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Abstract

We extend the herding algorithm to continuous
spaces by using the kernel trick. The resulting
“kernel herding” algorithm is an infinite mem- 2
ory deterministic process that learns to approx-
imate a PDF with a collection of samples. We
show that kernel herding decreases the error of or
expectations of functions in the Hilbert space at b
arateO(1/T) which is much faster than the usual
O(1/+/T) for iid random samples. We illustrate 2
kernel herding by approximating Bayesian pre- -
dictive distributions.

1 INTRODUCTION
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Herding has been understood as a weakly chaotic, non-

linear dynamical system in parameter space, i.e. one can. . .

think of it as a mappingv, 1 — F(w) [Wellind, 20094.b, Flgl_Jre 1: First 20 samples form her_dmg (red squares) ver-
Welling and Chen|_ 2010, Chen and Welling, 2010]. TheSusi-d- random sampling (purple circles).

discrete states play the role of auxiliary variables in this

view. However, under this interpretation it has provendiffi formulation the kernel trick is then straightforward. The
cult to extend herding to continuous spaces. The basic reanain result of this paper is that the error in approximating
son is that a finite number of features can not sufficientlyany function in the RK-Hilbert space defined by the ker-
control the infinite number of degrees of freedom in con-nel through a Monte Carlo sum decrease®@/T). This
tinuous spaces leading to strange artifacts in the pseudgs significantly faster than the standapd1 /ﬁ) conver-
samplel8. To overcome this we wish to perform herding on gence obtained for iid random samples frpmin fact, un-

an infinite number of features implying the need to switchder the assumption that we perform an unweighed Monte
to a kernel representation. Carlo sum,9(1/T) convergence is known to be optimal

To achieve that, we will first reinterpret herding as an in-[Ku0-and Sloan,_2005]. - The reason for the fast conver-
finite memory process in the state spacahere we now 9€NCe iS due to negative autocorrelations: the process re-
“marginalize out’ the parametexs. Thus, we can con- members all previous samples and steers away from re-
sider herding as a mapping _ G(x; X1, Wo) gions which have already been (over) sampled. This is

With two additional very natural assumptions, herding iS|Ilustrated in Figurd 1l for a mixture of Gaussians. Simi-

seen to minimize the squared error between expected fe r ideas are the basis for methods such as Quasi Monte

ture values evaluated at the true distribution and the em&@rlo sampling, Quadrature integration and more recently

pirical distribution obtained from herding. In this new Bayesian integratior [Rasmussen and Ghahramani, 2002].

For instance, herding in a continuous space with features .
given by the mean and variance will produce two delta-peaks i FOr kernel herding one needs to be able to convolve the
stead of a Gaussian. densityp with the kernel of choice. While this is possi-



ble for some rare cases it is hard in general. However;maximizing out” the statex. In this case, we may un-
kernel herding can still be very useful if we want to re- derstand herding as taking gradient steps of $in@ the
duce a large collection of samples obtained from a MCMCfollowing (concave, non-positive, scale-free, pieceviize
procedure. Oftentimes, the positive auto-correlations inear) function,

herent in most MCMC chains are reduced by subsampling.

Even in the case when all auto-correlations have been re-  G(w) = <W7Ex~17[¢(x)]> —max(w,¢(x)) (3)
moved this is actually suboptimal, becaussgativeauto- — X

correlations may further improve the Monte Carlo approx-

imation. Herding can be used to sub-select a small collectiere 4, denotes the mean operator associated with the
tion of “super-samples” from a much larger set of MCMC distributionp in 3¢, i.e. for f(x) = (w,¢(x)) we have
samples. Due to the faster error reduction of herding, ifx~p[f(x)] = (w, ;). However, we may also take the
theory we would only nee¢/T samples to obtain the same “dual view” where we removev in favor of the statex.
order of error ag” iid random samples. While in practice This is possible because we can express:

=pp

this is a little optimistic, in our experiments we will show T
significant boosts in sampling efficiency by using herding. wr =wo+ Ty — Z B(xt) (4)
We argue that a small collection of super-samples can be t=1

beneficial in situations where we wish to average pl‘ediCusing Q) For ease of intuitive understanding of herding,
tions over many predictors. While we may have suffi-we temporarily make the assumptions (which are not nec-
cient time to train up many predictors off-line (through.e.g essary for propositida 1 to hold):

Bayesian posterior sampling or bagging on bootstrap sam-

ples), we may want to be flexible in deciding over how 1. w, = thp

many predictors we average at test fimeerding will pre- 2. |p(x)||3 = R*forallx € X

cisely organize the samples in an order that is optimal in

terms of reducing the error most at every iterdiiofhese  This condition is easily achieved, e.g. by renormalizing

ideas are validated with some numerical experiments. $(x) ”zg;” or by choosing a suitable feature map

in the first place.

2 KERNEL HERDING

Given the above assumptions and the further restrictions of
finite-dimensional discrete state spaces [Welling, 2(4)9b,
one can show that herding greedily minimizes the squared
erroré&%. defined as

We directly describe the herding algorithm in terms of Re-
producing Kernel Hilbert Spaces and (potentially) contin-
uous index spaces (note that previous work lby [Welling,

2009b,a] cast it in terms of finite-dimensional spaces and ) 1L 2
discrete domains). &r = Hup -7 ; (xt) ‘ ()
2.1 Herding We therefore see that herding will generate pseudo-samples

that greedily minimize this error at every iteration (condi
Letx € X denote some state over an indexXdtypically  tioned on past samples). Note that this does not imply that
the space of covariates) and let X — 3 denote a fea- the total collection of samples at iteratidhis jointly opti-
ture map into a Hilbert Spac# with inner product-,-).  mal. We also note that herding is an “infinite memory pro-
Given a probability distributionp(x), herding consists of cess” onx; (as opposed to a Markov process) because new
the following update equations for a weight-vectoe H  samples depend on the entire history of samples generated
thus far [Welling and Chen, 2010].

X¢41 = argmax (we, ¢(x)) 1) ' .
x€X If we manage to find the optimal stakg exactly at every
Wit1 = Wi + Exopd(x)] — P(x141) (2) iteration then the error i 15) decreases at a (A& ).

The proof of this statement follows directly from [Welling,
with suitable initializationwy. We may view this [2009a, Proposition 1 and 2] which was independent of
as a weakly chaotic, nonlinear dynamical system ovethe extra assumptions above. This fast convergence is ac-
w [Welling and Chen| 2010, Chen and Welling, 2010] by tually quite remarkable. Note for instance that by gen-
—_— . . erating independent identically distributeandom sam-

_“One can imagine a bank trying to present users with personpjes (jid) fromp we getO(7~z) convergence while an
alized ads once they have logged into their website. Depgndi MCMC method with positive auto-correlation converges

on the server load the number of predictors used may vary. . .
3Note that this does not imply that the herding set is optimaleven slower. The fact that herding exhibfiéster conver-

if we are given the number of samples we are going to be usin@€nce can be understood by the fact herding pushes sam-
ahead of time. ples away from already explored regions of state space and



as such hasegativeauto-correlations. This behavior is have been obtained. See [Jebara and Kondor, 2003] for de-
reminiscent of Quasi Monte Carlo integration and Bayesianails.
guadrature methods [Rasmussen and Ghahramani, 200

) . . ; he central result of this paper is now that the pseudo-
and is also related to the idea of fast weights for persstensam les generated bv kernel herding inherit the fast
contrastive divergence [Tieleman and Hinton, 2009]. P 9 y 9

O(T~1) decrease in error. For a good characterization we
need to define the marginal polytopé It is given by

M := conv {p(x)|x € X}.

2.2 Convergencein Hilbert Space

The work of [Welling, 2009b}a] implicitly assumed that ] ]
there are many more discrete states than features. Thigfollows thatu, € M sinceX contains the support gf

has the effect that we only “control” the error in a small If [[#(x)[| < R forall x € X it follows that |, || < R
subspace of the full state space. The natural question &Nd consequently by the triangle inequality we have that
whether we canake the (nonparametric) limit where the [1p — o) < 2R, Vx.

number of features is infinit& his is in fact rather straight-

forward becaus&l1) only depends on the inner product Proposition 1 Assume thap is a distribution with sup-

port contained inX and assume thdly(x)|| < R for all

k(x,x') := ((x), p(x)) (6) x € X. Moreover assumg, is in the relative interior of
the marginal polytopévl. Then the error€r of (9) will
if we plug (4) into [1). This then results in, decrease a® (T~ 1).
XT+1 = (M Proof We first show thaljw|| is bounded for all. For this
we introduce the centered marginal polytope
argmax (wo, ¢(x)) + TExmp (%, X)] = > k(x, %)
x€X P C =M — pp = conv {p(x) — pplx € X}. (10)

S . . UsingC the update equations become
If we initialize wo = p, (Assumption 1), and restrict g P d

l¢(x)]] = R for all x € X (Assumption 2), the kernel W1 = Wi — ¢ Wherec, := argmax (wy,c).  (11)
herding procedure becomes: cee
r This allows us to write the increment in the norm of the
1 .
xr41 = argmax By, [k(x, x')] — ——— Z k(x, %) parameter vectdtw;1|| via
x€X T+14 2 2 2
=t ®) [Wel™ = [Wea |7 = 2{we, ) — [le]| (12)
>9 Wi Cy
and we can see that herding is performing greedy mini- 2 2 el |lwel [well llcell /
mization of the erro€7: . .
r The inequality follows from|c,|| < 2R. If we can show
T
1 2
&7 :HHP__ZQb(Xt) 9) <£, © > =v%>9">0 (13)
= H [[well " [let -
2 for all w then it follows immediately thatw|| < R/~*: in
— /
=Ex x/~plh(x,x")] — T ZEXNP[k(Xv ) this case we havgw||v: — R > (R/v*)y* — R = 0.
t=1
1 & To see[(IB) recall that, is contained inside the relative
+ =5 Z k(xe, x4r). interior of M, i.e. there exists am-ball aroundy,, that is
T tt/=1 contained irM. Consequently™* > .
The error measures tlhe d;stance betweand the empiri-  Since||w, || = |lwo + T, — Sy d(xe)|| < R/y* itfol-
cal measurgr(x) = 7 >_,_; d(x,x;) given by the herd- |5y by dividing byT that

ing samples.

This algorithm iteratively constructs an empirical distri
tion pr(x) that is close to the true distributign(x). At
each iteration, it searches for a new sample to add to th
pool. It is attracted to the regions whepeis high but
repelled from regions where samples have already beefihe requirement that, € M is easy to check: it oc-
“dropped down”. The kernel determines how we shouldcurs whenevep has full support with respect to the do-
measure distances between distributions. Note that fomain of optimization (provided thag(x) is characteristic
many distributions explicit expressions By .., [k(x, x')] and therefore leads to unique representations).

< T woll + R/ (14)

T
Hp — T! Z P(x+)
t=1

This proves the claim of (7~!) convergence tp,,. W



Corollary 2 Herding converges at the fast rate even when2008], we know the maximum mean discrepancy (MMD)
(@) is only carried out with some error provided that we on the unit ball ofH also converges to 0. If the RKHE

obtain samplex;; € X which satisfy is universal, combining with Theorem 3 in the same paper,
it suggests that the probability distribution of herdingisa
< W P(Xep1) — > >5>0 (15) plespr converges to the true distributignat rateO (7 1)
Wil Nl p(xe1) — ppll / — p asT — oo. Examples of kernels with universal RKHS are

Gaussian and Laplace kernels defined on a compact space.
This condition is reminiscent of Boosting algorithms where
the weak learner is not required to generate the optimaCorollary 6 An active learning algorithm selecting labels
solution within a given set of hypotheses but only onein accordance with the herding algorithm has guaranteed
that is sufficiently good with regard to a nonzero mar-rate of convergence in terms of its bias@f7"~'). More-
gin. It is also related to thgerceptron cycling theorem over, the submodular greedy algorithm bf [Guestrin €t al.,
[Block and Levin| 1970] wher& is assumed to have finite [2005] has therefore also at least the same approximation
cardinality but which guarantees convergence even wherate since it is within a constant fractiai — e~*) of opti-
p=0. mality.
We can allowy, to lie on a facet ofM in which case we
have the following corollary. In summary, kernel herding generates samples that are
much more informative than iid samples: for everfierd-

Corollary 3 Whenever, lies on a facet of the marginal ing samples we will nee®(n?) iid samples to achieve the
po'ytope’]v[ it suffices that we restrict ourselves to Optimiza_ same error reduction. For th|S reason we W|” Ca.” herding
tion over the vertices generating the facet. In this case, samplesuper-sampleom now on.

lies within the relative interior of the now restricted pely

tope. 3 Experiments

We finally want to show that thé(7~") convergence of |, this section, we want to show that herding is able to draw
the error€; as proved above implies that the error of any petter samples than random sampling from the true distri-
integral over a function in our RKHS will also converge at pytion. We first illustrate the behavior of herding on low
the same fast rate: dimensional synthetic data, compare the approximation of

integrals between the super samples and iid samples, and
Proposition 4 Forany f € H, the error [E[f], — E[f]5,|  then we show an application where we compress the size
will decrease agd(T~'). Moreover this condition holds  of a collection of posterior samples required for computing
uniformly, thatissup s <, |E[f], —E[f];.| also decreases the predictive probability of Bayesian logistic regressio
atrate O(T—1).

3.1 Synthetic Data
To prove this we will need the following lemma,

3.1.1 Matchingthe True Distribution
Lemma 5 (Koksma Hlawka Inequality) For any f € H

we have We first visualize herding on a 2-D state space. We ran-

domly construct a 2 dimensional Gaussian mixture (GM)
E[flp — E[flsr] < 1 Fllgc 1t — 1252 |l (16)  model with 20 components whose equiprobability contours
are shown in Figuriel 1. With a Gaussian kernel, the integral

The above inequality is the simply a consequence of the! (8) can be analytically calculated implying that we can

Cauchy Schwartz inequality. It is known as the Koksma- " herding directly on the GM distribution.

Hlawka inequality in the analysis of Quasi Monte Carlo A few random samples are first drawn to provide reason-
methods. Clearly, with this lemma proposition 4 follows. able seeds for the maximization. Then, we sequentially
In fact, this technique was used hy [Song etlal., 2008] ingenerate super-samples by (8). At each iteration, starting
the context of density estimation. The key novelty in thefrom the best auxiliary sample that maximizek (8), we run
present paper is that we havesianpleandexplicit algo-  a gradient ascent algorithm to obtain a new super sample.
rithm for obtaining fast rates of approximation which are Figure2 shows the linear increaselgf - as a function of
considerably better than th&(7~2) rates usually avail- 7.

able via sampling. In Figure[d, the first 20 super samples are plotted in com-

For some special kernel functions, we can get better propparison with 20 iid samples from the GM model. For iid
erties for the samples generated by herding. Since the erreamples, due to the inherent randomness, some modes re-
in (@) convergesto 0, following Lemma 4 in [Gretton et al., ceive too many points while others get too few or even
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Figure 3: Errorin estimating the expectation of four funos, by herding (blue) and random sampling (green) as aitmct
of the number of samples. The decreasing speed of the uppedlod the error is shown on top of each figure.

none. In contrast, the samples from herding always try tastandard deviation of the errors obtained by a set of ran-
repel from each other and are distributed optimally (givendom samples as the benchmark. The results are shown in
earlier samples) to represent the density function. Figure[3 with their estimated convergence rates. The error
of approximation by herding is much smaller than random

Since the expectation of any function in a model can besampling with the same number of points for all the 4 func-

approximated by summation over its samples, we are inter: . .

ested in how well the super samples can be used to estimattlé)ns' also their convergence rates are close to the thieoret
: ) cal valueO(T—1).

these averages. We generate a 5 dimensional GM modéf

with 100 components as the target distributiorwwe com-

pute the error of the expectation on four functions: the first3.1.2 Matching empirical distribution

three moments, and a nonlinear function. Foritith mo- _ o _

ment,m = 1,2,3, we first calculate the average of, When the mtegr_atlon in{8) can't _be computed analytically,

overt (the index of herding samples) in each dimension adt would be difficult to run herding to accurately match

a function ofT" (the number of super samples). Then thethe true distribution especially in high dimensional sggace

RMSE of the estimated moments over all the dimensions i§lowever, if we have a set of random samplBsfrom the
computed as distribution, it is straightforward to run herding to match

the empirical distribution. We can thereby represent the
18 2 true distribution by the super sampl@svith the same ac-
err(8r) = <a > (@ )s, — <I§n>p)2> (A7) curacy asD but with many fewer samples. A set t#° iid
=1 samples is drawn from a 5-D GM model, and then herding
For the fourth function, we use a sine of the norm of a pointiis run takingD as the true distribution. Since in this case
f(x) = sin ||z||. In comparison, we compute the mean andp in the [8) is taken to be the empirical distribution, the
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Figure 4: Error in estimating the expectation of four funnos by herding on the true distributipr(red) and the empirical
distributionD (blue) as a function of the number of samples. The converyeate of the error o® (measured as slope
of the upper bound of the herding error) is shown on top of égcine. The error of random sampling pr{green) is also
plotted for comparison.

integral is simply a summation over all the pointsin 3.2 Approximating the Bayesian Posterior

We again compare the estimation of function expectations

between herding and random samples. However, this time

we can compute two errors, one on the empirical distri-Next we consider the task of approximating the predictive
butionD and the other on the true distributipnsince the diStribution Of a Bayesian m0de|. Alternatively, thIS idea
distribution ofS will converge to the empirical distribution, ¢an be applied to find a small collection of good predic-
the error betwee8 andD will keep decreasing as in Fig- tive models to be used in bagging. Assume we have drawn
ure[3 while the error betwee andp will not. Instead, @ large number of parametets, using MCMC from the

it will converge to the error incurred by the empirical dis- Posterior distribution (or we have learned a large number of
tribution relative top and this is the point where the st  Predictors on bootstrap samples). For reasons of computa-
is large enough to replac®. We can find from Figurg]4 tional efficiency, we may not want to use all the samples at
that for 10° iid samples, we only need at maXi00 super  test time. One choice is to down-sample the MCMC chain
samples for the first three functions, an@t* for the last Py randomly sub-sampling fror®. Another choice is to
function to achieve similar precision. This is a significant'un herding on the empirical distribution. With the conver-

reduction whenever evaluatinfis expensive, e.g. for user gence property on any function in the Reproducing Kernel
interaction data. Hilbert Space, we know that prediction Bywill converge

to that byD. Furthermore, we can get a significant speed
up with a few super samples during the prediction phase
without much loss of accuracy.



randomly sampling without replacement is very similar to

3500 random sampling, and is thus not shown in the figure).
3000L We can easily observe the advantage of herding over ran-
dom sampling. The error of herding decreases roughly as
25001 ] O(T~°75), while the error of random sampling decreases
asO(T~9).
2000F . .
w Now we'd like to estimate how many super samples are
= 1500l | needed to achieve the same precisionla®n the true
posterior. Assume for now that the samplelirare iid.
1000t 1 Then the average predictive probabiliyz,,|y,, D) =
sool |1T| ZLD‘lp(ynh?n, 0;) is the average ofD| independent,
unbiased estimates. Since we can compute the stan-
dard deviation of these estimates dn the standard

0 2000 ‘:?ro%f samg?:g 8000 10000 deviation of the average predictive probability becomes
' std(p(yn|n, D)) = std(p(yn|zn, 8:))/+/|D], and then its
mean over all test data points gives an estimate to the stan-
dard deviation of the error in general, which is the dashed

Figure 2: Linear relationship betweépE andT’ line in Figure

We can decompose the error of herding on the true posterior
We use the spambase data set from the UCI machine learn-

ing repositorly for the experiment, which has 4601 in-  RMSE(Sy,p) < RMSE(S7, D) + RMSE(D, p)
stances with 57 real attributes and 1 binary class label. The _—
data set is split into a training set of 3000 data points and ~ RMSE(87, D) + std(p(yn|zn, D).

a test set of 1601 data points. A logistic regression mOOIeWhen the first term is smaller than the second term, the er-
is built with a Gaussian prior on the weigttts The train- ror of herding mainly comes from the error ® and we

|tngdset is wth|tened byIPCQ ?Ed It/lhetn fedl tho tr:e mc?delcan claim that more herding samples will not improve the
0 draw posterior samples Dy the VIEtropolis-fasting aigos prediction much. Since the MCMC samplesfnare not

rithm with a Gaussian proposal distribution. The reSUIt'ng|ndependent the error @ can only be larger than the es-

5
Tg;ﬁ consr:sti/loﬂli) sar:nples suz samﬁled by a facltor. of timated value, and we’ll need even fewer samples to reach
rom the Markov chain to reduce the autocorrelation., , oo me accuracy. In our experiment, for a setdfsam-

We vyhitgniD l.JSing I.DCA aqd run he.rding on thi; empirical ples, we only need 7000 super samples.
distribution with an isotropic Gaussian kernel with= 10.
This is equivalent to run herding on the original parame-In fact, we have drawn another much larger sez.6fx 10°

ter set with a Gaussian kernel whose covariance matrix is gosterior samplesj, and estimate the error 6f on p by
multiple of the covariance matrix db. At each iteration, RMSE(S, p) (the red line in Figurél5). We find that the
we use the sample df from D that maximizes[(8) as a line starts to level off with even fewer (about 3000) super
new super sample, without any further local maximization.samples and the converged value eqR$SE(D, ). In
This corresponds to running herding in the discrete domairsummary, we can compress the set of parametes#y

X = D, and all the theoretical conclusions in section 2 alsoor 97%.

apply to this case. In Figure[®, we show the classification accuracy of herd-

We compare the predictions made$®with those made by ing on the test set. In comparison, we also draw the ac-
the whole sef on the test data. Figuré 5 shows the RMSEcuracy of the whole sample set (red), and 10 random sub-
of the predictive probability by herding over all the testada  sets ofD. The prediction of herding converges fast to that

points as a function of the number of super samples. of D which is considered ground truth for the herding al-
) gorithm. In contrast, the prediction made by random sub-
RMSE®(S7, D) (18)  sets fluctuates strongly. In particular, we only need about
| T D] 2 20 super-samples to get the same accurady,ashile we
=% Z - Z (Yn|Zn, 0;) — |D| Zp YnlTn, 0;) need about 200 random samples.

For comparison, we randomly draw a subsebaby boot- 4 DISCUSSION

strap sampling and compute the error in the same wa

(the performance of down-sampling the Markov chain or Y(ernel herding extends the original herding algorithm to

continuous spaces, and generates samples that contain
“http://archive.ics.uci.edu/ml/ more information than 11D samples. For a few distributions



Error of predicted probability have been explored is not only useful for herding. Incor-

‘ — Herding, error on D porating the negative auto-correlation between samples to

—Herding, error on p MCMC or other methods should help speed up mixing.

Random subset . . . . . .

by bootstrapping || And in the other direction, introducing stochastic meth-

~ ~ ~stdof the error of D ods to approximate the convolution [d (8) should make KH
more practical in applications where general distribugion

p are required.
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empirical distribution. M. Welling. Herding dynamic weights for partially ob-
Despite the power of KH already shown in this paper, we served random field models. Froc. of the Conf. on
only use a Gaussian kernel without utilizing much infor-  Uncertainty in Artificial IntelligenceMontreal, Quebec,
mation about the function of interest. If we already know CAN, 2009b.

the function we want to integrate over or a distribution of \j welling and Y. Chen. Statistical inference using weak
functions, it will be possible to design a better kernel that - cnaos and infinite memory. IRroceedings of the Int'
minimizes the expected error w.r.t. to that distributiohisT Workshop on Statistical-Mechanical Informatics (IW-
is a promising future research direction. SMI 2010) pages 185-199, 2010.

Also, the idea of repelling samples from those areas that
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