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This supplementary material contains some implementa-
tion details and code examples.

1. ”As-Banded-As-Possible” row reordering
The current implementation of ”As-Banded-As-Possible”

row reordering is a simple greedy algorithm (see Algorithm
1). Given a sparse matrix A ∈ Rn×m, we create permu-
tation matrix Pr ∈ {0, 1}n×n such that rows with lower
first nonzero index are ordered first. Such reordering is not
guaranteed to be fill-in reducing. It only transforms A into a
form that we may be able to factorize efficiently (Figure 1).

Algorithm 1 Algorithm that creates row reordering permu-
tation based on indices of the first non-zero value in each
row.

for i← 1 . . . n do
rinfo(i)← (INDEXOFFIRSTNONZERO(A(i, :))

end for
(rinfo, indices)← SORT(rinfo)
A← A(indices, :)

2. Matrix Q representation
Matrix Q of the QR decomposition A = QR, A,R ∈

Rn×m, Q ∈ Rn×n is typically not stored explicitly, but
rather expressed in terms of Householder reflectors[3].

A Householder reflector v ∈ Rn can be used to eliminate
a single column j of A as

A(:, j) = (I − 2vvT )A(:, j), (1)

where I ∈ Rn×n is an identity matrix. Equation 1 however
forms (I − 2vvT ) of size n × n, which would be very in-
efficient, especially as the dimension n scales up. It is thus
common practice to rewrite Equation 1 as

A(:, j) = A(:, j)− v
(
2v>A(:, j)

)
. (2)
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Figure 1. Greedy row permutation Pr discovering banded structure
in the matrix A.

Since v>A(:, j) is just a scalar value, no n × n matrix is
formed explicitly. Using Equation 2, R can be formed
from A by performing a sequence of multiplications by
Householder vectors, which can be implemented in terms of
Algorithm 2.

Algorithm 2 Evaluation of R = QTA as multiplication by
sequence of Householder vectors V = {v1, . . . , vm}, vk ∈
Rn, k ∈ {1, . . . ,m}.

for j ← 1 . . .m do
for k ← 1 . . .m do

τ ← 2vTk A(:, j)
A(:, j)← A(:, j)− τvk

end for
end for

3. Sparse Blocked Householder representation
The technique described in the previous section

can be well adapted also for use with the blocked
representation[1, 6]. In particular, we use the com-
pressed WY representation[7] throughout this work. Sim-
ilarly to Equation 1, elimination of a block of r columns
starting at the jth column of A is expressed as

A(:, j : j + r) = (I + YkTkY
>
k )>A(:, j : j + r), (3)



where Y ∈ Rn×r is lower trapezoidal, T ∈ Rr×r is upper
triangular and I ∈ Rn×n is an identity matrix. Following
the same principle as in Equation 2, to avoid forming the
(I + Y TY >) explicitly, we can rewrite Equation 3 as

A(:, j : j + r)+ = Yk(T
>
k (Y >k A(:, j : j + r))). (4)

The attentive reader will notice that Y (T>(Y >A(:, j : j +
r))) ∈ Rn×r and therefore the full n × n matrix is never
formed. Typically r � n and so all the operations are
performed on very small blocks compared to the full size
of A.

Leveraging the banded sparsity structure of A, we can
further reduce the size of the blocks greatly. Given A, Y, T
as in Figure 2, notice the sparsity structure of Y : a block
diagonal matrix of similar structure to A, augmented with
blocks on the main diagonal. Put another way, each column
of Y has two blocks of contiguous nonzeros. Any reasonably
banded sparse matrix A will yield block Y with similar
sparsity pattern. Given kth block with Yk, Tk, it holds that
the sub-block on the upper diagonal is r × r, while the
lower diagonal sub-block is of size nk − r × r, where nk is
the number of nonzero rows in the kth block. We consider
this during the implementation and instead of storing Y
as a sparse matrix, we store it as two dense sub-blocks,
remembering offset of each block, as follows:

c l a s s BlockYTY {
i n t i d ; / / Pos . on t h e uppe r d i a g o n a l
i n t i l ; / / Pos . on t h e lower d i a g o n a l
Eigen : : Matr ix<S c a l a r> Yd ; / / In p r a c t i c e ,
Eigen : : Matr ix<S c a l a r> Yl ; / / bo th a r e s t o r e d

/ / i n one Ma t r i x
Eigen : : Matr ix<S c a l a r> T ;

. . .
} ;

Matrix-matrix operations on the small dense blocks are
much more efficient than for the general sparse representa-
tion. We describe the whole procedure by Algorithm 3.

It is the case that constructing dense blocks from sparse
sub-blocks, performing the matrix product and filling the
result back is much more efficient than performing sparse
matrix operations on the full-size blocks.

We group the YT blocks together using a custom con-
tainer for block sparse matrices which behaves similarly to
std::vector. This container provides expression tem-
plates for applying the sequence of YT blocks to a matrix,
as described by Algorithm 3. We therefore allow the user to
write the rather complicated Equation 4 in a simplified form
as shown in the following code example.

t e m p l a t e <typename BlockType , typename IdxType>
c l a s s SparseBlockCOO {

s t r u c t Element {
IdxType row ;

Algorithm 3 Evaluation of R = QTA as multiplication by
sequence of Y TY T blocks.

for j ← 1 . . .m do
for k ← 1 . . . p do

GETSUBVEC(A, id, il, nk, r, j, ajk)
ajk ← ajk − (Yk(T

T
k (Y T

k ajk)))
SETSUBVEC(ajk, id, il, nk, r, j, A)

end for
end for
function GETSUBVEC(A, id, il, nk, r, j, ajk)

ajk(0 : r)← A(id : id+ r, j)
ajk(r : nk)← A(il : il + nk − r, j)

end function
function SETSUBVEC(ajk, id, il, nk, r, j, A)

A(id : id+ r, j)← ajk(0 : r)
A(il : il + nk − r, j)← ajk(r : nk)

end function

(a) A (b) Y (c) T

Figure 2. Block banded matrix A and dense sub-blocks Y and T as
columns of sparse matrices. The blocks Yk and Tk are grouped to-
gether in the form of a sparse matrix only for visualization purposes.
The kth block of A together with its Yk and Tk dense sub-blocks
are emphasized in red color.

IdxType c o l ;
BlockType v a l u e ;
. . .

} ;

t y p e d e f s t d : : v e c t o r<Element> ElementsVec ;
ElementsVec e lems ;

/ / Methods d e f i n i t i o n
. . .

} ;

c l a s s SparseBlockYTY : SparseBlockCOO {
/ / sequenceYTY ( ) exp r t e m p l a t e d e f i n i t i o n

} ;

SparseBlockYTY b l k s ;
/ / F i l l i n b l k s h e r e
. . .
vec = b l k s . sequenceYTY ( ) . t r a n s p o s e ( ) ∗ vec ;



4. BacktrackLevMarq
Throughout this work, we use our reimplementation

of Levenberg Marquardt based on Matlab code from
AWFUL[2], which combines ideas from the original imple-
mentation of Moré[5] together with modifications introduced
by Lourakis[4].

This allows us to perform non-linear optimizations on
large-scale problems that cannot be handled by the imple-
mentation currently available in Eigen. Besides that, using
BacktrackLevMarq, we can compare to the SSBA bundle
adjustment software[8], as it internally uses very similar
Levenberg-Marquardt based optimizer.

The main difference between the classical implementation
of Moré and ours is the approach to updating the damping
parameter λ. Instead of using a trust-region framework[5],
we follow ideas of Lourakis[4] and update λ as follows:

ρ =
‖εp‖2 − ‖x− f(pnew)‖2

δTp (λδp + JT εp)
, (5)

λ =

{
ρ > 0 λ ·max( 13 , 1− (2ρ− 1)3)

otherwise λv
, (6)

where εp = x − f(p) is the residual vector for the current
parameter vector p, pnew is the updated parameter vector
using the step δp and J is the Jacobian of function f . The
parameter v is the multiplicative factor of λ, which is updated
in every step together with λ by the following acceleration
rule:

v =

{
ρ > 0 v = 2

otherwise v = 2v
(7)

5. Computational complexity
Throughout our work, we use the compressed representa-

tion of Householder products WY described above in Sec-
tion 3. Schreiber and van Loan [7] show that this yields
computational complexity O(nkmkrk) for factorization of a
matrix blockB ∈ Rnk×mk with rank rk. We list algorithmic
complexity for our four composite QR solvers below.

The most simple block diagonal case is straightforward:
its complexity is O(Knkmkrk), where K is the number of
non-overlapping diagonal blocks, each of size nk×mk with
rank rk.

For the block banded case, if the number of overlapping
columns rc is a fixed constant independent of the column
dimension m of A, then asymptotic complexity is again
O(Knkmkrk) for the number of blocks K. Note, however,
that the sizes of the matrices involved in the block QR de-
compositions are larger: for an overlap of two neighbouring
blocks, we would expect an eight-fold increase in the com-
putational cost of the individual QR decompositions of size
2nk × 2mk and rank 2rk. The constant used to bound the

complexity is therefore higher in this case, and depends
strongly on the amount of overlap between blocks.

Another case is horizontal concatenation, where the com-
putational complexity depends on the method used to fac-
torize the right and left superblocks. The full process in-
volves factorization of the left block followed by matrix
multiplication and factorization of the right block. Since
the computational complexity of the general QR decompo-
sition algorithm is O(n3), and this expression bounds the
complexity of both the matrix multiplication and subsequent
factorization, we expect asymptotic complexity of O(n3).

Lastly, the vertical concatenation, is composed of row
permutation followed by application of either a block di-
agonal or block banded solver. Since the row permutation
complexity is merely O(n2) in the number of matrix rows n,
which we expect to be larger than m, the complexity is again
bounded by O(Knkmkrk), assuming that the permutation
yields a favorable sparsity pattern which reduces the block
overlap to zero (i.e. the block diagonal case) or to a fixed con-
stant independent of matrix dimension (as analysed above
for the block banded case).

6. Code example
Appendix A contains full code example for the ellipse

fitting problem. It illustrates how to describe a problem
at hand using the SparseFunctor object, which holds
the definitions of f(x) and Jacobian J together with the
definition of the QR solver to be used.

7. Repository
QRkit implementation is available as pull-request reposi-

tory at the moment: https://bitbucket.org/jasvob/
eigen_sparse_qr. This repository contains also the el-
lipse fitting benchmark, which is included as a part of the
Eigen unit tests. Our updates to the Eigen official repository
have been very positively recevied, and we believe they will
become part of the official Eigen release in the near future.

The bundle adjustment benchmarks presented in the
paper are available at https://github.com/jasvob/

BundleAdjustment_Benchmarks.
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A. Ellipse fitting problem

/ / Le t ’ s use modern−as−p o s s i b l e C++ , so e l i d e e l l i p s e c t o r s e t c
u s i n g namespace Eigen ;
t y p e d e f i n t IndexType ;

t y p e d e f S p a r s e M a t r i x<S c a l a r , ColMajor , IndexType> J a c o b i a n T y p e ;

/ / De f in e e l l i p s e f i t t i n g problem f u n c t o r
s t r u c t E l l i p s e F i t t i n g F u n c t o r : S p a r s e F u n c t o r<double , IndexType>
{

/ / C l a s s d a t a : 2 x N m a t r i x wi th each column a 2D p o i n t
Matrix2Xd p o i n t s ;

/ / C o n s t r u c t o r i n i t i a l i z e s p o i n t s , and t e l l s t h e base c l a s s how many p a r a m e t e r s t h e r e a r e i n t o t a l
E l l i p s e F i t t i n g F u n c t o r ( c o n s t Matrix2Xd& p o i n t s ) :

S p a r s e F u n c t o r<double , IndexType >(nParamsModel + p o i n t s . c o l s ( ) , p o i n t s . c o l s ( ) ∗ 2) ,
p o i n t s ( p o i n t s ) {

}

t y p e d e f VectorXd Inpu tType ; / / Or i s t h i s d e f i n e d i n base ?

/ / F u n c t o r f u n c t i o n f ( x )
i n t o p e r a t o r ( ) ( c o n s t Inpu tType& x , ValueType& fx ) c o n s t {

/ / E l l i p s e p a r a m e t e r s a r e t h e l a s t 5 e n t r i e s
a u t o params = params . t a i l ( 5 ) ;
do ub l e a = params [ 0 ] ;
do ub l e b = params [ 1 ] ;
do ub l e x0 = params [ 2 ] ;
do ub l e y0 = params [ 3 ] ;
do ub l e r = params [ 4 ] ;

/ / C o r r e s p o n d e n c e s ( t v a l u e s ) a r e t h e f i r s t N
f o r ( i n t i = 0 ; i < p o i n t s . c o l s ( ) ; i ++) {

do ub l e t = x [ i ] ;
do ub l e x = a∗ cos ( t ) ∗ cos ( r ) − b∗ s i n ( t ) ∗ s i n ( r ) + x0 ;
do ub l e y = a∗ cos ( t ) ∗ s i n ( r ) + b∗ s i n ( t ) ∗ cos ( r ) + y0 ;
fx [2 ∗ i + 0 ] = p o i n t s [ 0 , i ] − x ;
fx [2 ∗ i + 1 ] = p o i n t s [ 1 , i ] − y ;

}

r e t u r n 0 ;
}

/ / F u n c t o r j a c o b i a n J
i n t d f ( c o n s t Inpu tType& uv , J a c o b i a n T y p e& f j a c ) {

/ / E l l i p s e p a r a m e t e r s a r e t h e l a s t 5 e n t r i e s
a u t o params = uv . t a i l ( 5 ) ;
do ub l e a = params [ 0 ] ;
do ub l e b = params [ 1 ] ;
do ub l e r = params [ 4 ] ;

i n t n p o i n t s = p o i n t s . c o l s ( ) ;
/ / T r i p l e t e n t r i e s a r e ( row index , c o l i n d e x , v a l u e ) , and t h e r e a r e
n p o i n t s ∗ r o w s p e r p o i n t ∗ n o n z e r o s p e r r o w
T r i p l e t A r r a y <J a c o b i a n T y p e : : S c a l a r , IndexType> t r i p l e t s ( n p o i n t s ∗ 2 ∗ 5) ;
f o r ( i n t i = 0 ; i < n p o i n t s ; i ++) {

do ub l e t = uv ( i ) ;
t r i p l e t s . add (2 ∗ i , i , +a∗ cos ( r ) ∗ s i n ( t ) + b∗ s i n ( r ) ∗ cos ( t ) ) ;
t r i p l e t s . add (2 ∗ i , n p o i n t s + 0 , −cos ( t ) ∗ cos ( r ) ) ;
t r i p l e t s . add (2 ∗ i , n p o i n t s + 1 , + s i n ( t ) ∗ s i n ( r ) ) ;
t r i p l e t s . add (2 ∗ i , n p o i n t s + 2 , −1) ;
t r i p l e t s . add (2 ∗ i , n p o i n t s + 4 , +a∗ cos ( t ) ∗ s i n ( r ) + b∗ s i n ( t ) ∗ cos ( r ) ) ;

t r i p l e t s . add (2 ∗ i + 1 , i , +a∗ s i n ( r ) ∗ s i n ( t ) − b∗ cos ( r ) ∗ cos ( t ) ) ;
t r i p l e t s . add (2 ∗ i + 1 , n p o i n t s + 0 , −cos ( t ) ∗ s i n ( r ) ) ;
t r i p l e t s . add (2 ∗ i + 1 , n p o i n t s + 1 , −s i n ( t ) ∗ cos ( r ) ) ;



t r i p l e t s . add (2 ∗ i + 1 , n p o i n t s + 3 , −1) ;
t r i p l e t s . add (2 ∗ i + 1 , n p o i n t s + 4 , −a∗ cos ( t ) ∗ cos ( r ) + b∗ s i n ( t ) ∗ s i n ( r ) ) ;

}

f j a c . s e t F r o m T r i p l e t s ( t r i p l e t s . b e g i n ( ) , t r i p l e t s . end ( ) ) ;
r e t u r n 0 ;

}

/ / QR s o l v e r f o r dense sub−b l o c k s o f t h e b l o c k d i a g o n a l b l o c k ( h e r e t h e y a r e j u s t 2x1 m a t r i c e s )
t y p e d e f ColPivHouseholderQR<Matr ix2x1d> DenseQRSolver ;
/ / QR s o l v e r f o r t h e b l o c k d i a g o n a l b l o c k J1
t y p e d e f BlockDiagonalSparseQR<Jacob ianType , DenseQRSolver> L e f t S u p e r B l o c k S o l v e r ;
/ / QR s o l v e r f o r Q1 ’ J2 i s g e n e r a l dense ( f a s t e r t h a n g e n e r a l s p a r s e by a b o u t 1 . 5 x f o r n=500K)
t y p e d e f ColPivHouseholderQR<MatrixXXd> R i g h t S u p e r B l o c k S o l v e r ;
/ / QR s o l v e r f o r h o r i z o n t a l c o n c a t e n a t i o n o f t h e above .
t y p e d e f BlockAngularSparseQR<Jacob ianType , L e f t S u p e r B l o c k S o l v e r , R i g h t S u p e r B l o c k S o l v e r> QRSolver ;

/ / T e l l t h e a l g o r i t h m how t o s e t t h e QR s o l v e r p a r a m e t e r s .
vo id i n i t Q R S o l v e r ( QRSolver &qr ) {

/ / We know t h e p a t t e r n o f t h e b l o c k d i a g o n a l p a r t , s e t i t i n advance
/ / 3x1 dense b l o c k s − 2 p e r r e s i d u a l p l u s 1 f o r damping
qr . g e t L e f t S o l v e r ( ) . s e t P a t t e r n ( p o i n t s . c o l s ( ) ∗ 2 + p o i n t s . c o l s ( ) , p o i n t s . c o l s ( ) , 3 , 1 ) ;
/ / T e l l t h e s o l v e r t h e s i z e o f t h e b l o c k d i a g o n a l p a r t
q r . s e t S p a r s e B l o c k P a r a m s ( p o i n t s . c o l s ( ) ∗ 2 + p o i n t s . c o l s ( ) , p o i n t s . c o l s ( ) ) ;

}
} ;

vo id run ( )
{

. . .
/ / I n i t i a l p a r a m e t e r s
VectorXd params (5 + n p o i n t s ) ;
{

/ / f i l l params wi th i n i t i a l e s t i m a t e s o f e l l i p s e p a r a m e t e r s and t v a l u e s
}

/ / Run Levenberg Marquard t w i th t h e d e f i n e d QR s o l v e r
E l l i p s e F i t t i n g F u n c t o r f u n c t o r ( p o i n t s ) ;
Eigen : : BacktrackLevMarq<E l l i p s e F i t t i n g F u n c t o r > lm ( f u n c t o r ) ;
a u t o i n f o = lm . min imize ( params ) ;

. . .
}
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