EXAMPLES OF SPHERICAL TWISTS
EXAMPLE 1
X - An ELIPTIC CURVE
$\varepsilon=Q_{p}$, the shuscrater sheaf of a point $p \in X$
\forall point $q \in X$ De have

QIESTION IS Te TTE IDENTITY FuNCTOR?
AUSLIER. No, BUT THE ABOVE in plies that $T_{r}=(\rightarrow) \otimes \mathcal{L}$ HOR SOME $\mathcal{L} \in P i c X$ Which \&?
\uparrow. Bidgeqand, 'Equivalences of triangulated categories.."
Prop. 4.2 \& Lemma 4.3
RRIANGI E
Fact The functorinl exact Propiangle

is constructed from the exact Triangle

$$
x \frac{\Delta}{x \sin (x, x)} x_{x} x
$$

or Farrier-Murai in in $D(x \times x)$. Pan: Ans MED $(x \times x)$
Here ε is the composition inDuces $D(x) \xrightarrow{\text { SM. }} D(x)$

$$
E
$$

$$
\text { WHERE } \Phi_{M}:=R_{T_{m}}\left(M_{\otimes}^{2} \pi_{1}^{*}(-1)\right)
$$

$A_{\text {App }}$ This to $E=O_{p}$:

$$
\theta_{x} \rightarrow \theta_{x}(p) \rightarrow \theta_{p} \alpha \sim \theta_{x}[1]
$$

$$
\therefore F M \text { RERNILL OF } T_{E}=\operatorname{CNE}(\varepsilon)=\Delta_{*} O_{X}(P)
$$

W_{E} INCLUDE THAT $T_{E}=(-) \otimes O_{x}(p)$-m live bundle
Example 2:
X - an elliptic curve
$E-O_{x}$, The structure sheaf

 $\therefore T_{E}(-)=T_{L_{2}}\left(I_{\Delta} \otimes \pi_{1}(-)\right)$ an m Whim dos This do?

ω_{E} have

$$
x \simeq P_{1} c^{-1}(x) \doteq P_{1} c^{\circ}(x)=\hat{x} \quad \text { This identities } x+x \text { in } x+\hat{X}
$$

PF O

Thus T_{E} is (A SHITFTOF) The ORIGinate $\operatorname{PM} \operatorname{TRANSFORM} D(x) \xrightarrow{P L B}-D(x)$.

$$
\begin{aligned}
& \text { 1) } p \neq q \Rightarrow O_{q} \in \varepsilon^{\perp} \Rightarrow T_{\varepsilon}\left(O_{q}\right)=\theta_{q} 0 \\
& 2 \text { By computation } \\
& \text { \} IN THE } \\
& \text { 2) } \left.p=q \Rightarrow T_{\varepsilon}\left(\theta_{q}\right)=T_{\varepsilon}(\varepsilon)=\varepsilon[-\operatorname{Din} x+1]=\partial_{p}\right\} \text { LAST LEcTURE }
\end{aligned}
$$

Recall: The braid gp B_{m+1} on $(m+1)$-strands is generated by efts $\beta_{1}, \ldots, \beta_{m}$ such that

$$
X=\left\{\begin{array}{r}
Y \not \beta_{i} \cdot \beta_{i+1} \cdot \beta_{i}=\beta_{i+1} \cdot \beta_{i} \cdot \beta_{i+1} \forall 1 \leq i \leq m \\
\beta_{i} \cdot \beta_{j}=\beta_{j} \cdot \beta_{i} \text { if }|i-j| \geq 2 .
\end{array}\right.
$$

An A_{m} - configuration of ph objs in $D(x)$ consists of sph obj $E_{1}, \ldots, E_{m} \in D(x)$ st.

$$
\underset{k}{\oplus} \operatorname{dim} \operatorname{Hom}^{k}\left(E_{i}, E_{j}\right)=\left\{\begin{array}{cc}
1 & |f| l|i-j|=1 \\
0 & |i-j|>1
\end{array}\right.
$$

[Seidel-Thomas]: Given such a configuration, the induced twists $T_{i}=T_{E_{i}}$ satisfy the braid refs, ie as above with $\beta_{i}=T_{i}$
That is, an A_{m}-config. of ssh objs in $D(x)$ induces a gp how $B_{m+1} \longleftrightarrow A_{n t} D(x)$ ie a rep ${ }^{-}$of B_{m+1} on $D(x)$.
\rightarrow Key: $E \in D(x) \operatorname{sph} . \operatorname{doj} \& \Phi \in \operatorname{Aut} D(x)$ then $T_{\text {玉(E) }} \approx \Phi T_{E} \Phi^{-1}$
Recall. $\pi: \operatorname{Aut} D(x) \rightarrow \operatorname{Aut}^{+} H^{*}(x, \mathbb{Z}) ; \Phi_{\varepsilon} \mapsto \Phi_{\varepsilon}^{H}$
where $\Phi_{\varepsilon}^{H}(\alpha)=\pi_{2 *}\left(\pi_{1}^{*}(\alpha) \cdot v(\varepsilon)\right) \& v(\varepsilon):=\operatorname{ch}(\varepsilon) \cdot \operatorname{Jtd}^{\prime} x \in H^{0}(x) \oplus N S^{\prime \prime}(x) \oplus H^{4}(x)$
Eg of $E \in D(x)$ is shh. Then $\pi\left(T_{E}\right)=T_{E}^{H}$ is the reflection in the hyperplane orthogonal to $V(E)$, ie. $T_{E}^{H}: V \longmapsto V+\langle V(E), V\rangle V(E)$
th other words, $\left(T_{E}^{H}\right)^{2}=i d_{H^{*}(x)} \rightarrow T_{E}^{2} \in A^{\prime} t^{0} D(X)$;
${ }_{2}$ Mukai pain
$E \mapsto E[2-2 \operatorname{din} X] E^{+} \rightarrow E^{+}$so cannot be id.

$$
\delta=(-2)-\text { lass }
$$

Expedition: "Ant $D(x)$ gen ${ }^{d}$ by ph. ww" z see Tom's cony: $A u t^{0}=\pi_{1}\left(P^{+} \mid \cup^{\circ} \delta^{1}\right)$ Rok: Ant DIx) has finite index inside Ant $^{+} H^{*}(x)$ but Fut $D(x)$ is st finitely gen?
of an A_{m}-config.
If the Mukai vectors $v\left(E_{i}\right)$ are lin. index. then the braid
gp action covers the Well gp action given by reflections
in the typeeplanes orthog to $V\left(E_{i}\right)$:
Example:

$$
\begin{aligned}
& C_{i} \simeq \mathbb{P}^{\prime} C_{1} \cap C_{2}=p t . \quad \operatorname{Pic}(x) \geqslant 3 . \\
& \text { Define } E_{i}=\cup_{c_{i}(-1)} \text {. } \\
& B_{3} \rightarrow \operatorname{AntD}(x) ; \beta_{i} \mapsto T_{i}=T_{E_{i}}
\end{aligned}
$$

$$
\begin{aligned}
& T_{1} T_{T_{2}\left(E_{1}\right)} T_{2} \simeq T_{T_{1}\left(T_{2}\left(E_{1}\right)\right)} T_{1} T_{2} \\
& 4 \\
& 4 \text { enough to show } T_{1} T_{2}\left(E_{1}\right) \simeq E_{2}[k]
\end{aligned}
$$

Apply T_{1} to this: $\frac{\mathbb{C}}{\operatorname{Hom}\left(E_{2}, E_{1}\right)} \otimes E_{2} \longrightarrow E_{1} \longrightarrow T_{2}\left(E_{1}\right)$ to get $T_{1}\left(E_{2}\right) \xrightarrow{\varphi_{1}} T_{1}\left(E_{1}\right) \simeq E_{1}[-1] \longrightarrow T_{1} T_{2}\left(E_{1}\right)$.
By def ${ }^{n}, T_{1}\left(E_{2}\right)$ fits into: $E_{1}[-2] \rightarrow E_{2} \rightarrow T_{1}\left(E_{2}\right)$

$$
\left.\Leftrightarrow T_{1}\left(E_{2}\right) \xrightarrow{\varphi_{2}} E_{1}[-1] \rightarrow E_{2}[1] \quad H_{\text {om }}\left(E_{2} E_{1}\right)=\operatorname{Hom}\left(T_{1}, E_{2}\right), T_{1}\left(E_{1}\right)\right)
$$

Hence $T_{1} T_{2}\left(E_{1}\right) \simeq E_{2}[1]$ by $T R 3$ (five ${ }_{\text {lemma l }}$)

Pure braid gp: $\quad P B_{3}=\left\langle p_{1}^{2}, \beta_{2}^{2}, \beta_{1}, p_{2}^{2} \beta_{1}^{-1}=\left(\beta_{1}, \beta_{2} \beta_{1}^{-1}\right)^{2}\right\rangle$
being \&ed $\quad \beta_{1} p_{2} \beta_{1}^{-1} \leftrightarrow T_{1}\left(\omega_{c_{1}}(-)\right)=T c_{c_{1} \cup c_{2}(-1)}$
4 each brad

$$
\text { and } \cup_{c_{1}}(-1)[-2] \rightarrow ण_{c_{2}}(-1) \longrightarrow T_{1}\left(\cup_{c_{2}}(-1)\right)=T_{1}\left(E_{2}\right)
$$

$O_{c_{2}(-1)} \rightarrow \theta_{c_{2}} \rightarrow \theta_{c_{1} \cap c_{2}} \quad$ Now apply T_{1} to this diagram

$$
\begin{aligned}
& \Rightarrow T_{1}\left(E_{2}\right)=T_{v_{c}(-1)}\left(U_{c_{2}}(-1)\right)=O_{c_{1} \cup c_{2}(-1)}
\end{aligned}
$$

$$
\text { In general, } \operatorname{Hom}^{*}(E, F)=\left\{\begin{aligned}
& 0 \Leftrightarrow T_{E} T_{F}=T_{F} T_{E} \frac{\text { commute }}{} \\
& 1 \Leftrightarrow T_{E} T_{F} T_{E}=T_{F} T_{E} T_{F} \text { braid } \\
& \geqslant 2 \Leftrightarrow\left\langle T_{E} T_{F}\right\rangle=F_{\text {ne gp on gas }} \\
& \mathbb{Z}[E] * \mathbb{Z}[F] .
\end{aligned}\right.
$$

Notice that the str seq for a sm. rat cure consists of soph obis $O(-c) \rightarrow O_{x} \rightarrow O_{c} \leadsto T_{O(-c)} \rightarrow T_{O_{x}} \rightarrow T_{O_{c}}$
but $O_{c}=T_{O(-c)} O_{x}$ and so $T_{O_{c}}=T_{O(-c)} T_{O_{X}} T_{O(-c)^{-1}}$
ie. $T_{O_{c}} \in\left\langle T_{O(-c),} T_{O_{x}}\right\rangle$ That is, only two out of the three obs are needed to gen the same gP.

