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Abstract

The Lane–Riesenfeld algorithm for generating uniform B-splines provides a prototype for subdivision algorithms that
use a refine and smooth factorization to gain arbitrarily high smoothness through efficient local rules. In this paper
we generalize this algorithm by maintaining the key property that the same operator is used to define the refine and
each smoothing stage. For the Lane–Riesenfeld algorithm this operator samples a linear polynomial, and therefore the
algorithm preserves only linear polynomials in the functional setting, and straight lines in the geometric setting. We
present two new families of schemes that extend this set of invariants: one which preserves cubic polynomials, and
another which preserves circles. For both generalizations, as for the Lane–Riesenfeld algorithm, a greater number of
smoothing stages gives smoother curves, and only local rules are required for an implementation.

1. Introduction

In the functional setting, the Lane–Riesenfeld algorithm (Lane and Riesenfeld, 1980) is an efficient method for
subdividing uniform B-splines. It acts on an input sequence f = ( fi)i∈Z by using a refine stage R followed by k
smoothing stages S. A subdivision step T is therefore

T = SkR,

where R B RL is defined as

(RL f )2i = fi, (1)

(RL f )2i+1 =
1
2

fi +
1
2

fi+1, (2)

and S B SL is the smoothing operator

(SL f )i =
1
2

fi +
1
2

fi+1. (3)

If f provides B-spline coefficients for a spline s of degree k + 1 with parameter values in Z, then the Lane–Riesenfeld
algorithm gives the coefficients T f of s on the refined grid

TZ =

 1
2Z, if k is even,
1
2Z + 1

4 , if k is odd.

Iterating this process gives a piecewise linear function that interpolates T` f at the abscissae T`Z for any level ` ∈ N.
The sequence of these functions converges to s as ` → ∞ (Lane and Riesenfeld, 1980), and the Lane–Riesenfeld
algorithm is therefore a way of generating uniform arbitrary-degree B-splines through subdivision, while using the
efficient, highly-local operations (1–3). Increasing k gives a spline of higher degree, and hence a limit function with
greater smoothness.
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In this paper, we observe that the Lane–Riesenfeld refine and smooth stages both sample a local linear interpolant
in (2) and (3); the only difference is that the refine stage RL retains the existing sequence in (1), whereas each smoothing
stage SL discards it. We can therefore consider generalized Lane–Riesenfeld algorithms by replacing both instances
of this linear sampling rule with an alternative smoothing operator (see Section 2). This idea makes it easy to design
schemes that have a given set of invariants: if the chosen smoothing operator preserves a class of shapes, such as cubic
polynomials or circles, then each member of the class is also preserved in the limit. Like the original Lane–Riesenfeld
algorithm, this gives rise to a whole family of subdivision schemes with the same set of invariants, by varying the
number of smoothing stages in each subdivision step.

As examples of this concept, we present a linear algorithm based on sampling cubics in Section 4, and a geometric
variant based on sampling circles in Section 5. Both generalizations share the property with the Lane–Riesenfeld
algorithm that using more smoothing stages increases the smoothness of the limit curve. The same behaviour is
observed by Schaefer et al. (2008), who suggest replacing the linear smoothing operator by a non-linear averaging rule.
For example, taking the geometric mean of fi and fi+1 in (2) and (3) instead of the arithmetic mean gives a subdivision
scheme that preserves exponential functions. The analysis of these non-linear Lane–Riesenfeld algorithms can be
carried out for a wide class of averaging rules (Goldman et al., 2009; Dyn and Goldman, 2011), but depends crucially
on the fact that the averaging uses a two-point rule. By contrast, in this paper we consider four-point rules, and in
general our approach does not assume any restrictions on the support of the smoothing operator.

2. Generalizing the Lane–Riesenfeld algorithm

We start by establishing the framework used to generalize the Lane–Riesenfeld algorithm in the rest of the paper.
We employ a notation that avoids the extensive use of indices, by writing the data for a subdivision scheme as a pair of
sequences F. In the functional setting, F = (u, f ) ∈ RZ × RZ for some uniform grid u = (ui)i∈Z, and linear operators
distribute over the pair, as in TF = (Tu,T f ). Given that F associates each data value fi with its abscissa ui, we are
ready to define the invariants of a subdivision scheme.

Definition 1. Given an operator A, a polynomial p is in the operator’s set of invariants I[A] if p interpolates AF
whenever p interpolates F. That is, p ∈ I[A] whenever f = p(u) implies p(Au) = A f for any uniform grid u.

In generalizing the Lane–Riesenfeld algorithm, we want to guarantee that invariants of the smoothing operator are
also invariants of the whole subdivision step. We therefore define the refine stage in terms of the smoothing stage by
making use of a zipper operator Z( f , g), which interleaves two sequences such that(

Z( f , g)
)
2i = fi,(

Z( f , g)
)
2i+1 = gi.

The main contribution of this paper is that by defining a refine stage to introduce points in the same way as each
smoothing stage, we obtain a family of subdivision schemes which preserve the invariants of the smoothing operator.

Theorem 2. For any smoothing operator S, using the refine stage R = Z( · , S · ) in the subdivision step T = SkR
implies I[S] ⊆ I[T].

Proof. Given some p ∈ I[S] and any uniform grid u, we can set f = p(u) and thus have S f = p(Su) by Definition 1.
That is, p interpolates both (u, f ) and (Su,S f ). Moreover, as

RF = (Ru,R f ) =
(
Z(u,Su),Z( f ,S f )

)
,

p also interpolates RF and so p ∈ I[R]. Since T = SkR, it follows that p ∈ I[T].

For convenience, we identify T`F with the piecewise linear function that interpolates the data T` f at the abscis-
sae T`u. Then, since p ∈ I[T] is interpolated after each subdivision step, the limit T∞F = lim`→∞ T`F must be
equal to p if the subdivision scheme converges. The set of invariants I[T] is therefore the set of polynomials that are
reproduced by the scheme: if the initial data F is constructed by sampling values f from a polynomial in I[T] at u,
then the subdivision algorithm recreates that same polynomial in the limit.
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(b) Basis function derivative dφ(x)/dx.

Figure 1: Plots of basis functions for the uniform B-splines generated by the L-schemes with k = 0, 1, 2 and 3.

In the rest of the paper, we make use of Theorem 2 by choosing three different smoothing operators S, and then
setting RF = Z(F,SF) to refine data using the same operator. A subdivision step acting on data F is then

TF = SkZ(F,SF). (4)

Notice that the Lane–Riesenfeld algorithm follows this pattern, as RL and SL use the same rule to introduce new points
in (2) and (3), and so TLF = kSLRLF = kSLZ(F,SLF). This means that the Lane–Riesenfeld algorithm can be specified
using just the smoothing operator SL, and since SL is based on local linear interpolation, we refer to the subdivision
schemes created by the Lane–Riesenfeld algorithm as the L-schemes.

3. The L-schemes

Before generalizing the Lane–Riesenfeld algorithm by introducing new smoothing operators in (4), we recall the
main properties of the L-schemes for comparison to later sections.

3.1. Invariants

Let πd be the set of polynomials of degree at most d. Then it is well known that the linear polynomials π1 are
reproduced by the L-schemes. Our framework confirms this because linear polynomials are invariant under SL and
therefore π1 ⊆ I[TL] by Theorem 2. However, I[TL] includes no polynomials of higher order (Dyn et al., 2008) and
so I[TL] = π1.

3.2. Support

For a uniform linear subdivision step T, such as (4) with a linear operator S, the limit T∞F is a weighted sum of
translates of a single basis function. The basis function φ is defined as the limit T∞∆, where ∆ =

(
Z, (δi,0)i∈Z

)
is the

Kronecker delta sequence on Z.
A uniform B-spline created by the L-scheme with k smoothing stages has a basis function with support width k + 2.

Each additional smoothing stage increases the support width by 1. This increase is minimal for a non-trivial smoothing
stage, and results from the fact that each Lane–Riesenfeld smoothing stage (3) uses just two old values to determine a
new smoothed value.

Figure 1 plots basis functions for the L-schemes using 0, 1, 2 and 3 smoothing stages in each subdivision step. A
large number of smoothing stages results in a basis function with an influence which is concentrated around a small
part of the domain. For a designer editing a closed curve by moving control points, the visible influence of a point
is governed by this smaller ‘effective support’, which is significantly less than the full support width k + 2. We can
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Figure 2: Example limit curves generated by the L-schemes, using 0 (black), 2 (red), 4 (blue) and 8 (brown) smoothing stages per subdivision step.

measure the effective support by taking into account the value of a basis function over its domain. For a threshold τ, we
let σL(τ) be the minimal value such that

|φ(u)| ≤ τ for all |u| > σL(τ)/2.

When τ = 0, this gives the usual measure of support width σL(0) = k + 2. By choosing slightly higher values for τ,
however, we can evaluate the region of influence with more sensitivity, ignoring any areas of the domain where a basis
function has near-zero value. Figure 4a shows σL(τ) for the uniform B-splines at four different thresholds τ.

3.3. Smoothness

A convenient way to analyse the smoothness of a subdivision scheme is by using its symbol. The symbol
corresponding to the subdivision operator T is the Laurent polynomial

t(z) =
∑
i∈Z

tizi

with coefficients (ti)i∈Z = T(δ j,0) j∈Z. According to Rioul (1992) and Dyn and Levin (2002), if m ∈ N is maximal such
that

t(z) =

(
1 + z

2

)m

r(z)

for some Laurent polynomial r(z), then the Hölder regularity of the limit functions generated by the scheme is bounded
from below by

m − log2 ‖r‖ .

Here the norm of r(z) =
∑

i∈Z rizi is defined as

‖r‖ = max

∑
i∈Z
|r2i| ,

∑
i∈Z
|r2i+1|

 .
As the symbol of the L-schemes is

2
(

1 + z
2

)k+2

,

the Hölder regularity of the generated limit functions is k + 1. This means that they are in Ck+1−ε , which agrees with the
fact that the L-scheme with k smoothing stages generates B-splines of degree k + 1.
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Figure 3: Plots of basis functions for the C-schemes with k = 0, 1, 2 and 3.

3.4. Shrinkage
Although we introduced the Lane–Riesenfeld algorithm in the functional setting, it is also commonly used to create

uniform B-spline curves. In this geometric setting, we apply the subdivision operator T to the x- and y-coordinates of a
closed polygon independently. Each subdivision step doubles the number of points, and the initial polygon is known as
the control polygon.

Figure 2 shows a few example limit curves produced by the L-schemes. We observe that the final limit curve has
a greater distance from the control polygon as the number of smoothing stages increases. The refine stage does not
contribute to this ‘shrinkage’ effect, which we can therefore analyse by examining just repeated smoothing stages. For
a closed polygon with n points, a matrix representation of the Lane–Riesenfeld smoothing stage (3) is

SL =
1
2


1 1 0 0 . . . 0 0
0 1 1 0 . . . 0 0
...

. . .
. . .

. . .
...

1 0 0 0 . . . 0 1

 ∈ Rn×n.

As SL is a circulant matrix, it directly follows (Gray, 2006) that its eigenvalues are

λ j =
1
2
(
1 + exp(2πi j/n)

)
, j = 0, 1, . . . , n − 1.

This shows a dominant eigenvalue λ0 = 1, and since the rows of SL have unit sum, it follows that SL1 = 1, where
1 ∈ Rn×1 is the column vector filled with ones. Therefore 1 is the eigenvector associated with the dominant eigenvalue,
and this shows that the dominant behaviour, if we use an infinite number of smoothing stages, is for the polygon to
collapse to a single point at its barycentre.

The subdominant eigenvalues λ1 and λn−1 are complex conjugate and they encode the shrinkage of the polygon
towards its barycentre as well as a phase shift. Ignoring this rotation, the rate of shrinkage for each smoothing stage is
|λ1| = |λn−1|. We plot this rate against k in Figure 6.

4. Generalization based on sampling cubics: the C-schemes

We can view the Lane–Riesenfeld smoothing operator SL in (3) as sampling a local linear interpolant at the midpoint
between every two adjacent values. The four-point scheme (Dubuc, 1986) works in a similar way, but samples a local
cubic interpolant to every four adjacent values instead. This gives the smoothing operator

(SC f )i =
1

16
(− fi−1 + 9 fi + 9 fi+1 − fi+2), (5)
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Figure 4: Effective support for the L- and C-schemes at several different thresholds τ.

which we can substitute for S in (4) to create a generalized Lane–Riesenfeld algorithm. The new algorithm uses the
refine stage RC = Z( · , SC · ), that is,

(RC f )2i = fi,

(RC f )2i+1 =
1
16

(− fi−1 + 9 fi + 9 fi+1 − fi+2).
(6)

This refine stage is followed by k smoothing stages SC , hence the subdivision operator is TC = kSCZ( · , SC · ). We
call this new family of generalized Lane–Riesenfeld algorithms the C-schemes, and the family member with k = 0
smoothing stages is the original four-point scheme. Figure 3 shows the basis functions of the first few C-schemes, and
Table 1 summarizes their properties.

4.1. Invariants

By construction, I[SC] includes all cubic polynomials π3, which implies π3 ⊆ I[TC] as a result of Theorem 2.
As with the L-schemes, no higher-degree polynomials are reproduced by these schemes (Dyn et al., 2008) and so
I[TC] = π3.

4.2. Support

The cubic-sampling rule (5) uses four adjacent values to construct a new one, whereas the original Lane–Riesenfeld
rule (3) uses only two. The result is that the support width, which is 3k + 6 for k smoothing stages, grows much faster
for the C-schemes than for the L-schemes. This is shown by the plot for τ = 0 in Figure 4b compared to Figure 4a.
However, Figure 4 also shows that our measure of effective support is very similar for both the L-schemes and the
C-schemes, where we define σC in the same way as σL except using the C-scheme basis functions φ. In fact, the range
where the basis function value is greater than τ = 0.1 is even more compact for the C-scheme generalization than for
the B-splines, that is σC(0.1) < σL(0.1) for all k.

4.3. Smoothness

Table 1 shows that additional smoothing stages SC do not increase the smoothness of the limit curves by as much as
SL, which increases the level of derivative continuity by 1. Nevertheless, there is a lower bound on the smoothness of
the curves produced by the C-schemes which grows steadily with k. The bound relies on the fact that the symbols of
the C-schemes have factors whose coefficients alternate in sign.
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Definition 3. We say that the symbol p(z) is alternating, if its coefficients have alternating signs, that is

p(z) =
∑
i∈Z

aiz2i −
∑
i∈Z

biz2i+1 (7)

with ai, bi ≥ 0 for all i ∈ Z.

In other words, the symbol p(z) =
∑

i∈Z pizi is alternating if and only if its even coefficients p2i are non-negative
and its odd coefficients p2i+1 are non-positive.

Lemma 4. The product of two alternating symbols is alternating, too.

Proof. Let the two symbols

p(z) =
∑
i∈Z

aiz2i −
∑
i∈Z

biz2i+1 and q(z) =
∑
i∈Z

ciz2i −
∑
i∈Z

diz2i+1

be alternating, so that all coefficients ai, bi, ci, di are non-negative. It is then clear that the product of both symbols

r(z) = p(z)q(z) =
∑
i, j∈Z

aic jz2(i+ j) −
∑
i, j∈Z

aid jz2(i+ j)+1 −
∑
i, j∈Z

bic jz2(i+ j)+1 +
∑
i, j∈Z

bid jz2(i+ j)+2

=
∑
j∈Z

α jz2 j −
∑
j∈Z

β jz2 j+1

with non-negative coefficients

α j =
∑
i∈Z

(aic j−i + bid j−i−1) and β j =
∑
i∈Z

(aid j−i + bic j−i) (8)

is alternating as well.

While the expressions for the even and odd coefficients of the product of two alternating symbols in (8) are rather
complicated, their respective sums satisfy a remarkably simple relation.

Definition 5. Given a symbol p(z) =
∑

i∈Z pizi, we denote the sum of its even and its odd coefficients by

p∗ =
∑
i∈Z

p2i and p∗ =
∑
i∈Z

p2i+1,

respectively.

For an alternating symbol p(z) as in (7) we have

p∗ =
∑
i∈Z

ai =
p(1) + p(−1)

2
and p∗ = −

∑
i∈Z

bi =
p(1) − p(−1)

2
. (9)

Lemma 6. Let p(z) and q(z) be two alternating symbols and r(z) = p(z)q(z). Then,

r∗ = p∗q∗ + p∗q∗ and r∗ = p∗q∗ + p∗q∗. (10)

Proof. To prove the first statement, we first recall from Lemma 4 that r(z) is an alternating symbol, and then use (9) for
all three symbols p(z), q(z), and r(z) to get

4(p∗q∗ + p∗q∗) =
[
p(1) + p(−1)

][
q(1) + q(−1)

]
+

[
p(1) − p(−1)

][
q(1) − q(−1)

]
= 2p(1)q(1) + 2p(−1)q(−1) = 2r(1) + 2r(−1) = 4r∗.

The second statement follows similarly.
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Hölder regularity

k support width
lower bound
(Theorem 7)

numerical
lower bound

numerical
upper bound

integer
continuity class

0 6 2 2 2 C1

1 9 2.541 2.622 2.625 C2

2 12 3.046 3.232 3.239 C3

3 15 3.524 3.833 3.844 C3

4 18 3.983 4.425 4.441 C4

Table 1: Smoothness and support properties of the C-schemes.

Figure 5: Example limit curves generated with the C-schemes, using 0 (black), 2 (red), 4 (blue) and 8 (brown) smoothing stages per subdivision step.

Note that the two identities in (10) can also be written compactly in matrix-vector form as(
r∗

r∗

)
=

(
p∗ p∗
p∗ p∗

) (
q∗

q∗

)
. (11)

Theorem 7. The Hölder regularity of the limit curves generated by the C-scheme with k smoothing steps is bounded
from below by

k + 4 − log2
(
3(3/2)k + 1

)
.

Proof. If we write the symbols of the cubic smoothing operator SC and the cubic refine stage RC in their factored
forms,

1 + z
2
· −z−1 + 10 − z

8
and

(
1 + z

2

)4

(−z−1 + 4 − z),

then it is clear that the symbol of the C-scheme with k smoothing steps is(
1 + z

2

)k+4

r(z),

with

r(z) = p(z)kq(z), p(z) =
−z−1 + 10 − z

8
, q(z) = −z−1 + 4 − z. (12)

Therefore, the Hölder regularity of the limit curves is bounded from below by

k + 4 − log2 ‖r‖ .
8



By Lemma 4 we know that r(z) in (12) is an alternating symbol, and so

‖r‖ = max(r∗,−r∗).

Using Lemma 6 and (11), we further have(
r∗

r∗

)
=

(
p∗ p∗
p∗ p∗

)k (
q∗

q∗

)
=

(
5/4 −1/4
−1/4 5/4

)k (
4
−2

)
=

1
2

(−1 1
1 1

) (
3/2 0
0 1

)k (−1 1
1 1

) (
4
−2

)
=

(
3(3/2)k + 1
1 − 3(3/2)k

)
,

so that

‖r‖ = 3(3/2)k + 1,

which completes the proof.

Table 1 lists the lower bounds given by Theorem 7 for small k. We also give numerical approximations of the
Hölder regularity, which we found by joint spectral radius analysis (Rioul, 1992). Notice that our theoretical lower
bounds are some distance from the actual values.

4.4. Shrinkage

Figure 5 shows example curves created by the C-schemes using the same control polygons as in Figure 2. It is clear
from these figures that the C-scheme limit curves pass much closer to the starting sequences f than the L-scheme limit
curves shown in Figure 2. This is indicated by the fact that the value φ(0) of a basis function evaluated at the origin is
closer to 1 for the C-schemes (see Figure 3a) than for the L-schemes (see Figure 1a).

To quantify this shrinkage, we can examine a single smoothing stage as in Section 3.4. Writing the smoothing stage
SC for a closed n-point polygon as the matrix

SC =
1

16



9 9 −1 0 . . . 0 0 −1
−1 9 9 −1 . . . 0 0 0
...

. . .
. . .

. . .
. . .

...
−1 0 0 0 . . . −1 9 9
9 −1 0 0 . . . 0 −1 9


∈ Rn×n,

we can again use the fact that SC is a circulant matrix to conclude that its eigenvalues are

λ j =
1

16
(− exp(−2πi j/n) + 9 + 9 exp(2πi j/n) − exp(4πi j/n)

)
, j = 0, 1, . . . , n − 1.

A dominant unit eigenvalue shows that, as for the L-schemes, letting k → ∞ collapses the whole configuration to a
single constant point. The corresponding left eigenvector is 1T , and so again this limit is the barycentre of the original
polygon (Sabin, 2010). However, plotting the magnitude of the subdominant eigenvalue in Figure 6 shows slower
shrinkage for the C-schemes, particularly for high values of k. When n = 8 the C-schemes have 1 − |λ1| < 0.01,
accounting for the limit curves which are extremely close to the control points in Figure 5 (left).
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Figure 6: Smoothing operator shrinkage plotted for the L-schemes and the C-schemes against the number of smoothing stages k, for polygons
containing 4, 8 and 16 points. The C-schemes suffer less shrinkage, and therefore better retain the shape of the control polygon as the number of
smoothing stages increases.

5. Generalization based on sampling circles: the κ-schemes

Floater and Micchelli (1998) note that the rule (6) leads to the relation

(RC f )2i − 2(RC f )2i+1 + (RC f )2i+2

1/4
=

fi − 1
8 (− fi−1 + 9 fi + 9 fi+1 − fi+2) + fi+1

1/4
= 4 fi − 1

2 (− fi−1 + 9 fi + 9 fi+1 − fi+2) + 4 fi+1

= 1
2 ( fi−1 − fi − fi+1 + fi+2)

= 1
2 ( fi−1 − 2 fi + fi+1) + 1

2 ( fi − 2 fi+1 + fi+2),

(13)

that is, the refine stage RC inserts points so that the new second divided difference at (RC f )2i+1 is the mean of the old
second divided differences at fi and fi+1.

Sabin and Dodgson (2004) use this observation to create a circle-preserving scheme by replacing second divided
differences with curvature estimators. To describe their scheme, we adapt our notation to the geometric setting by
redefining the initial data F B (x, y) ∈ RZ×RZ to be the x- and y-coordinates of the data instead of the abscissa-ordinate
values we used in Section 2. Note that geometric schemes do not use linear operators, and so a subdivision step no
longer distributes over the two components of F separately.

Now we can define the Sabin and Dodgson smoothing operator Sκ, which positions a new point (SκF)i by sampling
a circle with the curvature which is the mean of the old curvatures at Fi and Fi+1. In other words, if K(a, b, c) is the
signed curvature of the circumcircle through the point triple (a, b, c), then

K
(
Fi, (SκF)i, Fi+1

)
= 1

2
(
K(Fi−1, Fi, Fi+1) + K(Fi, Fi+1, Fi+2)

)
. (14)

This gives a scheme which reproduces circles whenever the initial data F are positioned on a circle, even if they are
unevenly spaced. Just as for the L-schemes and C-schemes, we can create a generalized Lane–Riesenfeld algorithm
using this operator by substituting Sκ into (4). Naturally, we call the resulting family of schemes the κ-schemes. Figure 7
shows some examples of limit curves created by the κ-schemes.

Sabin and Dodgson (2004) use a special rule to even out the edge lengths in a polygon after subdivision, but we find
that using multiple smoothing stages has the effect of smoothing the edge lengths anyway (see Figure 8), so it is not
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Figure 7: Example limit curves generated with the κ-schemes, using 0 (black), 2 (red), 4 (blue) and 8 (brown) smoothing stages per subdivision step.

Figure 8: The edge lengths for the κ-schemes acting on the example shown in Figure 7 (left), plotted after six subdivision steps for k = 0, 1, 2 and 3
(from left to right). The edge lengths are smoothed out as k increases.

clear that this rule is necessary in our refine-and-smooth setting. We therefore define (SκF)i by simply sampling at the
midpoint of each circular arc between Fi and Fi+1. That is, we define (SκF)i to be the unique point on the perpendicular
bisector of the line FiFi+1 such that (14) holds, and therefore

(SκF)i =
Fi + Fi+1

2
+

s

1 +
√

1 − s2

(Fi+1 − Fi

2

)⊥
,

where x⊥ denotes the vector x rotated counterclockwise by 90◦ and s = (sinα + sin β)/2 is the arithmetic mean of the
sines of the signed angles α = �(Fi+1 − Fi−1, Fi − Fi−1) and β = �(Fi+1 − Fi+2, Fi − Fi+2).

5.1. Invariants
The eight points in Figure 7 (left) are sampled from a circle, and so every limit curve is the same circle, regardless

of the value of k, as circles are an invariant of the smoothing operator Sκ. We can formalize this statement with an
analogue of Definition 1 for the geometric setting.

Definition 8. Given an operator A acting on the polygon F = (x, y), a geometric primitive g is in the operator’s set of
invariants I[A] if g interpolates AF whenever g interpolates F.

Note that Theorem 2 still applies with this alternative definition. This allows us to say that all circles are in I[Sκ],
including straight lines as circles through infinity, whereas the L-schemes and the C-schemes reproduce only straight
lines as geometric objects in the sense of Definition 8.

5.2. Region of influence
As the κ-schemes are non-linear, the limit curves are not a linear combination of basis functions and so there

is no support width that we can measure. However, the smoothing operator Sκ uses the same number of points to
define (SκF)i as SC: in both cases the antecedents are the four values Fi−1 to Fi+2. So we know that the number
of points (T`F)i on level ` that are influenced by any control point Fj is the same for both the κ-schemes and the
C-schemes. Although we cannot measure the effective support, we can still say that the position of any point on the
limit curve is influenced by at most 3k + 6 control points for k smoothing stages.
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Figure 9: Curvature combs for the κ-schemes on the same starting data F, using k = 0, 1, 2 and 3 (from left to right). Underneath the combs we show
signed curvature κ plotted against arc length and its derivative κ′ (where it exists), after six subdivision steps. Note that curvature diverges for k = 0,
since this scheme is a geometric analogue of the four-point scheme, which is only C2−ε . The first curvature plot is therefore only finite because we
plot the value after a finite number of subdivision steps.

5.3. Smoothness
Figure 9 shows curvature combs for the κ-schemes with k = 0, 1, 2 and 3 on the same starting data. A curvature

comb consists of a line drawn from each point Fi in the normal direction, with length equal to the curvature at that point.
In addition, we show the signed curvature and its first and second derivative plotted against arc length. The plots show
that the curvature has a fractal-like distribution when k = 0, indicating Sabin and Dodgson’s result that this κ-scheme
probably has the same Hölder continuity as the C-scheme when k = 0, namely C2−ε . However, the κ-scheme with k = 1
seems to have continuous curvature vectors, as we would expect from the corresponding C-scheme, and with more
smoothing stages the combs become increasingly smooth.

5.4. Shrinkage
It is clear from comparing Figure 7 with Figures 2 and 5 that the κ-schemes have far less shrinkage than the L- or

C-schemes. Although non-linear subdivision rules prevent us from analysing a single κ-scheme smoothing stage in the
same way as in Sections 3.4 and 4.4, infinitely repeating the smoothing operator does not collapse a polygon to a single
point, in general, as it does for the L- and C-schemes. Instead, many smoothing stages appear to move the data slowly
towards a regular polygon, which we know is a fixed-point for the double smoothing stage S2

κ . Figure 10 demonstrates
that even 100 smoothing stages may not be enough to reach a fixed configuration, as shown by the central example.

6. Conclusion

The key idea in this paper is that one same rule is used to both introduce new points in a refine stage and to
perform each smoothing stage. Section 2 shows that the invariants of the smoothing rule are then invariants of the
whole subdivision step too, and are hence reproduced by the subdivision scheme in the limit. Whereas the L-schemes
reproduce linear polynomials, the C-schemes cubic polynomials and the κ-schemes circles, future generalizations might
consider other function classes, such as rational or exponential functions, or other geometric objects, such as ellipses or
hyperbolas.
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Figure 10: For the three initial polygons in Figure 7, we show the result of repeating a single smoothing stage without refinement by plotting c/
√

a,
where c is the circumference of each polygon and a is the area, against the number of smoothing stages k. This value is minimal for a regular
polygon, and each polygon is normalized such that the limiting value of c/

√
a is 1.

Thus, while the C-schemes and κ-schemes are two examples of generalized Lane–Riesenfeld algorithms, there are
many more possibilities for smoothing operators that we could introduce in (4). For example, the Dubuc–Deslauriers
2n-point schemes (Deslauriers and Dubuc, 1989) allow us to create generalized Lane–Riesenfeld algorithms that
reproduce polynomials of arbitrarily high order. In fact, any interpolatory subdivision scheme provides a smoothing
operator that can be used in a generalized Lane–Riesenfeld algorithm. Such a scheme is recovered exactly when k = 0,
which we can always use to guarantee interpolation of the input data, but greater values of k may give schemes of
arbitrarily high smoothness. Our numerical results indicate that for the generalized Dubuc–Deslauriers schemes, the
smoothness of the limit curves increases with the number of smoothing stages for any n, although the tools developed
in Section 4.3 are insufficient to prove this hypothesis. Nevertheless, in the context of a Dubuc–Deslauriers scheme,
this paper provides a way of decoupling the required smoothness from the order of the smoothing operator, for at least
a wide range of target Hölder continuity values. Smoothing operators of lower order mean that the schemes can benefit
from subdivision rules of lower complexity, but without sacrificing smoothness.

When choosing or designing a smoothing operator S for a generalized Lane–Riesenfeld algorithm, the following
considerations should be taken into account. For efficiency reasons, the support of S should not be too large. In this
paper we focus on four-point operators, while non-linear two-point operators are discussed in depth by Schaefer et al.
(2008), Goldman et al. (2009) and Dyn and Goldman (2011). Moreover, as we usually want the resulting subdivision
scheme to be symmetric, then S should also be symmetric. In the linear setting this implies that the corresponding
symbol s(z) =

∑
i∈Z sizi must have an even number of coefficients with si = s1−i, i ∈ Z, so that the symbol can be

written as s(z) = 1+z
2 p(z). We also need S to be affine, that is, its coefficients must add up to one. Then s(1) = 1 and the

symbol t(z) = s(z)kr(z) of the overall subdivision scheme, where r(z) = 1 + s(z2)/z is the symbol of the refinement
operator, satisfies t(1) = 2 and t(−1) = 0, which are the necessary conditions for convergence (Dyn and Levin, 2002).
Note that s(1) = 1 is equivalent to the condition p(1) = 1, and our experiments suggest that the norm of p should satisfy
‖p‖ < 2 to ensure that increasing the number of smoothing stages k also increases the smoothness of the limit curves.
We do not have a proof for this observation, however.

In principle, it is also possible to use different smoothing operators in the refine and each smoothing stage, and as
long as these operators share a certain set of invariants, the subdivision scheme reproduces these invariants in the limit.
However, it is beyond the scope of this paper to discuss and analyse such schemes.

Finally, the same idea could be applied to subdivision surfaces, where refine and smooth factorizations have already
proved valuable (Oswald and Schröder, 2003). In this context, such a factorization serves a dual purpose: not only
does it allow greater efficiency, but local rules are also necessary to extend a subdivision scheme to arbitrary meshes
including extraordinary points (Cashman et al., 2009). A very useful extension of this work would be an extension
of the geometric κ-schemes to create subdivision surfaces that preserve natural quadrics. However, such a geometric
scheme appears out of reach at present.
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