specified subprob-
lem includes the stochastic choices for both latent variables
x and y. These are the target stochastic choices for the sub-
problem. The absorbing stochastic choice is the choice made
by the expression normal (x+y, 1.0). We call this choice the
absorbing choice because it absorbs the changes to x and
y — the inference does not change the value of this choice,
which is constrained to equal 3 in all executions.

For the SVMH algorithm, the subproblem is randomly
generated at each step, with the target set corresponding
to either the choice that generated the value of x or the
choice that generated the value y. The value of the other
X, ¥ choice remains unchanged because it lies outside the
subproblem. The absorbing choice is again the stochastic
normal (x+y,1.0) choice.

3 Case Studies

Inference metaprogramming in Venture has been used to
solve problems in diverse fields, including probabilistic ro-
botics [7, 31], computer vision [26], inverse planning [6],
geophysics [36], and data science [5, 25, 38].

These applications have diverse requirements. For exam-
ple, the robotics application from [7, 31] is an instance of
simultaneous localization and mapping (SLAM), in which a
stream of control signals and sensor data is interpreted via
inference in a probabilistic model derived from quantitative
models of the robot’s motor system and sensors. Accurate
online inference requires small updates for each new sen-
sor reading; these can be done via sequential Monte Carlo
with custom Metropolis-Hastings updates. In contrast, the
application to automatic Bayesian model discovery for mul-
tivariate data tables [5] uses a prior over a broad class of
probabilistic model structures and parameters. The inference
metaprogram for solving this problem implements a Markov
chain Monte Carlo algorithm for searching this space to find
plausible models given the data. In this metaprogram, the
subproblem decomposition is itself dynamic, because the
model structure changes over the course of model discovery.

This paper uses four case studies to illustrate the range
of inference algorithms that can be expressed via inference
metaprogramming. Each case study presents a probabilistic
model via generative code, an inference problem defined by
additional observation code, and multiple inference metapro-
grams that implement approximation algorithms for solving
each model and/or inference problem.

3.1 Modeling Time Series Data

We present a state-of-the-art application of probabilistic pro-
gramming: Bayesian program synthesis for automatically
discovering models of time-series data [39]. The model takes
the form of a program, in the language of Gaussian process
models [23, 33], that models the input time series as a com-
position of primitive structural components such as linear
trends, periodic variation, white noise, and change points.
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repeat(n, { infer resimulation_mh(
minimal_subproblem(random_singleton(/*)))});

Figure 2. Generic SVMH algorithm for automatic model
discovery from time-series data.

repeat(n, { repeat(5, { infer resimulation_mh(
minimal_subproblem(random_singleton(/?structure/*)))});
infer lbfgs_optimize(minimal_subproblem(/?hypers/*))});

Figure 3. Custom inference metaprogram for automatic
model discovery from time-series data based on SVMH with
block updates and LBFGS gradient-based optimization up-
dates for numerical hyperparameters.
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(a) Results for automatic time-series model discovery with a
single-variable Metropolis-Hastings inference metaprogram
from Figure 2.
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(b) Results for automatic time-series model discovery with a
custom metaprogram (Figure 3) that uses block updates and
an LBFGS gradient-based search to simultaneously update all
numerical hyperparameters.

Figure 4. Discovered time-series models with different in-
ference metaprograms.

Generative Code: The generative code (not shown) uses
a probabilistic context-free grammar to generate a random
Gaussian process covariance kernel. This kernel is specified
using a data structure that can be thought of as a program
in the domain-specific language of Gaussian process models.
The primitives in this language include a constant kernel
(i.e., a constant covariance function), a linear kernel, a white
noise kernel, a squared exponential kernel, and a periodic
kernel. The language combines these primitives with kernel
multiplication, addition, and a change-point kernel switch
function that smoothly replaces one kernel with another.
Each model in this language defines a function from time to
the value of the time series at each point in time.

All of the kernels have hyperparameters that determine
quantitative characteristics such as the location of a change
point or the amplitude of white noise. The generative code
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that implements the probabilistic context-free grammar de-
fines a prior probability distribution over Gaussian process
time-series models. The generative code makes two classes of
stochastic choices: discrete structural choices that determine
the structure of the generated model (each of these selects a
production from the probabilistic context-free grammar as
the generative code builds the model) and numerical choices
that generate continuous kernel hyperparameters.
Observation Code: The observation code (not shown) reads
the observed time-series data, then executes observe state-
ments that constrain the model to produce the same values
as the observed time-series data.

Inference Code: Figure 2 presents a generic SVMH metapro-
gram (Section 2) for solving this problem. Figure 3 presents a
custom metaprogram that alternates between iteratively ap-
plying the SVMH algorithm to a randomly selected structural
choice and applying a Limited Memory Broyden-Fletcher-
Goldfarb-Shanno (LBFGS) gradient-based search to simul-
taneously optimize all the hyperparameters. The code uses
/?structure/#* to name all of the discrete structural choices
and /?hypers/* to name all of the continuous hyperparam-
eter choices.

It is not possible to apply the LBFGS algorithm to opti-
mize the discrete structural stochastic choices; the algorithm
works only for numerical choices with computable gradi-
ents. This fact highlights how inference metaprogramming
supports specialized inference algorithms that apply only to
selected subproblems within the larger inference problem.
Results: These metaprograms have been used to obtain mod-
els for a variety of time-series data, including solar radiation,
unemployment, and sulphuric acid production data [39]. We
present results for a data set of monthly totals of interna-
tional airline passengers from 1949 through 1961. We train
on the first 90% of the data, holding out the remaining 10% to
evaluate the prediction accuracy. We run each metaprogram
repeatedly for 30 minutes. Figures 4a and 4b present the two
best (i.e., least error on training data) time-series models
obtained from the two metaprograms. These models show
that the input time-series data contain both a component
that linearly increases with time (as air traffic increases over
time) and a periodic component corresponding to seasonal
variations in traffic (more in summer, less in winter).

The second metaprogram (Figure 3), by combining SVMH
for discrete choices and block gradient-based optimization
for continuous choices, sometimes succeeds in producing
accurate models. Its best models are more accurate than than
the best models from the first metaprogram (Figure 2) — they
match the training data more accurately and generalize bet-
ter (they more accurately predict the held out data). This case
study highlights how custom inference metaprograms can
increase the probability of obtaining adequate approxima-
tions to computationally intractable probabilistic modeling
and inference problems within a given runtime budget.
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This case study can be viewed as an alternative imple-
mentation of the Automatic Bayesian Covariance Discov-
ery (ABCD) approach from the Automated Statistican sys-
tem [22]. This Venture program is both more accurate than
the original ABCD system and is implemented in over fifty
times fewer lines of code [38]. This case study thus high-
lights the expressive power of inference metaprogramming
in concisely describing state-of-the-art algorithms for soving
complex probabilistic modeling and inference problems.

3.2 Linear Regression With Outlier Detection

We use inference metaprogramming to solve the problem
of simultaneously 1) fitting a line to data while 2) inferring
which data points are outliers and should not affect the line.
Generative Code: Figure 5 presents the generative code,
which uses assume statements to build the model. These
statements define values of latent model variables (such as
slope and intercept) by sampling from specified prior dis-
tributions. For example, slope = normal(@,1) sets slope
to a random value drawn from a normal distribution with
mean 0 and standard deviation 1. The program randomly
generates slope and intercept for the linear regression,
noise from a gamma distribution, then sets outlier_noise
and outlier_probability to constant values.

The procedure model (i, x) also contains generative code
that accepts a data point identifier i and input value x as
arguments and generates an observable y value as output.
This procedure first uses a Bernoulli stochastic choice, via
is_outlier(i), to decide whether each data point x should
be included in the regression or is an outlier that should
be excluded. It then makes a normal-distributed stochastic
choice to generate a value y for that data point based on its
x value. If is_outlier(i) == True, i.e. X is an outlier, this
normal distribution has mean 0 and standard deviation 25.
Otherwise, the mean is given by the regression line, and the
standard deviation is given by the noise variable.

The generative code includes labels that make it possible
to write custom inference metaprograms that exploit the
structure in this problem. Stochastic choices that generate
numerical parameters are tagged with the parameters la-
bel; choices that generate the binary outlier indicators for
each data point are tagged with the outlierindicators
label. These labels reflect the fact that there are two kinds
of random choices: numerical choices for the parameters
of the regression line and discrete choices that determine
if each point should be included in or excluded from the
regression. In this situation it is appropriate to use different
inference strategies for these different choices. Venture’s la-
beling constructs make it possible to separate these choices
into different subproblems, then apply an appropriate infer-
ence technique to each subproblem. The choices are also
tagged with more specific labels. For example, the outlier as-
signment choices are labeled with unique integer identifiers
corresponding to the identifier for the data point they are
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assume slope = normal(@, 1) #parameters:Q;
assume intercept = normal(@, 1) #parameters:1;
assume noise = gamma(1,1) #parameters:2;

assume outlier_noise = 25;

assume outlier_probability = 0.1;

assume is_outlier = mem((i) ~> {
bernoulli(outlier_probability) #outlierindicators:i });

assume model = (i, x) ~> {
if (is_outlier(i)) {
normal (@, outlier_noise)
} else {
normal (slope * x + intercept, noise)}};

Figure 5. Generative code for linear regression with outlier
detection.

for_each (arange(size(data_xs)), (i) -> {
observe model($i, ${data_xs[il}) = data_ys[il});
repeat(n, { infer resimulation_mh(
minimal_subproblem(random_singleton(/*)))});

Figure 6. Observation and inference code for a generic
single-variable Metropolis-Hastings algorithm.

for_each (arange(size(data_xs)), (i) -> {
observe model($i, ${data_xs[il}) = data_ys[il});
repeat(n, { repeat(m, {
infer resimulation_mh(minimal_subproblem(
random_singleton(/?parameters/*)))3});
for_each (arange(size(data_xs)), (i) -> {
infer gibbs(minimal_subproblem(
/?0utlierindicators==i))3})});

Figure 7. Observation and inference code that uses Gibbs
sampling on the outlier indicator variables.

define indices = shuffle(size(data_xs));
for_each (arange(k), (i) -> {

j = indices[i];

observe model($j, ${data_xs[jl}) = data_ys[jl; });
infer lbfgs_optimize(minimal_subproblem(/?parameters/*));
for_each (arange(k, size(data_xs)), (i) -> {

j = indices[i];

observe model($j, ${data_xs[jl}) = data_ys[jl });
for_each (arange(size(data_xs)), (i) -> {

infer gibbs(minimal_subproblem(

/?outlierindicators==1i))1});

Figure 8. Observation and inference code for a custom
algorithm that fits the regression models to a subset of the
data and then updates each outlier indicator once.
associated with (here, i). These labels enable outlier indica-
tors for specific data points to be the targets of subproblems
for custom inference metaprograms.

Observation Code and Inference Code: We next discuss
three different observation code blocks and inference metapro-
grams for this problem. The first (Figure 6) incorporates
the data via observe statements observe model(i,x)=y,
where X, y is an observed data point with identifier i. The
constraint model (i, x)=y links the stochastic choices that
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Figure 9. Linear regression in the presence of outliers with
different inference strategies.

determine the predicted y value to the observed y value. It
then applies the SMVH algorithm from Section 2.

The second metaprogram (Figure 7) performs n steps of a
custom inference strategy that improves on the metaprogram
in Figure 6 in two ways. First, it alternates between perform-
ingm SVMH inference steps on the parameters stochastic
choices and performing inference on the outlierindicators
stochastic choices. Second, it uses Gibbs sampling to update
each of the outlierindicators.

The SVMH inference steps resample the numerical slope,
intercept, and noise choices, holding the remaining choices
constant — the predicted y values and outlier decisions do
not change during the inference iterations. The goal is to
find slope, intercept, and noise choices that better ex-
plain the predicted y values and current outlier decisions.
The target set of each subproblem is the randomly selected
slope, intercept, or noise choice (as identified by the
random_singleton(/?numerical/*) expression.) The ab-
sorbing set contains all of the normal choices executed by
the model procedure that apply the linear model to obtain
the predicted y values (Figure 5).

The Gibbs steps use the /?outlierindicators/?i labels
to generate and exactly solve a subproblem for each observed
data point x, y. Unlike the generic reexecution proposal from
Figure 6, this tactic exactly solves the subproblem by enumer-
ating both possible values for is_outlier(i). It thus takes
the fit between each data point and the regression model
into account when proposing updates.

Each Gibbs step potentially changes only the outlier de-
cision for the current point, holding the predicted y values,
the slope, intercept, and noise values, and the other out-
lier decisions constant. The goal is simply to find an outlier
decision for the current point that better explains all of these
other choices.
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The final inference metaprogram (Figure 8) interleaves ob-
servations and inference. It starts by invoking the model (i, x)
procedure to include k randomly selected data points in the
model. It then applies the LBFGS algorithm (discussed in
Section 3.1) to only those k points to infer a linear regression
line for those points. It then completes the model for the
remaining observed data points and applies a Gibbs step to
each of the observed data points to obtain outlier decisions
that better explain the inferred linear regression line.
Results: Figure 9 presents results from executions with
the three inference metaprograms (with k=4 for the third
metaprogram). Each graph presents the observed data points,
with green points included in the regression and red points
excluded. The black line is the inferred regression line (s1ope
and intercept) and the two dashed lines indicate the in-
ferred noise (noise) around the regression line. Both the
custom metaprograms correctly identify outliers and deliver
an accurate regression line with small predicted noise. In
contrast, the generic single-variable Metropolis-Hastings al-
gorithm incorrectly classifies five points and delivers a less
accurate regression line.

3.3 Inference In A Hidden Markov Model

This case study is based on the problem of inferring hidden
states in a hidden Markov model. Hidden Markov models
have been the basis of practical applications in fields such as
speech recognition, genetics, natural language processing,
and quantitative finance. In this problem class, there is a
probabilistic state machine whose state is hidden from the
probabilistic programmer. The observed data is a sequence of
output symbols that are assumed to be stochastically emitted
based on the hidden state that the machine is in at each step
of the sequence.

Generative Code: The generative code (not shown) defines
the initial state distribution, the transition probabilities be-
tween states, and the probability with which each state emits
each output symbol. It also defines functions for generating
a hidden state sequence and observation sequence according
to these probabilities.

Interleaved Observation Code and Inference Code: This
case study illustrates the use of inference metaprograms that
interleave the observation of data with the application of
inference tactics. The first inference metaprogram (Figure 10)
replicates the trace number_traces times (typically tens of
times). It then adds the observations in sequential order, with
each trace executing the generative code to sample a hidden
state from the prior for each new observation. Each trace
calculates an updated trace weight based on the match with
the observed data. After the metaprogram loads all of the
observations, it executes a resampling inference operation to
sample one trace from the current set of traces with probabil-
ity proportional to the weights for each of the current traces.
This inference metaprogram can be viewed as implementing
an importance sampling algorithm.
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infer resample(number_traces);
infer reset_to_prior();
for_each (arange(size(training_data)), (i) -> {
observe emission(get_state(integer($i)))
= training_datal[il; });
infer resample(1);

Figure 10. Observation code and importance resampling
inference code for inferring states in a hidden Markov model.

infer resample(number_traces);
infer reset_to_prior();
for_each (arange(size(training_data)), (i) -> {
observe emission(get_state(integer($i)))
= training_datali];
infer resample(number_traces); });
infer resample(1);

Figure 11. Observation code and sequential Monte Carlo
inference code with resampling after every observation.

infer resample(number_traces);
infer reset_to_prior();
for_each (arange(k), (i) -> {
observe emission(get_state(integer($i)))
= training_datalil; 3});
infer resample(number_traces);
for_each (arange(5, 10), (i) —> {
observe emission(get_state(integer($i)))
= training_datalil; 3});
infer resample(1);

Figure 12. Observation code and inference code for sequen-
tial Monte Carlo with two resampling steps.

The second inference metaprogram (Figure 11) applies a
resampling operation after every observation is added. This
corresponds to a sequential importance samping with resam-
pling (SIR) algorithm, a widely used instance of the broader
class of sequential Monte Carlo algorithms. The third infer-
ence metaprogram (Figure 12) applies only two resampling
steps: once after the fifth observation is included, and a sec-
ond resampling step after all observations have been added.
This resampling step replaces the initial traces with new
traces that assign high likelihood to the first few states so
that computational effort is focused on traces that give good
explanations of these first states. This is a simple example of
a custom sequential Monte Carlo techinique that cannot be
expressed in probabilistic programming languages based on
black-box sequential Monte Carlo. This third metaprogram
spends less computational effort resampling, at the cost of a
reduction in accuracy relative to the second metaprogram.
Results: We ran each inference metaprogram with a range
of numbers of traces, such that runtimes varied from 15 to
25 seconds. Figure 13 presents the results. The X axis of each
graph plots the time; the Y axis plots the inferred probability
estimate that the Markov model is in the corresponding state
at that time. We derive the estimates by aggregating results
from all of the runs, specifically by counting the number of
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(a) Importance sampling, resampling(b) Sequential Monte Carlo, resam-
at the end of the sequence. pling after every observation.

1.00
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0123456789 0.00 State =0 0.00
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EZL?)T;‘;;:;:Mome Carlo, two re- (d) Ground truth probability
Figure 13. Estimates of hidden state probabilities in a hidden
Markov model for different inference metaprograms. Ground
truth probabilities are included for comparison. Each plot
shows estimates of the probability that the hidden Markov
model is in each state after each time step. Each column
corresponds to a time step; each row corresponds to a state.
The shading indicates the probability.

executions that placed the Markov model in each state at
each time step.

The results show that importance sampling (Figure 10)
delivers the least accurate estimates. Sequential Monte Carlo
algorithm resampling after every step (Figure 11) delivers the
best accuracy. A custom sequental Monte Carlo algorithm
with resampling after two specific steps in the sequence
(Figure 12) delivers intermediate accuracies but runs faster
than the second metaprogram.

3.4 Inference In A Bayesian Network Model

This case study is a synthetic example designed to share
characteristics with a broad class of Bayesian network infer-
ence problems. The network topology is a bipartite structure
based on Bayesian network models for medical diagnoses. In
these networks, a set of unobservable variables representing
diseases have causal links that activate variables representing
observable symptoms or measurements. The diseases have
low prior probabilities. The inference problem is to sample
from the probability distribution over diseases given the ob-
servable measurements. These kinds of inference problems
can be challenging because there are often multiple logically
possible explanations of the data.

Generative Code: The generative code (Figure 14) first sam-
ples hidden disease variables according to their prior proba-
bilities. It then defines samplers for the noisy-OR distribution
that defines the probability with which a symptom is present,
given the presence or absence of each parent. Finally, it de-
fines a variable for each symptom. It labels each disease
according to the symptoms that it can cause, which allows
inference metaprograms to define subproblems that contain
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assume cause_prior = 0.01;

assume disease_1 ~ bernoulli(cause_prior) #symptomA:Q;
assume disease_2 ~ bernoulli(cause_prior) #symptomA:1;
assume disease_3 ~ bernoulli(cause_prior)

#symptomA:2 #symptomB:0;

assume disease_4 ~ bernoulli(cause_prior) #symptomB:1;
assume disease_5 ~ bernoulli(cause_prior) #symptomB:2;
assume disease_6 ~ bernoulli(cause_prior) #symptomB:3;

assume get_causal_link = (parent) -> {
if (parent) { ©0.01 } // Probability of a leak
else { 1. }
b
assume get_effect = (parents, effect) -> {
if (size(parents) == @) { effect } else {
get_effect(rest(parents), effect *
get_causal_link(first(parents)))
b
b
assume noisy_or = (parents) ~> {
p_spontaneous = 0.001;
bernoulli(1 - ((1-p_spontaneous) *
get_effect(to_list(parents), 1)))
b

assume symptom_A = noisy_or(

[disease_1, disease_2, disease_3]);
assume symptom_B = noisy_or(

[disease_3, disease_4,

disease_5, disease_6]);

Figure 14. Generative code for a Bayesian network model.

observe symptom_A = True;
observe symptom_B = True;

Figure 15. Observation code for a Bayesian network model.

repeat(n, {
infer gibbs(minimal_subproblem(/?symptomA/*));
infer gibbs(minimal_subproblem(/?symptomB/*));
DN

Figure 16. Custom blocked Gibbs inference metaprogram
for a Bayesian network model.

groups of disease variables that are most strongly coupled,
i.e., those disease variables that compete to probabilistically
explain a given symptom.

Observation Code: The observation code (Figure 15) is com-
mon across all three inference metaprograms. This code con-
strains the stochastic choice representing each symptom to
take on the value True. Note that this pattern of data is best
explained by the presence of disease #3 alone. This is because
1) disease #3 is sufficient to explain both symptoms (as the
model parameters are such that each disease causes its asso-
ciated symptoms with high probability, and 2) all diseases
are assumed to be rare a priori under the generative code,
so explanations that invoke two diseases simultaneously are
significantly less likely.
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Figure 17. Inferring probable hidden causes of data according to a Bayesian network model. Panels (a) and (b) show estimates
of the marginal posterior probabilities from two different inference metaprograms; panel (c) shows the ground truth. The
custom inference metaprogram uses multiple-variable blocked Gibbs sampling with subproblems that match the dependence

structure of the Bayesian network.

Inference Code: The first metaprogram implements the
generic SVMH algorithm (Section 2). The second implements
custom blocked Gibbs sampling that repeatedly 1) samples
values for all three causes of symptom A from their posterior
distribution given the current setting of all other variables,
and then 2) samples values for all four causes of symptom
B from their posterior distribution given the new values for
causes of symptom A from step 1. The third disease appears
in both subproblems since it influences both symptoms.

Results: Figures 17a and 17b present the results from each
of the inference metaprograms, compared to ground truth
in FIgure 17c. The number of repetitions of both inference
metaprograms are chosen to deliver executions that finish
in under 20 seconds. We obtain the output probabilities in
Figures 17a and 17b by averaging over all traces from each
inference metaprogram. The custom inference metaprogram
(Figure 16) is significantly more accurate for two reasons.
First, it simultaneously updates all variables that are cou-
pled, and second, it updates these variables from their exact
posterior. It can thus easily shift which disease is being used
to explain each symptom, and find the state where disease
#3 is present but no other diseases are present. In contrast,
the SVMH algorithm has difficulty switching diseases off,
and thus overestimates the probability that two diseases are
present and independently causing the observed symptoms.

4 Inference Metaprogramming Formalism

We next precisely define several central concepts in infer-
ence metaprogramming. These concepts include subproblem
identification, target and absorbing sets, requirements that
subproblem inference algorithms must satisfy. While we ex-
pect these concepts to be reflected in implementations of
probabilistic programming languages that support subprob-
lem inference, the specific realization of the concepts may
vary across implementations. We present these concepts with
formalisms of two core Venture languages, the generative
language (which includes only assume and observe state-
ments), and the inference language (which also includes infer
statements). Full formalization details are available [17].

4.1 Core Venture Languages

We formalize the basic concept of valid Venture traces using
the core Venture generative language in Figure 18. A program
in this language is an ordered list of assume and observe
statements.

Expressions are derived from the untyped lambda calcu-
lus augmented with the standard probabilistic programming
construct Dist(e,[(e;)) (a stochastic choice drawn from the
distribution Dist with parameter e). Venture allows the pro-
grammer to label each stochastic choice using a label I(e;),
which may later be used to specify the stochastic choices in
a subproblem.

4.2 Valid Traces

When a generative program executes, it builds up a trace that
records the stochastic choices, executed statements, and val-
ues of computed expressions. The trace also includes unique
identifiers id € ID for each executed statement, definition,
or computed expression. These ids are later used to derive a
dependence graph used to define subproblems. We formalize
traces as unrolled program traces ¢t € T (Figure 19). Each
program p has a set of valid traces t € Traces(p) that corre-
spond to valid executions of the program. Each expression,
definition, and statement within a trace is augmented with
its corresponding computed value and a unique id.

We define the execution, including the generation of valid
traces t € T, with a relation {(p,0,,0;4) =5 t, which exe-
cutes a program p in environment o,,,0;4 to obtain a trace
t, where o, : Vars — Vals and ;4 : Vars — ID [17]. Note
that the generative language, which does not include infer
statements, defines the set of valid traces — infer statements
only mutate one valid trace into another valid trace but do
not change the set of valid traces.

4.3 Dependence Graphs (N,D,E)

Each trace t € T has a corresponding dependence graph
(N,D,E) = Graph(t) that makes the data and existential
dependences in t explicit. We use the dependence graph to
define valid subproblems. Here N : ID — aEUaDU aS maps
an id € ID to a corresponding augmented expression ae €
aE, augmented definition ad € aD, or augmented statement
as € aS. dom N is the set of nodes in the graph.

D C ID x ID are the data dependence edges; & C ID X
ID are the existential edges. There is a data dependence
edge (idy,idy) € D if the value of the augmented expres-
sion N (id;) depends directly on the augmented expression
N (idy). There is an existential edge (id;,id;) € & if the value
of the augmented expression N (id;) controls whether or not
the augmented expression or augmented definiton N (idz)
executes. For example, if N (id;) identifies the condition in
an if expression and N (id;) identifies an expression in the
executed then or else branch, then (id;,id,) € &.
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4.4 Valid Subproblems

Given a trace t with dependence graph (N, D, E) = Graph(t),
a valid subproblem S € N must satisfy two properties: 1)
there are no outgoing existential edges and 2) all outgoing
data dependence edges must terminate at a stochastic choice
(either in a Dist(e,l(e|)) expression or as part of an observe
statement). Conceptually, the second property ensures that
any changes made by the subproblem inference tactic can be
absorbed by an unchanged stochastic choice to generate a
valid trace after subproblem inference. Because the changes
are absorbed by the stochastic choice, the new valid trace
remains unchanged outside the subproblem.

The first property ensures that if the control flow changes
during subproblem inference, any expressions or definitions
that depend on this control flow lie within the subproblem
and can be removed by the subproblem inference tactic to
deliver a valid trace after subproblem inference. We formalize
these two properties as follows:

e Yid € dom S.{id,id,) e & = id, € S
e Vid € dom S.(id,id,) € D Nid, € dom N —domS =

N (id,) = Dist(x,1(x)) V N (id,) = observe(Dist(*) = c)
The input boundary 8 € dom N — dom S of a subprob-
lem S is the set of nodes on which the subproblem directly
depends, i.e., B = {idy | id, € dom N — dom SA Tid; €
dom S.(idy,id;) € D U E}.

The absorbing set A € dom N — dom S of a subprob-
lem § is the set of stochastic choice or executed observe
statements whose value directly depends on the nodes in the
subproblem, i.e., A = {id, | id, € dom N —dom S AJid; €
dom S.(id;,id,) € D).

4.5 Infer Statements

The core Venture inference language enables the program-
mer to intersperse infer statements within the sequence of
assume and observe statements. Each infer statement has the
form infer ({I(e;),...,l(en)),SS,1T), where {l(e1),...,l(en))
is a set of label expressions that identify stochastic choices in
the subproblem, SS is a subproblem selection strategy, and
IT is an inference tactic.

After evaluating the label expressions (I(e1),. . .,l(e,)) to
label values (I(v1),...,l(v,)), a subproblem selection strat-
egy S = SS({I(v1),...,1(vn)), t) takes the label values and a
trace t and returns a valid subproblem S as defined above.
Here the target set is the set of all stochastic choices in ¢ with
alabel [(v) € {l(vy),...,I(v,)}. We also define the minimum
subproblem selection strategy, which selects the smallest
valid subproblem S that contains all the target stochastic
choices. Note that, in general, a valid subproblem selection
strategy may select a subproblem that contains some, all, or
none of the target stochastic choices.

An inference tactict’ = IT(t,S) takes as input a trace ¢ and
a subproblem S and produces an output trace t’. Here S must
be a valid subproblem for ¢t as defined above in Section 4.4.
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Figure 18. Core Generative Language

veVals = RUIUBU(v1,vs...0,)U{Ax.€,04,0;4)
idelID := idl'
ae € aE = (x(idy) : v)#id | (c: c)#id
|  (Dist(ae,l(ae;)) : v)#id
| (©ae:v)#id | (D ae; aey : v)#id
| (if aeg then ae, else e; : v)#id
| (if aes then e; else ae; : v)#id
|  (letad in ae, :v)#id
|  (Ax.e:{Ax.e,0,,0:q))%id
| ((ae; aey) = aes : v)#id
| ((aey,aes,...aex) : v)#id | (ae[n] : v)#id
ad € aD = (x = ae)#id
as €aS := (assume ad :1)#id
|  (observe(Dist(ae) = ¢) :L)#id
teT = 0| as;t

Figure 19. Unrolled Program Traces t € T

The output trace ¢’ must 1) be a valid trace of the program
that generated ¢ that 2) changes only the subproblem S. We
formalize these constraints as follows:

o 1’ € Traces(Program(t))
e Stt=t

where (N,D,E) = Graph(t), (N’,D’,E’) = Graph(t’), and
Program(t) is the Venture Generative Program that gener-
ated t. A trace t contains enough information to recover the
program p that generated the trace, conceptually by rerolling
the execution that generated the trace.

S + t = t’ indicates that the traces t and ¢’ are equivalent
(i.e., have the same values and same structure) except for ex-
pressions or definitions in the subproblem S. This condition
ensures that portions of the trace ¢ outside the subproblem
do not change. Conceptually, the check recursively iterates
through the structure of t and t’, checking structural simi-
larity and value equality in the parts of the trace which are
not within the subproblem. Captured environments oy, 0,4
outside S may change, i.e., we consider (A x.e, 0, 0;4) equiv-
alent to (A4 x.e,az’,,crl.'d) even if id ¢ dom S.
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5 Related Work

We discuss related work in two fields: probabilistic program-
ming languages and approximate probabilistic inference.

Probabilistic Programming Languages: Researchers have
developed a range of probabilistic programming languages.
Each implementation typically comes with one or a few black
box inference strategies. Prominent examples of language/in-
ference strategy pairs include Stan [2] with Hamiltonian
Monte Carlo inference [1]; WebPPL [14] with Single-Variable
Metropolis-Hastings inference, Black Box variational infer-
ence, and Hamiltonian Monte Carlo inference; and Angli-
can [43] with particle Gibbs sampling. The Augur compiler
generates efficient compiled implementations of Markov
Chain Monte Carlo inference algorithms [18, 45].

Venture differs from all previous probabilistic program-
ming languages in its support for inference metaprogram-
ming. The current Venture prototype provides tactics that
implement each major approximate inference approach from
the above languages, but extended so that they apply to broad
classes of user-defined subproblems. Example tactics include
gradient ascent; LBFGS-based optimization; Hamiltonian
Monte Carlo; partial mean field variational inference; slice
sampling; Gibbs sampling for discrete variables; Metropolis-
Hastings with a proposal based on re-executing the program;
rejection sampling; and particle Gibbs sampling. See [24]
for details on how to implement these tactics, and [17] for
additional formalism describing an interface for new tac-
tics. Inference code can also implement particle methods
by resampling traces based on their weights, and interleave
inference code with generative code for extending a model
and observation code for incorporating observations.

Some other languages provide mechanisms for customiz-
ing aspects of inference. For example, LibBi [30] and Gen
[? ] support user-space definition of custom proposal dis-
tributions, and Figaro [? ], Edward [? ], and Pyro [? ] sup-
port additional constructs. These capabilities can either be
implemented as inference metaprogramming tactics or as
new metaprogramming constructs that interoperate with the
constructs introduced here. Additional inference metapro-
gramming techniques have been inspired by the constructs
described here, such as the use of probabilistic programs as
Metropolis-Hastings proposals [? ], and incremental infer-
ence for probabilistic programs [? ].

After inference metaprogramming was introduced in Ven-
ture, other probabilistic languages, e.g. Turing [11] and PyMC3
[37], have added limited support for custom inference in
terms of subproblems. Some aspects of inference metapro-
gramming were inspired by Blaise [? ], the runtime system
used to implement the first version of Church [13]. However,
Blaise was not a probabilistic programming language in it-
self, and lacked the concepts of generative code, observation
code, and inference code.
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Probabilistic Inference: Custom inference strategies, im-
plemented in traditional programming languages, are now
a standard approach for solving probabilistic modeling and
inference problems. Proposed strategies include decompos-
ing multivariate state vectors into components that are then
updated separately, simulateously resampling highly corre-
lated variables, and applying specialized tactics to appropri-
ately defined subproblems [1]. Proposed hybrid strategies in-
clude combinations of Markov chain Monte Carlo techniques
with other approaches to inference such as sequential Monte
Carlo, variational inference, and gradient-based optimiza-
tion [1]. Venture supports all of these general approaches (as
well as their compositional application to different subprob-
lems). The interface Venture provides for inference tactics
is also expressive enough in principle to support message-
passing-based approaches to inference [19, 28] and to im-
plement more flexible operator-based variational techniques
[32]. One goal of the Venture inference strategy constructs
presented in this paper is to make all of these strategies, as
well as new custom inference metaprograms, composition-
ally available in probabilistic programming languages.

6 Conclusion

This paper introduces inference metaprogramming, a fun-
damental new development in probabilistic programming.
Inference metaprogramming makes it possible for proba-
bilistic programmers to implement custom inference algo-
rithms that exploit the structure of each problem, and enables
a single probabilistic language to express state-of-the-art
solutions to problems from multiple fields. We anticipate
that inference metaprogramming will enable the adoption
of probabilistic programming for real-time and large-scale
applications, once implementations have matured. Inference
metaprogramming also opens up new research directions,
such as the development of new (meta)metaprograms for
profiling, testing, analyzing, and verifying the soundness of
metaprograms that carry out approximate inference. Finally,
by simplifying the use of probabilistic modeling and infer-
ence, we anticipate that inference metaprogramming will
help researchers explore both Bayesian and non-Bayesian
formulations of the central problems of artificial intelligence.
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