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Abstract
Subdivision surfaces allow smooth freeform surface modelling without topological constraints. They have become a
fundamental representation for smooth geometry, particularly in the animation and entertainment industries. This
survey summarizes research on subdivision surfaces over the last fifteen years in three major strands: analysis,
integration into existing systems, and the development of new schemes. We also examine the reason for the low
adoption of new schemes with theoretical advantages, explain why Catmull–Clark surfaces have become a de facto
standard in geometric modelling, and conclude by identifying directions for future research.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Curve, surface, solid, and object representations; Splines

1. Introduction

Subdivision surfaces are smooth freeform surfaces which are
generated using recursive rules (see Figure 1). The surface is
specified using a coarse control mesh and, as a key advantage
of the representation, this control mesh is not required to have

Figure 1: A subdivision scheme acting on a cube: the control
mesh, the result of four subdivision steps, and the smooth
limit surface. Extraordinary vertices (which are all of valency
three, in this example) are preserved by each subdivision step,
leading to singularities surrounded by regular surface.

a regular graph structure. This frees subdivision surfaces from
topological constraints, and grants users a large amount of
design freedom.

The first papers on subdivision surfaces were famously
published by Catmull and Clark [CC78] and Doo and
Sabin [Doo78, DS78] over thirty years ago. Subdivision
surfaces have since become invaluable in entertainment ap-
plications such as animated films [DKT98] and special ef-
fects [NCP∗09], and are increasingly important in real-time
applications such as computer games [KMDZ09] as well.
In the twenty years following their invention, a rich vari-
ety of subdivision schemes was developed, each one in the
spirit of Catmull–Clark and Doo–Sabin in that they create a
smooth surface by recursive application of simple rules. We
review some of these basic schemes in Section 2.1, and also
recommend the survey of the ‘subdivision zoo’ by Zorin et
al. [ZSD∗00].

In the last fifteen years, researchers have steadily addressed
and overcome many of the limitations of these early schemes.
This survey summarizes work in three major strands:

• theory for analysing subdivision surfaces,
• tools for integrating subdivision schemes into existing ap-

plications, and
• the development of surfaces with improved properties such

as fairness, compatibility, or the removal of artifacts.
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The two latter themes are those with practical applications,
yet it is only the work on integrating existing schemes that has
found widespread use, to the author’s knowledge. This raises
the question of why early subdivision schemes are so endur-
ing in applications where they have already been accepted,
and continue to find relatively little use in applications where
they have not. We might expect the development of schemes
with theoretical improvements to lead to an increasing di-
versity of schemes, used in a wider range of applications.
Instead we observe that Catmull–Clark (the very first sub-
division scheme for surfaces) and Loop [Loo87] (the first
subdivision scheme based on triangular patches) are over-
whelmingly the most popular in practice. We conclude the
survey by examining the reasons for this strong preference,
and considering directions for future research.

2. Background

This paper complements earlier surveys of research in subdi-
vision. Zorin et al. [ZSD∗00] give a survey primarily aimed at
computer graphics practitioners. Dyn and Levin [DL02] sum-
marize the most important schemes with accompanying anal-
yses for convergence and smoothness, while Sabin [Sab05]
gives a comprehensive view, not just for subdivision surfaces
but for univariate and trivariate schemes as well. In this pa-
per we focus on research in the last fifteen years; this section
gives a brief background to early work, but we refer the reader
to other surveys for details.

2.1. Subdivision schemes

We can understand subdivision schemes in terms of two main
properties:

• the rules that are used to insert points where the control
mesh is regular,
• how those rules are generalized to allow for meshes with

irregular connectivity.

We consider the first of these properties in this section and
review important tools for understanding the second in Sec-
tion 2.2. Here the definition of regular connectivity depends
on the type of mesh refinement; in Figure 2, for example,
all vertices and faces are regular. In general, regular regions
have the same graph structure as a regular tiling of the plane,
where the refinement pattern defines the polygons used in the
relevant tiling.

Subdivision schemes were first discovered by generaliz-
ing knot insertion rules for spline surfaces on a regular grid.
Knot insertion reproduces a given spline function on a re-
fined grid, and subdivision rules can be extracted as the affine
combinations of coefficients which are taken to form co-
efficients of the new basis. For example knot insertion on
tensor-product B-splines of odd and even degree leads to the
patterns of refinement shown in Figures 2a and 2b respec-
tively. These were the patterns used by the Catmull–Clark and

(a) Catmull–Clark [CC78],
Kobbelt [Kob96]

(b) Doo–Sabin [Doo78]

(c) Loop [Loo87],
Butterfly [DLG90]

(d) Simplest [PR97]

(e)
√

3 [Kob00], Labsik and
Greiner [LG00]

(f) 4–8 [VZ01]

Figure 2: Regular refinement patterns for important subdi-
vision schemes. New edges are drawn in red, and original
edges appear in black where they form part of the refined
pattern, or in grey where they do not.

Doo–Sabin schemes; the tensor-product structure means that
both schemes operate on quadrilateral meshes.

Nearly ten years after these first schemes were introduced,
Loop [Loo87] filled a natural gap for a subdivision scheme
which uses triangular control meshes instead. The refine-
ment pattern for Loop’s scheme is shown in Figure 2c, and
Dyn et al. [DLG90] used the same type of refinement to cre-
ate the first surface subdivision scheme where the limit sur-
face interpolates a control mesh rather than approximating it.
Kobbelt [Kob96] developed a similar scheme for quadrilateral
meshes. Researchers have also found subdivision schemes
with refinement patterns that incorporate a rotation of the grid
directions. In particular, this includes the Simplest scheme by
Peters and Reif [PR97], the

√
3 schemes by Kobbelt [Kob00]
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and Labsik and Greiner [LG00] and the 4–8 scheme by
Velho and Zorin [VZ01]. Comprehensive classifications of
refinement patterns are provided by Han [Han03] and Ivris-
simtzis et al. [IDS04].

While the Catmull–Clark and Doo–Sabin schemes gener-
alize tensor-product B-splines, the schemes named in Fig-
ures 2c to 2f are based on a variety of surface types. Loop,
Simplest and 4–8 all generalize knot insertion rules for box
splines. The interpolatory Butterfly and

√
3 schemes sample

cubic interpolants, in the same way as the four-point subdivi-
sion scheme for curves [DLG87]. In regular regions Kobbelt’s√

3 scheme creates a non-polynomial surface with C2 conti-
nuity but a fractal support for each basis function [ISD04].

There are also schemes which use the flexibility of subdi-
vision to allow a mix of refinement patterns in the same mesh.
Stam and Loop [SL03] and Schaefer and Warren [SW05]
present schemes which preserve both quadrilateral and tri-
angular faces: the Catmull–Clark scheme is used on the
quadrilateral regions and Loop’s scheme on the triangular
parts. These schemes therefore mix the refinement patterns
shown in Figures 2a and 2c. The ‘4–3’ scheme by Peters and
Shiue [PS04] also combines these two patterns, although
using a box-spline-based subdivision scheme for the quadri-
lateral regions rather than Catmull–Clark.

2.2. Analysis at singularities

The second defining property of a subdivision surface scheme
concerns the rules that are used around irregularities in the
control mesh. Such an irregularity could be an extraordinary
vertex (see examples in Figures 3a and 3c) or an extraordinary
face (see Figures 3b and 3d). In both cases the valency of
an extraordinary element is the number of incident edges.
Irregularities are preserved by each subdivision step (see
Figure 1), and therefore generate singularities surrounded by
regular limit surface [PR08]. In this section we review the
analysis of subdivision surfaces around such singularities.

The analysis depends on writing the linear map computed
by a subdivision step as a matrix. If we consider the action
of a subdivision step on the whole control mesh, then this
matrix is taller than it is wide, as each step increases the
density of the mesh. However, the subdivision rules operate
locally, so at each step we can consider a fixed number of
vertices around an extraordinary element to obtain a square
subdivision matrix S. If a subdivision scheme is stationary,
then S is constant for each subdivision step. For an initial
control mesh Q, the position of the singularity is therefore
given by S∞Q. Doo and Sabin [DS78] observed that we can
infer properties of S∞ using a diagonalization of S, assuming
that it exists. If a subdivision scheme is also uniform then
the same subdivision rules apply in every part of the mesh,
and around an extraordinary element of valency n, the action
of a subdivision step therefore has a rotational symmetry of
order n. Doo and Sabin showed that in this case, a Discrete

(a) An extraordinary vertex, for
regular refinement as in Fig. 2a

(b) An extraordinary face, for
regular refinement as in Fig. 2b

(c) An extraordinary vertex, for
regular refinement as in Fig. 2c

(d) An extraordinary face, for
regular refinement as in Fig. 2d

Figure 3: Example refinement patterns for the region around
irregularities in the control mesh. As in Figure 2, original
edges are drawn in black where they form part of the refined
pattern, or in grey where they do not.

Fourier Transform (DFT) can simplify the analysis further, as
the DFT Ŝ of S is a block diagonal matrix. We can therefore
decompose a subdivision step into blocks Ŝω, each of which
acts on the ω-th Fourier component of the input data. All of
the schemes discussed in Section 2.1 are both stationary and
uniform, and in this survey we assume that both properties
apply, explicitly mentioning where a scheme is either non-
stationary or non-uniform.

In order to arrive at a fixed non-zero limit surface, subdi-
vision rules must be affine combinations (i.e. take weighted
means). Each row of S therefore sums to one, and so the vec-
tor of ones, 1, is an eigenvector with eigenvalue 1 (i.e. S1= 1).
This eigencomponent appears in Ŝ0, as 1 is a constant (zero
frequency) vector, and so we say that it has Fourier index
0. An eigenfunction is the limit of applying a subdivision
scheme to an eigenvector, and the eigenfunction correspond-
ing to this unit eigenvalue is the constant unit function.

To analyse a scheme further, we need some constraints
on S. In this survey we are interested in schemes with the
following properties:

• The unit eigenvalue is dominant. The limit position S∞Q
is therefore given by taking this dominant component after
representing Q in the eigenbasis of S. With the left eigen-
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vector V for the unit eigenvalue (which satisfies VS = V),
the limiting position is given by VQ [HKD93]: V therefore
gives weights which find the singular point on the limit
surface as an affine combination of the input points.
• After the dominant unit eigenvalue, the next largest eigen-

value is real and double. This corresponds to the fact that
the space of bivariate linear functions has dimension two.
• The subdominant eigenvalue λ has Fourier index ±1; the

rotational symmetry which allowed us to use the DFT
means that λ appears with equal value in both Ŝ1 and Ŝ−1.
• The space of bivariate quadratic functions has dimension

three, and there are therefore three eigencomponents that
form a corresponding basis. These eigencomponents cap-
ture quadratic properties of the limit surface at the singu-
larity S∞Q, and have real eigenvalues.
• One of these eigencomponents has Fourier index 0. The

associated eigenvalue, which we shall write as µ0, is sub-
dominant in Ŝ0 (recall that the dominant eigenvalue in Ŝ0
is the unit eigenvalue).
• The other two quadratic eigencomponents correspond to

the dominant eigenvalues in Ŝ±2; we shall write their value
as µ2. As for λ, this eigenvalue is double as a result of
rotational symmetry.
• All other eigenvalues are strictly less than the eigenvalues

µ0 and µ2 in absolute value.

To summarize, in the discussion below we assume that a
subdivision scheme is stationary and uniform, and that the
square subdivision matrix S has one of the following spectra:

1 > λ = λ > µ0 ≥ µ2 = µ2 > other eigenvalues

1 > λ = λ > µ2 = µ2 ≥ µ0 > other eigenvalues

Not all subdivision schemes fit this description. For exam-
ple, although the Simplest scheme [PR97] is stationary and
uniform, it has a subdominant eigenvalue which is eightfold
rather than double, for an extraordinary face with valency
3. In this survey we are only interested in the analysis of
schemes where the above properties hold, however, and it
simplifies our discussion to assume that they do. For a more
thorough mathematical treatment, we recommend the mono-
graph by Peters and Reif [PR08], who derive the analyses
below without our simplifying assumptions.

3. Analysis of subdivision surfaces

The first theme of work in this survey encompasses tools and
theory for analysing subdivision surfaces. While the analysis
in Section 2.2 was first presented by Doo and Sabin in 1978,
recent work has continued to develop our understanding of
subdivision surfaces and their properties.

3.1. C1 regularity

Reif [Rei95] provides the first comprehensive analysis of sub-
division surface smoothness by defining the characteristic
map ψ that evaluates the two eigenfunctions corresponding

5 ×

u
v

→

Ω

Figure 4: An example characteristic ring derived from a
subdivision matrix for valency 5.

to λ. Since it is built from eigenvectors of S, the characteristic
map is composed of an infinite union of scaled characteristic
rings [PR08] such as the one shown in Figure 4. Each charac-
teristic ring is a map Ω→ R2 from a parametric domain Ω;
in Figure 4, for example, Ω is a union of L-shaped pieces. For
subdivision surfaces which are sufficiently smooth (C1 and
regular), an affine transform of the characteristic map pro-
vides a first-order Taylor approximation to the surface around
a singularity, where the affine transform is given by the repre-
sentation of Q in the eigenbasis of S. As in Section 2.2, we
can find this representation using left eigenvectors of S; in this
case the relevant left eigenvectors are those corresponding
to λ.

Reif shows that a subdivision scheme generates C1 reg-
ular surfaces if ψ is regular and injective, in addition to
conditions on λ which are satisfied by our assumptions in
Section 2.2. Zorin [Zor00b] extends this analysis for more
general cases which do not satisfy those assumptions. Pe-
ters and Reif [PR98] use this theory to prove C1 regularity for
the Catmull–Clark and Doo–Sabin subdivision schemes, and
Umlauf [Uml00] does the same for the Loop scheme. Both
Zorin [Zor00a] and Peters and Reif [PR08] provide condi-
tions which make it easier to verify regularity and injectivity
of ψ for other subdivision schemes.

3.2. Higher regularity

Using the characteristic map, Prautzsch and Reif [PR99] are
able to provide an important lower bound on the degree of
r-flexible stationary polynomial subdivision schemes. They
define a subdivision scheme as r-flexible if, at each singular-
ity, there is some setting for Q such that the surface has any
given partial derivatives up to order r. This means that for a
scheme to be r-flexible, it must be at least Cr. Zorin [Zor06]
applies this definition of r-flexibility to a whole parametric
surface by considering every point on the surface in the same
way.

The important observation by Prautzsch and Reif is that
for a subdivision scheme to be r-flexible, its eigenfunctions
must span all r-degree polynomials of ψ. The characteristic
map is itself generated by the subdivision scheme, and if it is
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a Ck function then for general n it must have polynomial de-
gree at least k+1. The Catmull–Clark scheme, for example,
has k = 2, since it generates curvature-continuous surfaces
in regular regions, including the regular regions of the char-
acteristic map. Now r-degree polynomials of this map have
minimum degree r(k + 1) = rk + r, and this is therefore a
lower bound on the degree of polynomials used in the subdi-
vision scheme. We discuss schemes which meet this bound
exactly in Section 5.6. Reif [Rei96] shows that this means sta-
tionary curvature-flexible polynomial schemes (r = 2) require
at least degree 6, and Prautzsch and Reif [PR99] generalize
the result for arbitrary r. By considering r = 2, this analysis
also shows that for a subdivision scheme to be 2-flexible,
we need restrictions on the eigenfunctions corresponding to
µ0 and µ2. This is analogous to the result that for a scheme
to be C1-continuous, there are restrictions on the eigenfunc-
tions corresponding to λ (i.e. the characteristic map; see Sec-
tion 3.1).

These degree estimates are a consequence of the assump-
tion that a subdivision scheme is uniform and stationary. Zulti
et al. [ZLLT06] give an example scheme that overcomes the
degree barrier by breaking these assumptions, generalizing
the same quartic box spline as Loop [Loo87] yet still man-
aging to be C2 and 2-flexible. Their scheme is non-uniform,
allows only a single extraordinary vertex in the mesh, and
uses special subdivision rules along every chain of edges
emanating from an extraordinary vertex. Peters and Karči-
auskas [PK10] also discuss low-degree 2-flexible subdivision
schemes by breaking the assumption on stationarity instead.
They gain more flexibility by using an accelerated refinement,
where a greater number of spline patches are introduced at
every subdivision step. Myles and Peters [MP09] use this
idea to generate a low-degree 2-flexible polar subdivision
scheme that we discuss further in Section 5.4. In all of these
cases, the combination of high smoothness and low degree is
only possible by making the scheme either non-uniform or
non-stationary.

To analyse their non-uniform scheme, Zulti et al. [ZLLT06]
use the joint spectral radius for establishing Hölder continuity
along the extraordinary edges, in the same way as Levin and
Levin’s analysis [LL03] of Stam and Loop’s quad/triangle
subdivision [SL03]. The joint spectral radius is a powerful
tool for analysis, as it is able to give the exact Hölder regu-
larity of a scheme, not just the number of continuous deriva-
tives [Sab10]. Unfortunately, it is also very hard to compute
an exact joint spectral radius in general [TB97], and so where
this tool is invoked, we often gain only upper- and lower-
bounds on Hölder regularity. The joint spectral radius is also
only applicable for the analysis of subdivision curves or ex-
traordinary edges: the technique cannot be used to analyse
point singularities of subdivision surfaces.

In order to analyse the curvature properties of those sin-
gularities in the same way as the analysis for position and
normals, Reif [Rei07] introduces the embedded Weingarten

map W. For a C1 subdivision surface, the position of a singu-
larity is given as the limit of SmQ as m→∞, and the normal
is defined in a similar way, by examining the convergence
of a sequence of normal vectors. However studying curva-
ture at the singularity is more difficult. One could try using
the sequence of principal curvatures and directions, but the
principal directions are undefined at umbilic points of the
surface, where the principal curvatures are equal. It is there-
fore not necessary for the principal directions to converge for
a surface to be curvature continuous, whereas convergence
of W, a 3× 3 matrix, is both necessary and sufficient. The
name ‘embedded Weingarten map’ is by analogy to the Wein-
garten map, which has principal directions and curvatures
as its eigenvectors and eigenvalues respectively. However W
refers to coordinates in the embedding space instead of the
surface tangent space, which makes it particularly well-suited
for curvature analysis at singularities of subdivision surfaces.

3.3. Curvature of low-degree stationary schemes

For low-degree, uniform and stationary schemes like Catmull–
Clark, the work described in Sections 3.1 and 3.2 means that
the question of C1 continuity is settled, and the possibility of
C2, 2-flexible singularities is ruled out. However the second
derivative can still exhibit a range of possible behaviours
at singularities. Sabin et al. [SDHI03] summarize the most
important options, including the situation where a subdivision
matrix has the spectrum:

1 > λ = λ >

µ0 =µ2 =λ
2︷ ︸︸ ︷

λ
2 = λ

2 = λ
2 > other eigenvalues

This gives the subdivision scheme a property known as
bounded curvature, which is a necessary condition for a
2-flexible subdivision scheme [PR99]. It is not sufficient,
because of the eigenfunction conditions described in Sec-
tion 3.2. Subdivision schemes with bounded curvature do,
however, preserve curvatures in all three of the quadratic
eigencomponents through subdivision. This avoids several
alternative outcomes, all undesirable:

• If µ0 < λ
2 and µ2 < λ

2, then the surface has a flat spot,
as the quadratic components shrink faster than the square
of the linear components. Prautzsch and Umlauf [PU98]
use this spectrum as a way of forcing trivial curvature
continuity, but the resulting surfaces are not 2-flexible, and
the artifacts created using this enforced flatness are too
severe for most practical purposes.

• If µ0 > λ
2 or µ2 > λ

2, then the surface has divergent cur-
vature [DS78].
• If µ0 > µ2, then the surface has prescribed positive Gaus-

sian curvature for almost all initial control meshes [PR04].
• If µ2 > µ0, then the surface has prescribed negative Gaus-

sian curvature for almost all initial control meshes [PR04].

Bounded-curvature schemes, by contrast, allow extraordinary
regions to hold an arbitrary non-zero curvature, just as in reg-
ular regions. However, if the eigenfunctions for the quadratic
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components are not quadratic functions of the characteristic
map (as is the case for any modifications to the Catmull–
Clark subdivision rules where n 6= 4), then curvature at the
singularity S∞Q is undefined. Peters and Umlauf [PU01]
show that the resulting curvature is bounded between values
that depend on both S and Q.

Karčiauskas et al. [KPR04] show that the Catmull–Clark
scheme has λ

2 < µ0 < µ2 at all valencies greater than four,
leading to a limit surface with divergent curvature, and hyper-
bolic shape for almost every possible control mesh. Reif and
Schröder [RS01] show that despite these deficiencies, the
principal curvatures are square-integrable for any scheme
satisfying our assumptions in Section 2.2.

3.4. Shape analysis

Peters and Reif [PR04] analyse second-order properties fur-
ther by means of a surface ring they call the central surface
and define for each input Q. This is the dominant term in
the eigenbasis expansion of the surface around a singularity
when written in a local coordinate system: the origin is placed
at the limiting position S∞Q, and the coordinate xy-plane is
set as the corresponding tangent plane. Therefore these terms
(corresponding to the eigenvalues 1 and λ respectively) play
no part in the z-value of the central surface, which is then
determined entirely by the subsubdominant eigenvector(s). In
our notation, the corresponding subsubdominant eigenvalue
is either µ0, µ2, or the common value if they are equal.

If µ0 = µ2, Karčiauskas et al. [KPR04] consider the central
surface for the complete range of inputs with quadratic shape,
to build a shape-in-the-limit chart. For each input in the chart,
they record whether the Gaussian curvature at the singular-
ity is positive, negative, or hybrid, where the corresponding
central surface is neither entirely elliptic nor hyperbolic. A
subdivision surface with hybrid curvature therefore contains
both positive and negative Gaussian curvature in every in-
finitesimal region of a singularity. This could be the outcome
of a bounded curvature scheme, for example, if the bounded
range for a particular input includes both positive and negative
curvature. Augsdörfer et al. [ADS06] adapt shape-in-the-limit
charts to additionally plot the range of Gaussian curvature
in the central surface, and they propose a polar rather than
barycentric layout for the chart (see Figure 5). Ginkel and
Umlauf [GU08] make it easier to compute the resulting charts
by analysing their rotational symmetries.

Another strand of work considers artifacts in a subdivi-
sion surface, defined as features of a surface that cannot be
removed by modifications to the control mesh. Sabin and
Barthe [SB03] categorize a wide range of artifacts and their
sources, some of which are features of subdivision surfaces
even on a completely regular grid. Augsdörfer et al. quantify
this type of artifact for subdivision schemes on quadrilat-
eral [ADS11a] and triangular [ADS11b] grids.
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Figure 5: Ginkel and Umlauf [GU06] show shape-in-the-
limit charts for a bounded curvature variant of Loop sub-
division, in the polar layout suggested by Augsdörfer et
al. [ADS06]. Red points show where the central surface has
elliptic shape, blue indicates hyperbolic, and green points
have hybrid curvature, for valency 5 (left), 6 (middle) and 7
(right).

3.5. Non-linear analysis

Although there is a growing body of work on non-linear
and geometry-sensitive subdivision schemes for curves, at
present there are few schemes of this type for surfaces (see
Section 5.3 for some early examples). Nevertheless an impor-
tant tool for analysing schemes of this type is the theory of
proximity developed by Wallner and Dyn [WD05] for study-
ing manifold-valued subdivision schemes for curves. The idea
is that a non-linear scheme may converge, in the limit, to a lin-
ear scheme that we know how to analyse. If the convergence
rate is high enough, then the two schemes can be shown to
share the same continuity. Myles and Peters [MP09] use this
type of argument to show C2 continuity for a non-stationary
surface scheme (see Section 5.4).

3.6. Approximations and proxy surfaces

To support new techniques in rendering, which we discuss
in Section 4.1, we need to understand the properties of ap-
proximations to subdivision surfaces. Approximations are
necessary because the only explicit form for a subdivision
surface with control mesh irregularities involves an infinite
number of surface patches. A graphics card can never render
the exact geometry of such a surface, and so always uses an
approximation instead. This may not be observable, as the
approximation might be sufficiently accurate that there is no
difference to the true subdivision surface in a rendered image.
Since an approximation is used, however, we could always
find a view of the same geometry such that a difference be-
comes apparent. Good rendering methods avoid all visible
error by making the approximation view-dependent, but this
just means that many different approximations are required
rather than one.

The simplest available approximation is a triangulation,
and it is common to render (possibly a triangulation of) the
control mesh after a small number of subdivision steps. Sev-
eral researchers have tried to find, a priori, the required num-
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ber of Catmull–Clark subdivision steps for a given approxi-
mation error. Zeng and Chen [ZC06] provide estimates based
on the first differences of the control mesh, but these are
over-conservative and lead to a large prediction for the num-
ber of required steps. Cheng et al. [CY06, CCY06, CC06]
make improved estimates based on second differences in-
stead. Huang and Wang [HW07b] find optimal convergence
rates for these second differences, but still predict a large
number of subdivision steps compared to typical use in prac-
tice. They therefore consider the alternative approximation
where each vertex of the control mesh is projected to its cor-
responding limit position, to give a limit mesh. We saw in
Section 2.2 that the limit position of a vertex is given by
a weighted combination of its surrounding vertices, using
weights in the dominant left eigenvector V. Huang et al. then
provide subdivision depth estimates for this limit mesh ap-
proximation for both Catmull–Clark [HW07a, HDW08] and
Loop [HW08] surfaces.

Peters and Wu [PW09] consider the problem for general
subdivision surfaces, and use a reparametrization to show that
the approximation error is proportional to max{µ0,µ2,

1
4}

m

for m subdivision steps. They also consider a posteriori esti-
mates, based on measuring the error after subdivision, and
recommend using a priori estimates only after one or two lo-
cal subdivision steps. More generally, Peters and Reif [PR08]
develop a theory of proxy surfaces, encompassing not only
triangulations but also the higher-order approximations we
discuss in Section 4.1.3. They draw the distinction between
parametric distance, the distance between a subdivision sur-
face and its proxy at common parameter values, and geomet-
ric distance, for example the Hausdorff distance between a
surface and its approximation. Geometric distance removes
the influence of the parametrization chosen for the proxy
surface, and their results confirm that the convergence rate
of geometric distance depends on the subsubdominant eigen-
value (µ0 or µ2).

4. Integrating subdivision surfaces into applications

The second theme of work in this survey covers tools for
incorporating subdivision surfaces into existing hardware
and software. The main example of this work is hardware
rendering, which we discuss in Section 4.1. However there
has also been work on providing subdivision surfaces with
the full programming interface familiar from regular spline
surfaces, including differentiable parametrizations, and tools
such as Boolean operations and trimming curves. These we
discuss in Section 4.2.

4.1. Improvements to rendering methods

Subdivision surface approximations can be categorized into
two main classes. Some methods evaluate the exact value of
the surface at given parameter values, while others approx-
imate a subdivision surface over larger patches. One might
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Figure 6: Schaefer and Warren [SW07] show the result of
using separate linear approximations on each surface patch
(left), and their dual tessellation procedure for generating a
watertight approximation (right).

assume that exact computation results in higher rendering ac-
curacy, but positions that are evaluated discretely must still be
connected into a surface before being drawn on screen. In the
process, it is possible to introduce greater error than a method
which computes an approximation directly [NCP∗09]. There-
fore we cannot assume that exact evaluation gives a surface
approximation with lower error. In this section we look first
at methods for exact evaluation on the CPU (Section 4.1.1)
and GPU (Section 4.1.2), followed by work that computes
non-linear approximations directly (Section 4.1.3).

4.1.1. Evaluation

For subdivision schemes which generate a polynomial spline
in regular regions, such as Loop and Catmull–Clark, we can
evaluate the surface exactly if we have polynomial coeffi-
cients for the relevant surface patch. Near a singularity, this
can involve an arbitrarily large number of subdivision steps,
but Stam [Sta98] gives the first approach that can evaluate
any point of the surface with a constant bound on compu-
tation time. He proposes using the same eigenbasis that we
considered in Section 2.2, by projecting the input Q into
the eigenbasis of S. In this basis, multiplication by S is the
result of simply multiplying coefficients by their correspond-
ing eigenvalues. Zorin and Kristjansson [ZK02] develop this
theme by pointing out that the same technique can be used
on other bases; any block-diagonal form for S with triangu-
lar blocks no larger than 3× 3 still allows evaluation with
constant-time complexity. They use this approach to evaluate
the subdivision surfaces with creases introduced by Biermann
et al. [BLZ00], where computing an eigenbasis is not always
possible due to mesh parameters and tags which modify S.

For schemes such as Kobbelt’s [Kob96] non-polynomial
interpolating scheme, there is no closed regular form, and
so the techniques of Stam [Sta98] and Zorin and Kristjans-
son [ZK02] are not applicable. To fill this gap, Schaefer and
Warren [SW07] present evaluation procedures that also work
for non-polynomial schemes. Their approach relies on the
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scaling relation satisfied by refinement rules, to tabulate ba-
sis functions at rational parameter values. This allows them
to calculate surface limit points using stencils, which take
weighted combinations of control mesh vertices. They follow
exact evaluation with a dual tessellation approach that gives
a watertight linear approximation to the subdivision surface,
even if adjacent patches are evaluated at different densities
(see Figure 6). In a later paper [SW08] they also include
the details for evaluating tangents to the surface. Bolz and
Schröder [BS02] use similar pretabulated basis functions for
high-performance evaluation, by making careful use of the
CPU cache and data-level parallelism.

4.1.2. Evaluation on the GPU

The increasing power of graphics hardware has made it pos-
sible to render subdivision surfaces directly on a graphics
card, transferring only the coarse control mesh from the CPU.
This frees up a large amount of system memory for other pur-
poses and makes it possible to consider subdivision surfaces
in real-time applications such as computer games [KMDZ09].
The first techniques for hardware rendering mirror the exact
rendering discussed in Section 4.1.1, but now implemented
on the GPU instead.

Pulli and Segal [PS96] present an early hardware imple-
mentation of Loop subdivision for SGI geometry engines.
They propose a compact index for mesh vertices that uses a
simple array lookup for access to neighbouring regular ver-
tices; this is a precursor to similar indexing schemes in all
hardware implementations. Shiue et al. [SJP05] calculate re-
cursive subdivision steps on the GPU by processing a surface
fragment surrounding each vertex, while Bunnell [Bun05]
renders Catmull–Clark surfaces by handling each patch of the
surface separately instead. Like Schaefer and Warren [SW07],
Bunnell gives a scheme for adaptively subdividing patches
while maintaining a watertight tessellation of the surface, but
using triangle fans rather than the dual approach shown in
Figure 6.

Shiue et al. and Bunnell use a fragment shader to compute
a fine tessellation of the surface, and this requires the graphics
card to operate in two passes: one to calculate the tessella-
tion, and another to render the generated surface to screen.
Modern graphics cards are equipped with a geometry shader
which allows this process to operate in just one pass; Kaza-
kov [Kaz07] describes an implementation of Catmull–Clark
evaluation using this more capable hardware.

4.1.3. Higher-order approximations

With the exception of Pulli and Segal [PS96], each of the
hardware evaluation methods in Section 4.1.2 shares a need
to subdivide a mesh once or twice on the CPU before send-
ing it to the graphics card. This brings the set of possible
mesh configurations down to a manageable level by ensur-
ing that each patch is incident on at most one extraordinary
vertex. However, the cost of this simplification is that the

Figure 7: Loop and Schaefer [LS08a] demonstrate that their
approximation to a Catmull–Clark subdivision surface (left)
can be used for displacement mapping to obtain a more
detailed surface (right).

mesh increases in size by 4 (subdividing once) or 16 times
(subdividing twice) for Catmull–Clark and Loop subdivision.
This, coupled with the necessity to approximate before ren-
dering (see Section 3.6), has resulted in work to compute
efficient substitutes for subdivision surfaces that give high-
performance rendering without the complexity of exact eval-
uation. There are a wide range of approaches to higher-order
approximation; we review the most important ideas here and
Ni et al. [NCP∗09] provide a fuller survey.

As the most popular subdivision scheme in practice,
Catmull–Clark has received by far the most attention for
work in this area. Peters [Pet00] converts each quadrilateral
face of a Catmull–Clark mesh into a bicubic non-uniform
B-spline patch, but may require one or two subdivision steps
before doing so. Like Vlachos et al. [VPBM01], Loop and
Schaefer [LS08a] take advantage of the fact that graphics
hardware uses separate geometry and normal channels by
providing different approximations to each channel. Their
approximation uses bicubic Bézier patches for geometry and
patches of degree 3×2 for each of two tangent fields. These
fields can be used to generate a surface normal, or for dis-
placement mapping [LMH00] (see Figure 7). Their work has
been extended by Kovacs et al. [KMDZ09] to handle surface
creases. Although not intended for high-performance render-
ing, Alexa and Boubekeur [AB08] also present a similar idea.
They create surfaces with smoother shading by replacing the
true normal channel of a subdivision surface with one cre-
ated using the same subdivision rules as those used for the
geometry.

Another class of substitutes for Catmull–Clark surfaces
use a true C1 approximation, so the normal channel is sim-
ply filled with normals evaluated from the approximating
surface. Myles et al. [MYP08] achieve this using biquintic
patches around extraordinary vertices, expressed as biquintic
perturbations of a bicubic surface. Ni et al. [NYM∗08] are
able to use lower degree by using composite patches instead.
Both these approaches require a mesh with only quadrilateral
faces, but Loop et al. [LSNCn09] provide an approximation
which can also incorporate triangular faces, with the option
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of using approximate normals instead of the true normal field
evaluated from the surface. Myles et al. [MNP08] go further,
extending their previous work to handle both triangular and
pentagonal faces.

4.2. Adapting spline tools for subdivision

With many good approaches for evaluation (Section 4.1),
subdivision surfaces can be treated like any other parametric
spline surface. However, meshes with irregular connectivity
create new problems, and some new opportunities, for several
of the tools which are familiar from regular spline surfaces.

Litke et al. [LLS01] address the application of trimming
subdivision surfaces. For regular spline surfaces it is nec-
essary to compute the parametric preimage of a trim curve
so that the relevant part of the surface can be excluded for
evaluation; this can be difficult and lack robustness. Litke et
al. point out that with Levin’s [Lev99] combined subdivision
scheme, which can satisfy boundary constraints, it is possible
to meet a desired trim curve exactly without computing an
exact preimage. The compromise they make is a modification
(within a specified tolerance) of the surface near the trim
curve.

Boier-Martin and Zorin [BMZ04] address parametriza-
tion of subdivision surfaces. Although we know that subdivi-
sion surfaces like Catmull–Clark are C1 regular surfaces, and
therefore possess a C1 parametrization (Section 3.1), the nat-
ural parametrization from scaled copies of Ω (see Figure 4)
may not even be differentiable. Boier-Martin and Zorin point
out that

∂ψ

∂u

(u
2
,

v
2

)
= 2λ

∂ψ

∂u
(u,v)

and likewise for partial derivatives in the v direction. Since the
subdivision surface is a weighted sum of its eigenfunctions
(including ψ), and for Catmull–Clark λ > 1

2 wherever the va-
lency n> 4, this means that the natural parametrization has di-
vergent derivatives at every extraordinary vertex with valency
greater than 4. They propose two alternative parametrizations
which solve this problem: one with vanishing derivatives
and the other, based on inverting the characteristic map ψ,
which has a non-degenerate Jacobian. For computing a data-
dependent parametrization with minimal distortion (for use in
texturing, for example), He et al. [HSH10] also give a method
specific to subdivision surfaces.

There are a sequence of related problems in interference
detection and intersection calculation. In simulation, it may
be important to know whether two surfaces intersect but un-
necessary to calculate the exact intersection curve. This is the
problem of interference detection, which is solved approx-
imately by DeRose et al. [DKT98] for Catmull–Clark and
exactly by Grinspun and Schröder [GS01] for Loop subdivi-
sion surfaces. Wu and Peters [WP04] give a more efficient
approach which also applies to a larger class of subdivision
surfaces.
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Figure 8: An example, from Biermann et al. [BKZ01], of
Boolean operations on subdivision surfaces. They calculate
a union of the sphere and the torus, and an enlarged version
of the torus is subtracted from the ear.

Lanquetin et al. [LFKN03] propose an algorithm for the
situation where an exact intersection curve is required. Their
approach may not detect all intersections, however, and Sev-
ern and Samavati [SS06] repair this defect. Once an exact
intersection curve has been calculated, it can be used to carry
out Boolean operations: Biermann et al. [BKZ01] give the
first details of this procedure for subdivision surfaces (see Fig-
ure 8). Later work attempted to improve robustness by using
voxelization [LC07] or by operating on the limit mesh [JS09]
(see Section 3.6 for a definition).

5. New subdivision surface schemes

The third and final theme in this survey covers the construc-
tion of new subdivision schemes. The new schemes satisfy
a variety of requirements and constraints, and they appear
in this section roughly ordered by similarity to the basic
schemes in Section 2.1. The work ranges from bounded cur-
vature schemes (Section 5.1), which only require small mod-
ifications to the weights used as part of a subdivision step,
to high-continuity schemes (Section 5.6), which can have a
significantly different algorithmic structure.

5.1. Bounded curvature and tuning

The Doo–Sabin scheme was constructed with bounded cur-
vature (see Section 3.3) from the beginning [DS78], but the
Catmull–Clark scheme was not, and Loop’s scheme satisfies
λ

2 = µ0 but not λ
2 = µ2, so it is not a bounded-curvature

scheme either. For the Catmull–Clark scheme, Sabin [Sab91]
presents the first bounded-curvature variant, and Holt [Hol96]
does the same for Loop’s scheme. Loop [Loo02] presents
another bounded-curvature variant of his own scheme that
retains the convex hull property: the property that the surface
is contained entirely within the convex hull of the control
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mesh. This is guaranteed if the affine subdivision weights are
non-negative.

From the artifact and shape analysis in Section 3.4 there
arise a wide range of criteria that we might want a subdi-
vision scheme to satisfy. Barthe and Kobbelt [BK04] treat
subdivision weights as degrees of freedom in a nonlinear
optimization, and manipulate the subdivision matrix S to-
wards desirable properties for its eigenstructure, including
bounded curvature. They coin the name tuning for this kind
of subdivision rule optimization.

A bounded-curvature scheme prevents the collapse or ex-
plosion of curvature near singularities, but the curvature can
still have large oscillations, as Peters [Pet02] observes. Augs-
dörfer et al. [ADS06] explicitly minimize these oscillations
by tuning bounded-curvature variants of several subdivision
schemes. They minimize the variation of Gaussian curva-
ture in the central surface (see Section 3.4) for a sampling
of quadratic shapes; the end result is still just a modifica-
tion of the weights used in each subdivision step. Ginkel and
Umlauf [GU06] also use shape-in-the-limit charts for tuning
Loop’s scheme, but they try to eliminate hybrid shapes alto-
gether by correcting input data that would lead to a hybrid
limit surface. Unfortunately this is not always possible in
general: for very high valencies, Ginkel and Umlauf [GU08]
show that an entire shape-in-the-limit chart can be hybrid,
leaving no possible correction that would lead to non-hybrid
shape.

5.2. Modified for C2 by blending or finite patching

The analysis in Section 3.2 shows that no tuning of the
Catmull–Clark or Loop subdivision weights can give sur-
faces which are 2-flexible at singularities, as the polynomial
degree is too low to achieve this using a stationary subdi-
vision scheme. Given this impossibility, several researchers
consider alternative modifications instead. Levin [Lev06]
and Zorin [Zor06] both present methods to give 2-flexible
surfaces by smoothly blending the subdivision surface with
another, best-fit C2 surface. Levin’s technique is described
for Catmull–Clark, while Zorin’s uses the example of Loop’s
scheme.

In Section 4.1.3 we considered finite approximations to
subdivision surfaces for the purposes of efficient render-
ing, but it is also possible to create a finite collection of
patches that have a higher continuity than a given subdivi-
sion scheme. Loop [Loo04] presents a curvature-continuous
modification for Catmull–Clark surfaces by using n biseptic
patches around each singularity of valency n. These extraor-
dinary patches mimic the shape of the target Catmull–Clark
surface. This method again shows that the cost of high flexi-
bility at singularities is usually high polynomial degree, also
in the finite setting. Loop and Schaefer [LS08b] improve the
approximation by making use of unconstrained degrees of
freedom to give fairer finite patchings, and also to handle
surfaces with boundary.

5.3. Interpolatory subdivision

Subdivision surface schemes either approximate a control
mesh or interpolate it. Early interpolating schemes include
Butterfly [DLG90] and Kobbelt’s [Kob96] scheme, both of
which are C1 in regular regions. Zorin et al. [ZSS96] also
present a modified version of the Butterfly scheme with the
same continuity class but higher visual smoothness.

For approximating schemes such as Catmull–Clark and
Loop, the limit surface does not pass exactly through the
control mesh, but roughly follows the same shape. However
several authors adapt or modify approximating schemes to
interpolate a control mesh instead. Li and Ma [LM07] give
schemes which are a blend between a given approximating
scheme and an interpolating version, by interpolating the
differences between a control mesh and its refinement. As
examples they give interpolating variants of Catmull–Clark,
Loop, and

√
3 subdivision. Other approaches find a limit sur-

face that interpolates the input data by modifying the control
mesh instead, thus gaining interpolating surfaces with curva-
ture continuity. Halstead et al. [HKD93] find interpolating
Catmull–Clark surfaces by solving a global linear system
which additionally minimizes a quadratic fairness measure.
Maekawa et al. [MMN07] also construct interpolating sur-
faces from approximating schemes, but using iterative correc-
tions based on closest-point computations instead.

Schaefer and Warren [SW03] present an interpolating
scheme for quadrilateral meshes by factoring the four-point
scheme [DLG87] into differencing and averaging passes. This
is similar to the refine and smooth factorizations that are used
to create general-degree subdivision surfaces, described in
Section 5.5. Schaefer [Sch03] also extends this work to pro-
duce interpolating surfaces of revolution, based on the ap-
proximating scheme by Morin et al. [MWW01] for surfaces
of revolution.

Several non-linear schemes have appeared which generate
interpolating surfaces using geometric constructions. Dyn et
al. [DLL92] use a geometric construction to create smooth
convexity-preserving surfaces. Karbacher et al. [KSH00] and
Yang [Yan05] present non-linear schemes for the refinement
pattern shown in Figure 2c, and Dodgson et al. [DSS07] un-
successfully propose a

√
3 scheme based on sampling spheres.

Although sensitivity to local geometry may be the key to sim-
ple constructions with high fairness, so far these non-linear
schemes have not been able to consistently outperform their
linear counterparts.

5.4. Polar subdivision

Karčiauskas and Peters [KP07c] identify a polar control mesh
configuration which is not supported by classical subdivi-
sion schemes (see Figure 9). They present an extension to
Catmull–Clark subdivision [KP07a] which adds support for
polar configurations and gives bounded curvature at polar
vertices. Myles and Peters [MP09] go further by creating a
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Figure 9: Myles and Peters [MP09] demonstrate the bene-
fits of polar subdivision using this mushroom model: control
mesh (left), one subdivision step (middle) and the limit sur-
face (right). The example polar configuration lies at the top
of the mushroom, where many isoparameter lines converge
in an extraordinary vertex surrounded by triangular faces.

modification of Catmull–Clark with C2 and 2-flexible polar
singularities. They manage to circumvent the high degree
estimate we encountered in Section 3.2, by using subdivi-
sion rules which increase the valency of a polar vertex at
every subdivision step (as shown in Figure 9). This gives
a non-stationary scheme which cannot be analysed using
an eigenbasis as in Section 2.2. Instead, Myles and Peters
prove their scheme is C2 using the techniques of proxim-
ity [WD05], adapted for their scenario where the scheme is
non-stationary in the mesh connectivity, rather than in the
subdivision weights.

5.5. Schemes generalizing tensor-product B-splines

The polynomial subdivision schemes we have considered
so far all generalize B-splines or box splines of relatively
low degree. However several researchers realized that the
Lane-Riesenfeld refine and smooth algorithm [LR80] for
subdividing regular arbitrary-degree B-splines could be gen-
eralized for irregular meshes as well. Prautzsch [Pra98] and
Warren and Weimer [WW01] describe the natural general-
ization where each smoothing stage replaces a face with its
barycenter, and Zorin and Schröder [ZS01] show that the
resulting subdivision surfaces are C1 at singularities for de-
grees ≤ 9. Stam [Sta01] and Stewart and Foisy [SF04] ad-
dress some practical considerations by describing variants
where the topology of the mesh is invariant under smooth-
ing, while Prautzsch and Chen [PC11] prove C1 continuity
at all degrees ≥ 2. In regular regions, all of these schemes
generate tensor-product B-splines of any specified degree d,
and are therefore Cd−1. At singularities, we know from the
Prautzsch and Reif degree estimates (Section 3.2) that all
are only C1. Oswald and Schröder [OS03] extend the same
refine and smooth technique to non-polynomial schemes with
a framework that incorporates general subdivision rules, such
as the

√
3 subdivision operator shown in Figure 2e.

These schemes all generalize surfaces with uniform
parametrizations, where each surface patch has equal edge
lengths in parameter space. Sederberg et al. [SZSS98] de-
scribe the first non-uniform subdivision surfaces, which they
call NURSS. Their knot insertion rules specialize to the

Doo–Sabin and Catmull–Clark rules in the uniform case, but
also allow the surface to represent non-uniform biquadratic
or bicubic B-splines exactly. Generalizing non-uniform B-
splines brings all the benefits of non-uniform parametriza-
tions, such as boundaries that meet a given B-spline curve
while retaining cross-boundary tangent and curvature con-
trol, or selective reduction of continuity in the interior of a
surface. However, Qin and Wang [QW99] show that for an
extraordinary face with high valency and large variation in
knot spacing, the biquadratic NURSS schemes may not even
converge to a limit point.

Müller et al. [MRF06] give a different variant of Catmull–
Clark which generalizes non-uniform bicubic B-splines and
makes it possible to evaluate the limit surface at any given
vertex. Müller et al. [MFR∗10] extend this work to give a
stationary subdivision matrix around control mesh vertices,
making it possible to apply the eigenanalysis in Section 2.2.
Sederberg et al. [SZBN03] also develop their non-uniform
construction further by allowing a control mesh to contain
T-junctions; they called the resulting surfaces T-splines. Karči-
auskas and Peters [KP09a] analyse a different non-uniform
variant of Catmull–Clark, which generalizes only uniform B-
splines, but allows for non-uniform ‘adjustable speed’ spline
rings around a singularity.

Subdivision surfaces which generalize non-uniform and
arbitrary-degree B-splines bring us closer to Non-Uniform
Rational B-Splines (NURBS), the standard freeform surface
representation for Computer-Aided Design [PT87]. NURBS
have no constraint on polynomial degree or parametriza-
tion, and so a NURBS-compatible subdivision scheme must
be both non-uniform and arbitrary-degree. Cashman et al.
[CADS09] present the first scheme of this type for odd de-
grees, with restrictions on multiple knots near singularities.
These restrictions allow them to selectively insert knots to
create a uniform configuration around extraordinary vertices.
Although their scheme has been analysed only for the uni-
form case, this uniformization procedure allows their analysis
to apply to surfaces with more general starting parametriza-
tions. Except for the modifications that they introduce to give
bounded curvature, this NURBS-compatible scheme also has
an even-degree counterpart [Cas10]. Figure 10 shows how
the schemes discussed in this section relate to (subsets of)
NURBS.

5.6. High-continuity schemes

The analysis in Section 3.2 raises the question of whether it
is possible to find schemes that have exactly degree rk+ r:
the minimum degree for a stationary, polynomial, r-flexible
subdivision scheme which is Ck in regular regions. Both
Prautzsch [Pra97] and Reif [Rei98] answer this question in
the affirmative, with a particular focus on curvature-flexible
schemes with C2 continuity. Their degree estimates mean that
such schemes use patches which are at least bisextic. Both
schemes are finite constructions, although they allow for sub-
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Regular surfaces Subdivision surfaces

Figure 10: An overview of subdivision surfaces based on B-
splines. This diagram shows classes of surfaces with subset re-
lations between them (where represents ⊂). The acronym
NURBS is shortened to UBS for ‘Uniform B-Splines’. Sur-
faces above the horizontal line are based on general-degree
B-splines; those below it are limited to biquadratic and bicu-
bic degrees.

division algorithms as well. They are therefore concerned
with filling an n-sided hole with n bisextic patches. Both also
choose a parametrization, essentially turning the characteris-
tic map into an input rather than a result of analysis. Freeform
splines, the scheme by Prautzsch [Pra97], simply chooses any
C2 planar ring, such as the image ψ(Ω) of the map shown
in Figure 4, to act as the parametrization of the input ring.
Reif [Rei98] uses a particular singular parametrization in-
stead.

As an example, we now focus exclusively on freeform
splines, as it is the simpler of the two schemes to describe.
With the set-up outlined so far, Prautzsch’s construction now
chooses any quadratic polynomial p for the region around
the singularity, and composes p with the parametrization
to gain bisextic patches. The final step is a modification of
the input ring so that the new patches join smoothly to the
input: Prautzsch recommends a least-squares fit for choosing
p so that the required modifications are small. As a complete
process, we can view this construction as building a custom
stationary subdivision scheme S for each input Q.
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Figure 11: Karčiauskas and Peters [KP07b] show a se-
quence of guided surface rings (left) and the resulting guided
surface (right).

Peters [Pet02] shows that although this gives a perfect,
freely-chosen quadratic surface at the singularity, curvature
artifacts tend to move outwards to the transition layer be-
tween the extraordinary and regular part of the surface. In
response Karčiauskas and Peters [KP07b, KP08] develop
guided surfaces (see Figure 11), where an arbitrary shape p
is chosen for the extraordinary region in a similar way, but
this surface is only sampled: it does not form part of the limit
surface directly. In particular, they propose a scheme which
samples p at the corners of the infinite collection of paramet-
ric rings which are scaled copies of Ω. These rings become
progressively denser as the subdivision surface moves to-
wards a singularity, which means that the limiting behaviour
is given entirely by the guide surface. However low-frequency
sampling in the outer rings allows a fairer join with the input.
Although this framework requires bisextic surfaces for curva-
ture continuity, Karčiauskas and Peters [KP09b] also show
that the same algorithm with lower-degree surfaces can give
results which are visually very similar.

The PTER framework that appears in the monograph by Pe-
ters and Reif [PR08] is based on the guided surface approach,
and is intended as a general way to construct Ck subdivision
schemes. Given a map ψ such as the one shown in Figure 4
(which need not be a characteristic ring, but must have a
similar structure), the idea is to compose four operators, in
order:

R Reparametrize the input ring so that instead of a map from
Ω to R3, it becomes a map from ψ(Ω) to R3.

E Extend the resulting function inwards from ψ(Ω) to
λψ(Ω), where λ is the scaling factor corresponding to
the map ψ.

T Turn-back so that we have a new ring as a function from
1
2 Ω to R3.

P Project the resulting ring into the space of rings which
join Ck with the input.
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Figure 12: Karčiauskas and Peters [KP08] compare two
bicubic subdivision surfaces defined by the same con-
trol mesh (top): a bounded-curvature variant of Catmull–
Clark [ADS06] (bottom left), and a bicubic guided surface
(bottom right).

Peters and Reif show that guided subdivision fits almost triv-
ially into this framework, where the operator E just yields the
guide surface on the scaled domain λψ(Ω), and the operator
P samples the guide, and its derivatives, in a way that gives
C2-connecting rings. Naturally this process can be iterated
to gain a sequence of rings which fill an n-sided hole in the
same way as a subdivision surface, as shown in Figure 11.

6. Subdivision schemes in practice

Despite the large body of research described in Section 5, at
present the dominant schemes in subdivision surface mod-
elling remain Loop [Loo87] and Catmull–Clark [CC78]. This
is reflected for Catmull–Clark, in particular, by the large
amount of work in this survey which applies specifically to
Catmull–Clark subdivision, in all three areas of analysis, in-
tegration, and modification to create new schemes. Perhaps
surprisingly, subdivision schemes used in practice almost al-
ways appear in their original, unmodified forms, even though
these early schemes feature the avoidable curvature problems
discussed in Section 3.3.

First we consider why Catmull–Clark is not replaced with
superior alternatives in industries which have already adopted
subdivision surfaces. Some non-technical reasons include:

• that the amount of work specialized particularly for
Catmull–Clark creates an ecosystem (and large amounts of
highly-optimized code) which may be difficult to change;
• that as a de facto standard, Catmull–Clark subdivision

creates an expectation for how a subdivision surface should
behave.

We find an example of the latter in Karčiauskas and Peter’s
comparison [KP08, Fig. 11] between bicubic guided sur-
faces and bounded-curvature subdivision (see Figure 12).
The guided surface in this comparison passes through the
same limit point as a Catmull–Clark surface, and given a cer-
tain control mesh, they show that a tuned bounded-curvature
variant of Catmull–Clark [ADS06] creates a surface that is

Figure 13: Catmull–Clark surface defined by the control
mesh shown left and drawn with reflection lines (right).

considerably flatter than an untuned surface. This is not a sur-
face artifact (Section 3.4), as the flatness can be ameliorated
by modifying the control mesh, but the bounded-curvature
variant may appear deficient simply by behaving differently.
Alternatively we could argue that the bounded-curvature vari-
ant is less desirable because an extraordinary vertex is treated
differently to regular vertices: here it seems to have a smaller
effect on the limit surface. However the same is true of any
subdivision scheme, so this argument may be more subjective
than it first appears.

The most obvious technical reason for the dominance of
Catmull–Clark is

• that it is good enough for purpose, and the theoretical
shape problems discussed in Section 3.3 rarely appear in
practice.

When used in animation, careful control mesh design elimi-
nates high-valency singularities, or at least restricts them to
flat or hidden parts of the surface [SAP01]. This means that
the most important valencies are 3 and 5, and here the values
of λ

2,µ0 and µ2 differ by less than 0.7% and 12.5% respec-
tively. For these close-to-regular valencies, curvature is there-
fore not too far from bounded, and at the scale of Figure 13,
for example, the unbounded and generically zero curvatures
are not visible at all, even when examining the surface with
reflection lines. One final explanation for Catmull–Clark’s
longevity is its

• simplicity and generality.

The alternatives may be perceived as considerably more
complex (e.g. guided subdivision; Section 5.6), to have lim-
ited applicability (e.g. C2 polar subdivision; Section 5.4), or
to offer dubious benefits (e.g. bounded curvature schemes,
in Section 5.1, which can suffer from curvature oscilla-
tions [Pet02]).

These arguments apply equally to Loop subdivision, since
it is the de facto standard for subdivision surfaces on a trian-
gular mesh, and there is also a large investment into tools and
code specifically for Loop surfaces. Loop even has bounded
elliptic curvature at singularities, since λ

2 = µ0. Although the
value of µ2 leads to curvature that is generally unbounded at
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valencies greater than 6 [KPR04], for close-to-regular valen-
cies of 5 and 7, µ2 differs from λ

2 by 18.4% and 13.3% re-
spectively. So here too, curvature is not too far from bounded,
and Loop subdivision certainly shares the simplicity and gen-
erality of Catmull–Clark.

For industries where subdivision surfaces do not yet have a
foothold, the question is why none of the more recent schemes
have been adopted. Inertia may again play a role; as an ex-
ample the Computer-Aided Design (CAD) industry supports
a large body of highly robust code which does not easily ac-
commodate new representations [SFL∗08]. However there is
clearly a demand for more flexible modelling in engineering:
Dassault Systèmes introduce subdivision surfaces in their
CATIA product Imagine and Shape, and T-splines [SZBN03]
make subdivision surfaces available to CAD packages such
as Rhinoceros 3D and SolidWorks. One barrier to adoption is
the high-level interface these modellers present to users: tools
such as intersections, offsets, fillets and blends [IGPP01]
leave a typical CAD model as the union of many approxi-
mating trimmed NURBS surfaces [SFL∗08]. There is noth-
ing to gain from replacing many trimmed NURBS surfaces
with many trimmed subdivision surfaces, and it is not clear
that subdivision surfaces make it any easier to provide these
high-level operators. Nevertheless we do not believe that
the potential of subdivision surfaces has been exhausted for
all possible applications. In particular high-fairness schemes
such as guided surfaces [KP08] may prove to be a powerful
solution to future problems in surface modelling.

7. Conclusion

Subdivision surfaces are now a mature technology, and linear
subdivision schemes are well understood. Possible future
directions for research include:

• high-fairness, non-linear geometry-sensitive subdivision
schemes with simple rules, extending the work on non-
linear interpolatory schemes discussed in Section 5.3;
• a unified analysis for these non-linear schemes, extending

the work in Section 3.5;
• schemes which fully realize the promise of arbitrary-

topology NURBS (Section 5.5) with at least bounded cur-
vature, and without restrictions to odd degrees or certain
knot configurations;
• standardization and recommendations for the large number

of choices that must be made to implement a scheme in
the PTER or freeform spline frameworks (Section 5.6).

Even if geometry-sensitive schemes start to fulfil their
promise, or high-continuity schemes become more widely
adopted, it seems clear that it will be impossible to match
the unique combination offered by Catmull–Clark surfaces: a
remarkably simple and predictable construction, with highly-
efficient implementations, and which generalizes an equally
simple and efficient closed-form regular surface. There
are many cases where Catmull–Clark surfaces are smooth

enough, and with increasing real-time applications, we con-
clude that Catmull and Clark [CC78] present an algorithm
which is surprisingly close to optimal, for one of the first
papers on subdivision surfaces.

Acknowledgements

This paper was written with the support of the SNF under
project number 200021-134639. I am grateful for the assis-
tance of Kai Hormann and the anonymous reviewers, in pro-
viding useful feedback during the preparation of this survey.
I also thank the copyright holders and authors listed below,
all of whom gave permission for their work to be reproduced.

Figure 5 appears with the kind permission of Ingo Ginkel,
Georg Umlauf and the Eurographics Association.

Figure 6 was provided by Scott Schaefer and Joe Warren,
with the permission of the IEEE.

Figure 7 appears courtesy of Charles Loop, Scott Schaefer
and Bay Raitt of Valve Software, who provided the ‘Monster-
frog’ model shown in this figure.

Figure 8 is reproduced with the permission of Denis Zorin
and the ACM.

Figure 9 was kindly provided by Ashish Myles and Jörg
Peters.

Figures 11 and 12 appear with the permission of Kȩstutis
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