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A. Distribution of the test statistic
In the sequential test, we first compute the test statistic from
a mini-batch of size m. If a decision cannot be made with
this statistic, we keep increasing the mini-batch size by m
datapoints until we reach a decision. This procedure is
guaranteed to terminate as explained in Section 4.

The parameter ✏ controls the probability of making an er-
ror in a single test and not the complete sequential test.
As the statistics across multiple tests are correlated with
each other, we should first obtain the joint distribution of
these statistics in order to estimate the error of the com-
plete sequential test. Let ¯l

j

and s
l,j

be the sample mean and
standard deviation respectively, computed using the first j
mini-batches. Notice that when the size of a mini-batch is
large enough, e.g. n > 100, the central limit theorem ap-
plies, and also s

l,j

is an accurate estimate of the population
standard deviation. Additionally, since the degrees of free-
dom is high, the t-statistic in Eqn. 5 reduces to a z-statistic.
Therefore, it is reasonable to make the following assump-
tions:

Assumption 1. The joint distribution of the sequence

(

¯l1, ¯l2, . . . ) follows a multivariate normal distribution.

Assumption 2. s
l

= �
l

, where �
l

= std({l
i

})

Fig. 7 shows that when µ = µ0 the empirical marginal
distribution of t

j

(or z
j

) is well fitted by both a standard
student-t and a standard normal distribution.

Under these assumptions, we state and prove the following
proposition about the joint distribution of the z-statistic z =

(z1, z2, . . . ), where z
j

def
= (

¯l
j

�µ0)/�l

⇡ t
j

, from different
tests.

Proposition 2. Given Assumption 1 and 2, the sequence z

follows a Gaussian random walk process:

P (z
j

|z1, . . . , zj�1) = N (m
j

(z
j�1),�

2
z,j

) (9)

where

m
j

(z
j�1) = µstd

⇡
j

� ⇡
j�1
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j�1
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p
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j
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+ z
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(10)

�2
z,j

=

⇡
j

� ⇡
j�1

⇡
j

(1� ⇡
j�1)

(11)

with µstd =

(µ�µ0)
p
N�1

�l
being the standardized mean,

and ⇡
j

= jm/N the proportion of data in the first j mini-

batches.

Proof of Proposition 2. Denote by x
j

the average of m l’s
in the j-th mini-batch. Taking into account the fact that

the l’s are drawn without replacement, we can compute the
mean and covariance of the x

j

’s as:

E[x
j

] = µ (12)
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j
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(13)

It is trivial to derive the expression for the mean. For the
covariance, we first derive the covariance matrix of single
data points as

Cov(l
k

, l
k

0
) = E

k,k

0
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(14)

Now, as x
j

can be written as a linear combination of the
elements in j-th mini-batch as x

j

=

1
m

1

T l
j

, the expression
for covariance in Eqn. 13 follows immediately from:

Cov(x
i

, x
j

) = E[x
i

x
j

]�E[x
i

]E[x
j

] =

1

m2
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T
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i
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j

)1

(15)

According to Assumption 1, the joint distribution of z
j

’s
is Gaussian because z

j

is a linear combination of ¯l
j

’s. It is
however easier to derive the mean and covariance matrix of
z
j

’s by considering the vector z as a linear function of x:
z = Q(x� µ01) with
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(16)

where

d
j

=

p
N � 1

j�
x

q

N�jm

jm

(17)

The mean and covariance can be computed as E[z] =

Q1(µ � µ0) and Cov(z) = QCov(x)QT and the condi-
tional distribution P (z

j

|z1, . . . , zj�1) follows straightfor-
wardly. We conclude the proof by plugging the definition
of µstd and ⇡

j

into the distribution.



Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

−5 0 5
0

0.1

0.2

0.3

0.4

 

 

Empirical
Student−t
Normal

(a) n=500
−5 0 5
0

0.1

0.2

0.3

0.4

 

 

Empirical
Student−t
Normal

(b) n=5000
−5 0 5
0

0.1

0.2

0.3

0.4

 

 

Empirical
Student−t
Normal

(c) n=10000

Figure 7. Empirical distribution (blue bars) of the t-statistic under resampling n datapoints without replacement from a dataset composed
of digits 7 and 9 from the MNIST dataset (total N = 12214 points, mean of l’s is removed). Also shown are a standard normal (green
dashed) and a student-t distribution with n� 1 degrees of freedom (red solid).

Figure 8. An example of the random walk followed by z with
µstd > 0.

Fig. 8 shows the mean and 95%confidence interval of the
random walk as a function of ! with a few realizations of
the z sequence. Notice that as the proportion of observed
data ! j approaches 1, the mean of zj approaches infinity
with a constant variance of 1. This is consistent with the
fact that when we observe all the data, we will always make
a correct decision.

It is also worth noting that given the standardized mean
µstd and ! j , the process is independent of the actual size
of a mini-batch m, population size N , or the variance of l’s
" 2

l . Thus, Eqns. 10 and 11 apply even if we use a differ-
ent size for each mini-batch. This formulation allows us to
study general properties of the sequential test, independent
of any particular dataset.

Applying the individual tests # ! $ ! |zj | ! ! (1 " $) def=
G at the j -th mini-batch corresponds to thresholding the ab-
solute value of zj at ! j with a bound G as shown in Fig. 9.
Instead of m and $, we will use ! 1 = m/N and G as the
parameters of the sequential test in the supplementary. The
probability of incorrectly deciding µ < µ 0 when µ # µ0

Figure 9. Sequential test with 3 mini-batches. Red dashed line is
the bound G.

over the whole sequential test is computed as:

E(µstd , ! 1, G) =
J!

j =1

P(zj < " G, |zi | $ G, %i < j )

(18)
where J = &1/ ! 1' is the maximum number of tests. Sim-
ilarly the probability of incorrectly deciding µ # µ0 when
µ < µ 0 can be computed similarly by replacing zj < " G
with zj > G in Eqn. 18. We can also compute the expected
proportion of data that will be used in the sequential test as:

ø! (µstd , ! 1, G) = Ez[! j ! ]

=
J!

j =1

! j P(|zj | > G, |zi | $ G, %i < j ) (19)

where j ! denotes the time when the sequential test termi-
nates. Eqn. 18 and 19 can be efficiently approximated
together using a dynamic programming algorithm by dis-
cretizing the value of zj between [" G, G]. The time com-
plexity of this algorithm is O(L 2J ) where L is the number
of discretized values.
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Figure 10.Average data usageø! estimated using simulation (blue
cross) and dynamic programming (red line). The worst case sce-
nario withµstd = 0 is also shown (black dashed line).

The error and data usage as functions ofµstd are maximum
in the worst case scenario whenµstd ! 0 " µ ! µ0. In
this case we have:

E(0, ! 1, G) = lim
µ std ! 0

E(µstd , ! 1, G) = (1 # P(j " = J )) / 2

def= Eworst(! 1, G) (20)

Figs.1 and10 show respectively that the theoretical value
of the error (E) and the average data usage (ø! ) estimated
using our dynamic programming algorithm match the sim-
ulated values. Also, note that both error and data usage
drop off very fast asµ moves away fromµ0.

B. Error in One Metropolis-Hastings Step

In the approximate Metropolis-Hasting test, one Þrst draws
a uniform random variableu, and then conducts the se-
quential test. Asµstd is a function ofu (andµ, " l , both
of which depend on# and#"), E measures the probability
that one will make a wrong decision conditioned onu. One
might expect that the average error in the accept/reject step
of M-H using sequential test is the expected value ofE w.r.t.
to the distribution ofu. But in fact, we can usually achieve
a signiÞcantly smaller error than a typical value ofE. This
is because with a varyingu, there is some probability that
µ > µ 0(u) and also some probability thatµ < µ 0(u). Part
of the error one will make given a Þxedu can be canceled
when we marginalize out the distribution ofu. Following
the deÞnition ofµ0(u) for M-H in Eqn.2, we can compute
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Figure 11.Error ! in the acceptance probability (magenta circle)
vs. exact acceptance probabilityPa . Blue crosses are the expected
value of|E| w.r.t. the distribution ofu. Black dashed line shows
the upper bound.

the actual error in the acceptance probability as:

! (µ(#, #"), " l (#, #"), ! 1, G) = Pa, ! # Pa

=
! 1

0
P! (µ > µ 0(u))du #

! Pa

0
du

=
! 1

Pa

P! (µ > µ 0(u))du #
! Pa

0
(1 # P! (µ > µ 0(u))) du

=
! 1

Pa

E(µ # µ0(u))du #
! Pa

0
E(µ # µ0(u))du (21)

Therefore, it is often observed in experiments (see Fig.11
for example) that whenPa $ 0.5, a typical value ofµstd (u)
is close to 0, and the average value of the absolute error|E|
can be large. But due to the cancellation of errors, the ac-
tual acceptance probabilityPa, ! can approximatePa very
well. Fig.12shows the approximatePa in one step of M-H.
This result also suggests that making use of some (approxi-
mate) knowledge aboutµ and" l will help us obtain a much
better estimate of the error than the worst case analysis in
Eqn.20.

C. Proof of Theorem1

C.1. Upper Bound Based on One Step Error

We Þrst prove a lemma that will be used for the proof of
Theorem1.
Lemma 3. Given two transition kernels,T0 and T! , with
respective stationary distributions,S0 andS! , if T0 satisÞes
the following contraction condition with a constant$ %
[0, 1) for all probability distributionsP:

dv (PT0, S0) & $dv (P, S0) (22)

and the one step error betweenT0 andT! is upper bounded
uniformly with a constant! > 0 as:

dv (PT0, PT! ) & ! , ' P (23)
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Figure 12.Approximate acceptance probability vs. true accep-
tance probability.

then the distance betweenS0 andS! is bounded as:

dv (S0, S! ) !
!

1 " !
(24)

Proof. Consider a Markov chain with transition kernelT!

initialized from an arbitrary distributionP. Denote the dis-

tribution aftert steps byP(t ) def= PT t
! . At every time step,

t # 0, we apply the transition kernelT! onP(t ) . According
to the one step error bound in Eqn.23, the distance between
P(t +1) and the distribution obtained by applyingT0 to P(t )

is upper bounded as:

dv (P (t +1) , P (t ) T0) = dv (P (t ) T! , P (t ) T0) ! ! (25)

Following the contraction condition ofT0 in Eqn.22, the
distance ofP(t ) T0 from its stationary distributionS0 is less
thanP(t ) as

dv (P (t ) T0, S0) ! ! dv (P (t ) , S0) (26)

Now let us use the triangle inequality to combine Eqn.25
and26to obtain an upper bounded for the distance between
P(t +1) andS0:

dv (P (t +1) , S0) ! dv (P (t +1) , P (t ) T0) + dv (P (t ) T0, S0)

! ! + ! dv (P (t ) , S0) (27)

Let r < 1 " ! be any positive constant and consider the

ball B(S0, !
r ) def= { P : dv (P, S0) < !

r } . WhenP(t ) is
outside the ball, we have! ! rdv (P (t ) , S). Plugging this
into Eqn.27, we can obtain a contraction condition forP(t )

towardsS0:

dv (P (t +1) , S0) ! (r + ! )dv (P (t ) , S0) (28)

So if the initial distributionP is outside the ball, the
Markov chain will move monotonically into the ball within

a Þnite number of steps. Let us denote the Þrst time it en-
ters the ball astr . If the initial distribution is already inside
the ball, we simply lett r = 0 . We then show by induction
thatP(t ) will stay inside the ball for allt # tr .

1. At t = tr , P (t ) $ B(S0, !
r ) holds by the deÞnition of

tr .

2. AssumeP(t ) $ B(S0, !
r ) for somet # tr . Then,

following Eqn.27, we have

dv (P(t +1) , S0) ! ! + !
!
r

=
r + !

r
! <

!
r

=% P(t +1) $ B(S0,
!
r

) (29)

Therefore,P (t ) $ B(S0, !
r ) holds for all t # tr . Since

P(t ) converges toS! , it follows that:

dv (S! , S0) <
!
r

, &r < 1 " ! (30)

Taking the limitr ' 1 " ! , we prove the lemma:

dv (S! , S) !
!

1 " !
(31)

C.2. Proof of Theorem1

We Þrst derive an upper bound for the one step error of the
approximate Metropolis-Hastings algorithm, and then use
Lemma3 to prove Theorem1. The transition kernel of the
exact Metropolis-Hastings algorithm can be written as

T0(" , " !) = Pa(" , " !)q(" ! |" ) + (1 " Pa(" , " !))#D (" ! " " )
(32)

where #D is the Dirac delta function. For the approx-
imate algorithm proposed in this paper, we use an ap-
proximate MH test with acceptance probability÷Pa, ! (" , " !)

where the error,! Pa
def= Pa, ! " Pa, is upper bounded as

|! Pa| ! ! max. Now let us look at the distance between
the distributions generated by one step of the exact kernel
T0 and the approximate kernelT! . For anyP,
!

" !
d" (" !)|(PT! )( " !) " (PT0)( " !)|

=
!

" !
d" (" !)

"
"
"
"

!

"
dP(" )! Pa(" , " !) (q(" ! |" ) " #D (" ! " " ))

"
"
"
"

! ! max

!

" !
d" (" !)

"
"
"
"

!

"
dP(" )(q(" ! |" ) + #D (" ! " " ))

"
"
"
"

= ! max

!

" !
d" (" !) (gQ (" !) + gP (" !)) = 2 ! max (33)

wheregQ (" !) def=
#

" dP(" )q(" ! |" ) is the density that would
be obtained by applying one step of Metropolis-Hastings
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without rejection. So we get an upper bound for the total
variation distance as

dv (PT
✏

, PT0) =
1
2

Z

✓

!
d! (✓! )|PT

✏

� PT0|  " max (34)

Apply Lemma3 with " = " max and we prove Theorem1.

D. Optimal Sequential Test Design

It is possible to design optimal tests that minimize the
amount of data used while keeping the error below a given
tolerance. Ideally, we want to do this based on a tolerance
on the error in the stationary distributionS

✏

. Unfortunately,
this error depends on the contraction parameter,⌘, of the
exact transition kernel, which is difÞcult to compute. A
more practical choice is a bound" max on the error in the
acceptance probability, since the error inS

✏

increases lin-
early with" max.

Given " max, we want to minimize the average data usage
ø⇡ over the parameters✏ (or G) and/orm (or ⇡1) of the se-
quential test. Unfortunately, the error is a function ofµ
and�l which depend on✓ and✓! , and we cannot afford to
change the test design at every iteration.

One solution is to base the design on the upper bound of the
worst case error in Eqn.20which does not rely onµstd. But
we have shown in SectionB that this is a rather loose bound
and will lead to a very conservative design that wastes the
power of the sequential test. Therefore, we instead propose
to design the test by bounding the expectation of the error
w.r.t. the distributionP(µ, �l ). This leads to the following
optimization problem:

min
⇡1,G

Eµ, �l Eu ø⇡(µ, �l , µ0(u),⇡1, G)

s.t.Eµ, �l |" (µ, �l ,⇡1, G)|  " max (35)

The expectation w.r.t.u can be computed accurately using
one dimensional quadrature. For the expectation w.r.t.µ
and�l , we collect a set of parameter samples(✓, ✓! ) during
burn-in, compute the correspondingµ and�l for each sam-
ple, and use them to empirically estimate the expectation.
We can also consider collecting samples periodically and
adapting the sequential design over time. Once we obtain
a set of samples{(µ, �l )}, the optimization is carried out
using grid search.

We have been using a constant boundG across all the indi-
vidual tests. This is known as the Pocock design (Pocock,
1977). A more ßexible sequential design can be obtained
by allowingG to change as a function of⇡. (Wang & Tsi-
atis, 1987) proposed a bound sequenceGj = G0⇡

0.5" ↵

j
where↵ 2 [0.5, 1] is a free parameter. When↵ = 0 , it re-
duces to the Pocock design, and when↵ = 1 , it reduces to
OÕBrien-Fleming design (OÕBrien & Fleming, 1979). We

can adopt this more general form in our optimization prob-
lem straightforwardly, and the grid search will now be con-
ducted over three parameters,⇡1, G0, and↵.

E. Reversible Jump MCMC

We give a more detailed description of the different transi-
tion moves used in experiment6.3. The update move is the
usual MCMC move which involves changing the parame-
ter vector� without changing the model�. SpeciÞcally,
we randomly pick an active componentj : �j = 1 and set
�j = �j + ⌘ where⌘ ⇠ N (0,�update ). The birth move
involves (fork < D ) randomly picking an inactive com-
ponentj : �j = 0 and setting�j = 1 . We also propose a
new value for�j ⇠ N (0,�birth ). The birth move is paired
with a corresponding death move (fork > 1) which in-
volves randomly picking an active componentj : �j = 1
and setting�j = 0 . The corresponding�j is discarded.
The probabilities of picking these movesp(� ! �! ) is the
same as in (Chen et al., 2011). The value ofµ0 used in the
MH test for different moves is given below.
1. Update move:

µ0 =
1
N

log

"

u
k�k" k

1

k�!k" k
1

#

(36)

2. Birth move:

µ0 =
1
N

log

"

u
k�k" k

1 p(� ! �! )N (�j |0,�birth )(D � k)

k�!k" (k+1)
1 p(�! ! �)�k

#

(37)
2. Death move:

µ0 =
1
N

⇥

log

"

u
k�k" k

1 p(� ! �! )

k�!k" (k " 1)
1 p(�! ! �)

�(k � 1)
N (�j |0,�birth )(D � k + 1)

#

(38)

We used�update = 0 .01 and�birth = 0 .1 in this exper-
iment. As mentioned in the main text, both the exact re-
versible jump algorithm and our approximate version suf-
fer from local minima. But, when initialized with the same
values, we obtain similar results with both algorithms. For
example, we plot the marginal posterior probability of in-
cluding a feature in the model, i.e.p(�j = 1 |X N , yN ,�) in
Þgure13.

F. Application to Gibbs Sampling

The same sequential testing method can be applied to the
Gibbs sampling algorithm for discrete models. We study
a model with binary variables in this paper while the ex-
tension to multi-valued variables is also possible. Consider



Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ground Truth

Feature

In
cl

us
io

n 
P

ro
ba

bi
lit

y

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

!  = 0.01

Feature

In
cl

us
io

n 
P

ro
ba

bi
lit

y

Figure 13.Marginal probability of features to be included in the
model

running a Gibbs sampler on a probability distribution over
D binary variablesP(X 1, . . . , X D ). At every iteration, it
updates one variableX i using the following procedure:

1. Compute the conditional probability:

P(X i = 1 |x! i ) =
P(X i = 1 , x! i )

P(X i = 1 , x! i ) + P(X i = 0 , x! i )
(39)

wherex! i denotes the value of all variables other than
thei th one.

2. Draw u ! Uniform[0, 1]. If u < P (X i = 1 |x! i ) set
X i = 1 , otherwise setX i = 0 .

The condition in step 2 is equivalent to checking:

logu
log(1 " u)

<
logP(X i = 1 , x! i )
logP(X i = 0 , x! i )

(40)

When the joint distribution is expensive to compute but can
be represented as a product over multiple terms,P(X ) =
! N

n =1 f n (X ), we can apply our sequential test to speed up
the Gibbs sampling algorithm. In this case the variableµ0

andµ is given by

µ0 =
1
N

logu
log(1 " u)

(41)

µ =
1
N

N"

n =1

log
f n (X i = 1 , x! i )
f n (X i = 0 , x! i )

(42)

Similar to the Metropolis-Hastings algorithm, given an up-
per bound in the error of the approximate conditional prob-
ability

�max = max
i,x �i

|P(X i is assigned 1|x! i ) " P(X i = 1 |x! i )|

we can prove the following theorem:

Theorem 4. For a Gibbs sampler with a Dobrushin co-

efficient ⌘ # [0, 1) (Br´emaud, 1999, ¤7.6.2), the distance

between the stationary distribution and that of the approx-

imate Gibbs sampler S! is upper bounded by

dv (S0, S! ) $
�

max

1 " ⌘

Proof. The proof is similar to that of Theorem1. We Þrst
obtain an upper bound for the one step error and then plug
it into Lemma3.

The exact transition kernel of the Gibbs sampler for vari-
ableX i can be represented by a matrixT0,i of size2D %2D :

T0,i (x, y) =
#

0 if x! i &= y! i

P(Yi = yi |y! i ) otherwise
(43)

where1 $ i $ N, x, y # { 0, 1} D . The approximate tran-
sition kernelT! ,i can be represented similarly as

T! ,i (x, y) =
#

0 if x! i &= y! i

P! (Yi = yi |y! i ) otherwise
(44)

whereP! is the approximate conditional distribution. De-

Þne the approximation error�Ti (x, y) def= T! ,i (x, y) "
T0,i (x, y). We know that�Ti (x, y) = 0 if y! i &= x! i

and it is upper bounded by�max from the premise of The-
orem4.

Notice that the total variation distance reduces to a half of
theL 1 distance for discrete distributions. For any distribu-
tion P, the one step error is bounded as

dv (PT! ,i , PT0,i ) =
1
2

' PT! ,i " PT0,i ' 1

=
1
2

"

y

$
$
$
$
$

"

x

P(x)�T (x, y)

$
$
$
$
$

=
1
2

"

y

$
$
$
$
$
$

"

x i" { 0,1}

P(xi , y! i )�P(xi |y! i )

$
$
$
$
$
$

$
1
2
�max

"

y

|P(Y! i = y! i )|

= �max (45)

For a Gibbs sampling algorithm, we have the contraction
condition (Br«emaud, 1999, ¤7.6.2):

dv (PT , S) $ ⌘dv (P, S) (46)
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Plug ! = ! max and ! into Lemma3 and we obtain the
conclusion.

F.1. Experiments on Markov Random Fields

We illustrate the performance of our approximate Gibbs
sampling algorithm on a synthetic Markov Random Field.
The model under consideration hasD = 100 binary vari-
ables and they are densely connected by potential func-
tions of three variables" i,j,k (X i , X j , X k ), ! i "= j "= k.
There areD(D # 1)(D # 2)/ 6 potential functions in to-
tal (we assume potential functions with permuted indices
in the argument are the same potential function), and every
function has23 = 8 values. The entries in the potential
function tables are drawn randomly from a log-normal dis-
tribution, log" i,j,k (X i , X j , X k ) $ N (0, 0.02). To draw
a Gibbs sample for one variableX i we have to compute
(D # 1)(D # 2)/ 2 = 4851 pairs of potential functions as

P(X i = 1 |x! i )
P(X i = 0 |x! i )

=

!
i "= j "= k " i,j,k (X i = 1 , xj , xk )

!
i "= j "= k " i,j,k (X i = 0 , xj , xk )

(47)

The approximate methods use a mini-batches of500pairs
of potential functions at a time. We compare the exact
Gibbs sampling algorithm with approximate versions with
#%{ 0.01, 0.05, 0.1, 0.15, 0.2, 0.25} .

To measure the performance in approximatingP(X ) with
samplesxt , the ideal metric would be a distance between
the empirical joint distribution andP. Since it is impossi-
ble to store all the2100 probabilities, we instead repeatedly
draw M = 1600 subsets of5 variables,{ sm } M

m =1 , sm &
{ 1, . . . , D } , |sm | = 5 , and compute the averageL 1 dis-
tance of the joint distribution on these subsets between the
empirical distribution andP:

Error =
1

M

"

sm

' öP(X sm ) # P(X sm )' 1 (48)

The trueP is estimated by running exact Gibbs chains for
a long time. We show the empirical conditional probabil-
ity obtained by our approximate algorithms (percentage of
X i being assigned1) for different# in Fig. 14. It tends to
underestimate large probabilities and overestimate on the
other end. When#= 0 .01, the observed maximum error is
within 0.01.

Fig. 15 shows the error for different# as a function of the
running time. For small#, we use fewer mini-batches per it-
eration and thus generate more samples in the same amount
of time than the exact Gibbs sampler. So the error decays
faster in the beginning. As more samples are collected the
variance is reduced. We see that these plots converge to-
wards their bias ßoor while the exact Gibbs sampler out-
performs all the approximate methods at around1000sec-
onds.
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Figure 14. Empirical conditional probability vs exact conditional
probability for different values of✏. The dotted black line shows
the result for exact Gibbs sampling.
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ε = 0.01, T = 3429

ε = 0.05, T = 3979
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Figure 15. AverageL1 error in the joint distribution over cliques
of 5 variables vs running time for different values of✏. The black
line shows the error of Gibbs sampler with an exact acceptance
probability. T in the legend indicates the number of samples ob-
tained after1000 seconds.


