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Abstract

A Craw–Reid algorithm computes A -Hilb C4 and crepant resolutions
for the special groups 1

r (1, 1, a, b). At the same time, we give a criterion
in terms of HJ continued fractions for when a crepant resolution exists.

First draft

0.1 New feature: the Trap

The key new feature of A -Hilb C4 in our cases is what we call the trap (isosceles
trapezium) formed by two regularly tessellated triangles of size r back to back,
separated by an alley of parallelograms of width 1.
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A0 = 1
2 (e1 + e2)e
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This is A -Hilb C4 of the group Z/s⇥ Z/s with s = 2r + 1

1
s
(0, 0, 1, 2r) +

1
s
(1, 1, 2r � 1, 0). (0.1)

A -Hilb C4 subdivides the trap by tessellating the triangles into basic trian-
gles (as we want), but subdividing the parallelograms by their centre, which
provides a row of embossed studs standing out of the crepant junior plane; to
obtain a crepant resolution, we need to break the symmetry and divide each
parallelogram diagonally into two triangles.

0.2 Junior simplex and its median triangle

What makes 1
r (1, 1, a, b) special is that all the junior lattice points other than

the vertices e1, e2 themselves are contained in the median plane x = y. This
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plane intersects the junior simplex in the triangle with vertexes e4, e3 and the
midpoint A0 = 1

2 (e1 + e2). We draw this median triangle with its junior lattice
point, but with A0 marked as an open ring to emphasise that it really represents
the axis A = e1e2 out of the plane. A crepant resolution of the quotient X =
1
r (1, 1, a, b) is given by a subdivision of this triangle into “internal” basic lattice
triangles PiPjPk in the median plane (with vertexes junior points), together
with “external triangles” A0PiPj involving the midpoint A0. We join up each
internal triangle with e1 and e2 to give two basic tetrahedra e1PiPjPk and
e2PiPjPk, whereas an external triangle A0PiPj gives a single basic tetrahedron
e1e2PiPj .

If A0 = 1
2 (e1+e2) is a lattice point (which happens if and only if a, b are both

even, say a = 2a0, b = 2b0, r = 2r0) then there are no external triangles. In this
case the original Craw–Reid algorithm for the group 1

r0 (1, a0, b0) gives a basic
triangulation of the median triangle, and A -Hilb C4 is the crepant resolution
corresponding to this. Assume from now on that one of a, b is odd.

Our modified Craw–Reid algorithm uses “strong lines” from the two vertices
e4 and e3 together with “strong planes” from the axis A to subdivide the median
triangle into regular triangles of side ⇢ and regular traps of side ⇢ adjacent to
A. These are then tessellated into basis triangles as in Craw–Reid, and we
prove that this defines A -Hilb C4 (the proof is not written, but it must work).
The ingredients are the HJ continued fractions for r/a and r/b providing the
strong lines from e4 and e3, plus the strong planes from axis A; the latter are
slightly less obvious: they are given by the HJ continued fraction expansion of
r/(r � 2c� h), where

h = hcf(r, a) and h = ac + xr, (0.2)

so that Pc = one of (c, c, h, r� 2c�h) or (c, c, h, 2r� 2c�h) is the lattice point
closest to the face e4A of the simplex.

0.3 Two main claims:

Quite remarkably, the construction just described gives either a sequence of
junior lattice points that calculates A -Hilb C4 and provides a crepant resolution;
or it generates an age 2 point that is not the sum of two juniors, so proves the
nonexistence of a crepant resolution.

(1) In the cases where the crepant resolution exists, strong lines out of e4, e3

and strong planes out of A give a big subdivision into regular triangles and
traps. These can be subdivided into regular tesselations, giving A -Hilb C4.
The result is completely parallel to Craw–Reid.

(2) We set h = hcf(a, r) and Pc for the closest point to the face e4A, as in
(0.2). This subdivision (and hence a crepant resolution) exists if and only
if Pc is junior (that is, 2c + h < r), and the points given by running the
continued fraction algorithm around A are also junior. The latter holds if
and only if the HJ continued fraction expansion of r/(r� 2c�h) has only
even entries.
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0.4 Example 1
30(1, 1, 7, 21)

Lines out of e4 First, 30/7 = [5, 2, 2, 3]; from this, the vectors out of e4 are
e4P1 tagged with 5, then by the continued fraction algorithm the arithmetic
progression e4P5, e4P9 both tagged with 2, e4P13 tagged with 3 and e4A0. You
have to get used to the little paradoxical point that the tag 3 on e4P13 means
P9, P13, A0 are coplanar.

3⇥ P13 � P9 = e1 + e2. (0.3)

(If we draw A0 at the top of triangle, it is not a vertex, but the midpoint of axis
A = e1e2.) Here

P1 = (1, 1, 7, 21), P5 = (5, 5, 5, 15), P9 = (9, 9, 3, 9), P13 = (13, 13, 1, 3)
and 3⇥ P13 � P9 = (30, 30, 0, 0) = e1 + e2.
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Lines out of e3 We calculate 30/21 = [2, 2, 4] with hcf = 3; the continued
fraction algorithm gives vectors e3P1, e3P2 tagged with 2, then e3P3 tagged
with 4, followed by e3P10 with P10 = (10, 10, 10, 0), coplanar with e3 and axis
A.

Planes out of axis A This is the new and slightly tricky bit. The calculation
starts from the midpoint

A0 =
1
2
(e1 + e2) = (15, 15, 0, 0) (0.4)

and the vectors

A0e4 = (�15,�15, 0, 30) (0.5)
A0P13 = (�2,�2, 1, 3) (0.6)

3



(Here 3 = r� 2c� 1 = 30� 2⇥ 13� 1 is the 4th coordinate of P13, the nearest
point to the e4A plane.) The continued fraction we need is 30/3 = [10], so the
only other plane through A is given by

10⇥ (0.5)� (0.6) = (�5,�5, 10, 0) = A0P10. (0.7)

The fact that 10 is even makes 5 odd, so that

(15, 15, 0, 0) + (�5,�5, 10, 0) = (10, 10, 10, 0) (0.8)

is a lattice point, namely P10. Claim (2) says this guarantees that the crepant
resolution exists.

These lines and planes subdivide the median triangle into

• a regular triangle P1P3P9 of side 2 (a Meeting of Champions in the sense
of Craw–Reid, 2.8.2, bounded by lines from all three corners)

• 3 regular triangles of side 1 spanned by e4 and the line segments P1P5,
P5P9, P9P13

• 3 regular triangles of side 1, spanned by e3 and the line segments e1P1,
P1P2, P2P3

• a trap AP9e3 of side 3;

• a trap Ae4P13 of side 1 (that is, a basic tetrahedron e1e2e4P13.

0.5 Example 1
17(1, 1, 5, 10) fails

The nearest point to the Ae4 axis is P7 = (7, 7, 1, 2). This is junior, so we
haven’t lost yet. We look for the other strong planes out of axis A. For this,
write vectors

Ae4 = (�17/2,�17/2, 0, 17) (0.9)
AP7 = (�3/2,�3/2, 1, 2) (0.10)

Now the continued fraction procedure is to do 9 ⇥ (0.10) � (0.9), where 9 =
Ceiling(17/2). This leads to vector (�5,�5, 9, 1), so gives the point

(�5,�5, 9, 1) + (17/2, 17/2, 0, 0) = (7/2, 7/2, 9, 1) (0.11)

of the median triangle in the junior simplex. Now this is not a lattice point.
The nearest lattice point on the same plane is

(�5,�5, 9, 1) + 2⇥ (17/2, 17/2, 0, 0) = (12, 12, 9, 1), (0.12)

which is age 2. This is a point of age 2 that is not a sum of two juniors, which
implies that no crepant resolution exists.

The point here is that the odd HJ entry 9 in 17/2 = [9, 2] leads directly to
an age 2 lattice point that contradicts JunSu↵.
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