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TOM BRIDGELAND

These are the lecture notes for the introductory school on derived categories

in Warwick, September 2014. They cover some basic facts about derived

categories of coherent sheaves on smooth projective varieties, assuming some

kind of familiarity with the definition of a derived category. There are bound

to be some mistakes that I haven’t found yet: please feel free to let me know

about them.

1. The derived category of an abelian category

In this section we summarize the most important properties of the derived

category of an abelian category. We illustrate some of these by considering

the duality functor for coherent sheaves on A2.

1.1. Basics. Let A be an abelian category, e.g. Mod(R) or Coh(X). Let

C(A) denote the category of cochain complexes in A. A typical morphism

f • : M • → N • in this category looks as follows

· · · −−−→ M i−1 di−1

−−−→ M i di−−−→ M i+1 −−−→ · · ·yf i−1

yf i yf i+1

· · · −−−→ N i−1 di−1

−−−→ N i di−−−→ N i+1 −−−→ · · ·

Recall that such a morphism f • : M • → N • is called a quasi-isomorphism

if the induced maps on cohomology objects

H i(f •) : H i(M •)→ H i(N •)

are all isomorphisms. The derived category D(A) is obtained from C(A) by

formally inverting quasi-isomorphisms. Thus there is a localisation functor

Q : C(A)→ D(A)

which is universal with the property that it takes quasi-isomorphisms to iso-

morphisms. The objects of D(A) can be taken to be the same as the objects

of C(A).
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It is immediate from the universal property that there are well-defined

functors H i : D(A) → A sending a complex to its cohomology objects. The

bounded derived category is defined to be the full subcategory

Db(A) = {E ∈ D(A) : H i(E) = 0 for |i| � 0} ⊂ D(A).

There is an obvious functor A → D(A) which sends an object E ∈ A to

the corresponding trivial complex with E in position 0:

E ∈ A 7−→ (· · · −→ 0 −→ E −→ 0 −→ · · · ) ∈ D(A).

This functor is full and faithful. Its essential image is the full subcategory

{E ∈ D(A) : H i(E) = 0 unless i = 0}.

Objects of this subcategory are said to be concentrated in degree 0. We shall

always identify the category A with its image under this functor.

Two objects in D(A) with the same cohomology objects need not be iso-

morphic (in much the same way as two modules with the same composition

series need not be isomorphic). The extra information determining an object

can be thought of as a ‘cohomological glue’ holding the cohomology objects

together. If this glue vanishes then

E ∼=
⊕
i∈Z

H i(E)[−i]

∼= (· · · −→ H i−1(E)
0−→ H i(E)

0−→ H i+1(E) −→ · · · ).

Well-behaved functors between abelian categories F : A → B induce derived

functors F : D(A)→ D(B). The composite functors

A ∈ A 7→ H i(F(A)) ∈ A

are the classical derived functors of F .

1.2. Example: Duality for modules. When R = C the dualizing functor

D(M) = HomR(M,R)

defines an anti-equivalence

D : Modfg(R) −→ Modfg(R)

satsifying D2 ∼= id. What happens when R is a more interesting ring?

Consider the case R = C[x, y]. Of course Modfg(R) = Coh(A2
C). Defining

a dualizing functor exactly as above we get an anti-equivalence

D : Projfg(R)→ Projfg(R)
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satisfying D2 ∼= id. (You may find it comforting to note that by the Quillen-

Suslin theorem, any finitely-generated projective R-module is in fact free).

But this functor is not an anti-equivalence on the full category Modfg(R)

since, for example, if M = R/(x) then

D(M) = HomR(R/(x), R) = (0).

To try to remedy this, let us consider also the classical derived functors

Di(M) = ExtiR(M,R), i > 0.

To compute these we replace M = R/(x) by a free resolution

0 −→ R
x−→ R −→ 0

and apply D(−) = HomR(−, R) to get

0←− R
x←− R←− 0.

Taking cohomology gives

Di(M) =

{
M if i = 1,
0 otherwise,

so we have D1(D1(M)) ∼= M .

Similarly, if we take the module M = R/(x, y) then

Di(M) =

{
M if i = 2,
0 otherwise,

and once again we have D2(D2(M)) ∼= M .

But suppose now that we consider modules M fitting into a short exact
sequence

(1) 0 −→ R/(x, y) −→M −→ R/(x) −→ 0.

Then from the long exact sequence in Ext-groups

Di(M) =

{
R/(x) i = 1,
R/(x, y) i = 2,
0 otherwise.

However M is not uniquely determined by the sequence (1), since

Ext1
R(R/(x), R/(x, y)) = C.

We conclude that we cannot recover M from the objects Di(M).

The solution (of course) is to consider the derived functor of D, which defines

an anti-equivalence

D : Db Modfg(R) −→ Db Modfg(R)
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On the level of objects this means ‘replace a complex by a quasi-isomorphic

complex of projective modules and then dualize’. It is immediate that D2 ∼= id

because we already know that duality works well for projective modules. If

M ∈ Modfg(R) then we have

Di(M) = ExtiR(M,R) = H i(D(M)),

but as we saw above, these cohomology modules are not in general enough to

determine the object D(M), nor to recover the module M .

1.3. Structure of D(A). The category D(A) has two important structures

which it is important to keep separate in one’s mind.

(a) The category D(A) is triangulated : it has a shift functors

[n] : D(A)→ D(A),

M •[n]i = M i+n, diM•[n] = (−1)ndi+nM• ,

and a collection of distinguished triangles

(2) A
f

// B

g
��

C

h

ZZ

obtained from the mapping cone construction. Any such triangle is a

sequence of maps

· · · −→ C[−1]
h[−1]−→ A

f−→ B
g−→ C

h−→ A[1] −→ · · · .

Distinguished triangles in a triangulated category play a very similar

role to short exact sequences in an abelian category. All derived func-

tors are triangulated: they commute with the shift functors and takes

distinguished triangles to distinguished triangles.

Given objects E,F ∈ D(A) we define

Homi
D(A)(E,F ) := HomD(A)(E,F [i]).

If E,F ∈ A then these agree with the usual Ext-groups:

ExtiA(E,F ) = HomD(A)(E,F ).

It follows from the axioms of a triangulated category that if E is a

fixed object and (2) is a distinguished triangle then there is a long

exact sequences of abelian groups

(3) · · · → Homi
D(A)(E,A)→ Homi

D(A)(E,B)→ Homi
D(A)(E,C)→

→ Homi+1
D(A)(E,A)→ Homi+1

D(A)(E,B)→ · · · .
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There is a similar long exact sequence involving Hom groups into E.

(b) The category D(A) comes equipped with the standard t-structure. In

particular, there is a full and faithful embedding A ↪→ D(A) and

cohomology functors H i : D(A)→ A as discussed above.

A short exact sequence

(4) 0 −→ A
f−→ B

g−→ C −→ 0

in A becomes a distinguished triangle of the form (2) in D(A). The

extra morphism h ∈ Ext1
A(C,A) is the extension-class defined by the

sequence. Conversely, any distinguished triangle (2) induces a long

exact sequence in cohomology objects

· · · → H i(A)→ H i(B)→ H i(C)→ H i+1(A)→ · · · .

Also important are the truncation functors τ6i : D(A) → D(A) de-

fined by

τ6i(M
•) =

(
· · · →M i−1 → ker(di)→ 0→ · · ·

)
.

Note that

Hj(τ6i(M
•)) =

{
Hj(M •) j 6 i,
0 otherwise.

There is an obvious natural map of complexes τ6i−1(M •) → τ6i(M
•)

which induces isomorphisms in cohomology in degree 6 i− 1. Taking

the cone C on this map, and applying the long exact sequence in

cohomology, we see that C is concentrated in degree i. We thus have

distinguished triangles

(5) τ6i−1(M •) // τ6i(M
•)

zz

H i(M •)[−i]

ee

This is to be interpreted as saying that every object of D(A) has a

canonical ‘filtration’ whose ‘factors’ are shifts of objects of A.

Note that genuinely derived functors do not preserve the standard

t-structures. In fact, a triangulated functor D(A) → D(B) that pre-

serves the standard t-structures induces an exact functor A → B, and

conversely, an exact functor A → B induces a functor D(A) → D(B)

in a trivial way. We often say that such functors are exact and hence

‘do not need to be derived’.
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1.4. Grothendieck groups. The Grothendieck group K0(D) of a triangu-

lated category D is the free abelian group on isomorphism classes of objects

modulo relations

[B] = [A] + [C]

for distinguished triangles

A // B

��

C

ZZ

It follows from the ‘rotating triangle’ axiom that [E[n]] = (−1)n[E].

Suppose that D = Db(A). The inclusion A ↪→ D clearly induces a group

homomorphism

I : K0(A)→ K0(B).

It follows immediately from the existence of the filtration (5) that I is in fact

an isomorphism, with inverse map P given by

P ([E]) =
∑
i∈Z

[H i(E)[i]] =
∑
i∈Z

(−1)i[H i(E)]

1.5. Problems.

1.5.1. Two-step complexes. Fix objects A,B ∈ A and consider objects E ∈ D(A) such that

Hj(E) =

{ A if j = −1
B if j = 0
0 otherwise.

Show that any such object fits into a distinguished triangle

A[1] // M•

��

B

η

[[

Use this to give a complete classification of the isomorphism classes of such objects in terms

of the group Ext2
A(B,A).

1.5.2. Consider the two-step complexes obtained by applying the functor D to the modules

M which fit into a short exact sequence of the form (1). How is the extension class defining

this short exact sequence reflected in the structure of D(M)?

1.5.3. Let A be an abelian category of global dimension 1, i.e.

ExtpA(M,N) = 0 for all p > 1 and all M,N ∈ A.

Prove that every E ∈ Db(A) satisfies E ∼=
⊕

i∈ZH
i(E)[−i].



Db(Intro) 7

2. Derived categories of coherent sheaves

This lecture focuses on the derived category of coherent sheaves on a smooth

projective variety. We introduce the basic abstract properties of this category

and consider the example of the projective line.

2.1. Basic properties. Let X be a smooth complex projective variety of di-

mension d. We set D(X) = Db Coh(X). Note that this is a C-linear category:

the Hom sets are all vector spaces over C, and the composition maps are

bilinear. From Section 1.4 we know that

K0(D(X)) = K0(Coh(X)) = K0(X)

is the usual Grothendieck group of X. Since X is smooth and projective

this also coincides with the Grothendieck group of locally-free sheaves K0(X).

This is a commutative ring, with multiplication induced by tensor product of

vector bundles.
The category D(X) has three very important properties

(a) Finiteness. D(X) is of finite type: for all objects E,F ∈ D(X)

dimC
⊕
i∈Z

Homi
D(X)(E,F ) <∞.

This enables us to define

χ(E,F ) =
∑
i∈Z

(−1)i dimC Homi
D(X)(E,F ).

Note that the long exact sequence (3) shows that this expression is

additive: given a distinguished triangle (2) we have

χ(E,B) = χ(E,A) + χ(E,C).

It follows that it descends to give a bilinear form

K0(X)×K0(X)→ Z

which is known as the Euler form.

(b) Riemann-Roch. The Chern character defines a ring homomorphism

ch: K0(X)→ H∗(X,Q)

ch(E) =
(
c0(E), c1(E),

1

2
c1(E)2 − c2(E), · · ·

)
.

The Riemann-Roch theorem states that for all E,F ∈ D(X)

χ(E,F ) = [ch(E)∨ · ch(F ) · td(X)]2d.
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In this formula ch(E)∨ denotes the sum
∑

i(−1)i chi(E),

td(X) = 1 +
1

2
c1(X) +

1

12
(c1(X)2 + c2(X)) + · · ·

is the Todd class of X, and [ · · · · · · ]2d means take the projection to the

top degree component H2d(X,Q) = Q.

(c) Serre duality. There are functorial isomorphisms

Homi
D(X)(E,F ) ∼= Homd−i

D(X)(F,E ⊗ ωX)∗

for all objects E,F ∈ D(X). Here ωX denotes the canonical line bundle

of X, and d = dimC(X). If E,F ∈ Coh(X) this implies in particular

that

ExtiX(E,F ) = 0 for i > d.

Note that if X is Calabi-Yau (meaning that ωX ∼= OX is trivial)

then the category D(X) has the CYd property:

Homi
D(X)(E,F ) ∼= Homd−i

D(X)(F,E)∗.

The Euler form χ(−,−) is then (−1)d–symmetric.

Numerical Grothendieck group. Serre duality shows that the left- and

right-kernels of the Euler form are the same: for a given class γ ∈ K0(X) we

have

χ(α, γ) = 0 ∀α ∈ K0(X) ⇐⇒ χ(γ, β) = 0 ∀β ∈ K0(X).

The numerical Grothendieck group is defined to be the quotient

N (X) = K0(X)/ kerχ(−,−).

It is a finitely-generated free abelian group. Note that it is not clear that

the Chern character descends to N (X) (this has to do with the standard

conjectures), but this is certainly true for example when dimC(X) 6 2.

Serre functor. The functor SX : D(X)→ D(X) defined by

SX(−) = (−⊗ ωX)[d]

is called the Serre functor. Serre duality may be trivially restated as the

property that there are bifunctorial isomorphisms

HomD(X)(E,F ) ∼= HomD(X)(F, SX(E))∗

for all objects E,F ∈ D(X). It is easy to see using the Yoneda Lemma that

this property determines SX uniquely up to isomorphism of functors.
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2.2. Coherent sheaves. Objects of Coh(X) can be thought of as ‘vector

bundles with varying fibres’. The fibre of E ∈ Coh(X) at a closed point

x ∈ X is

E(x) = Ex ⊗OX,x
C.

It is a simple consequence of Nakayama’s Lemma that the subsets

Si(E) = {x ∈ X : dimCE(x) > i} ⊂ X

are closed. Setting Vi(E) = Si(E) \ Si+1(E) we get a stratification of X into

disjoint, locally-closed subvarieties Vi(E), such that each restriction E|Vi(E) is

locally-free. In particular, given E ∈ Coh(X) the support of E is the closed

subset

supp(E) = S0(E) ⊂ X

consisting of points where E has nonzero fibre. A sheaf E is torsion-free if

supp(A) = X for all 0 6= A ⊂ E. Note that a subsheaf of a torsion-free sheaf

is automatically torsion-free.

To form non-stacky moduli spaces of coherent sheaves we must first restrict

attention to a class of stable sheaves. There are several notions of stability,

but for simplicity in what follows we will only consider µ-stability. To define

this we must first fix a polarization of X: a class ω ∈ H2(X,Z) which is the

first Chern class of an ample line bundle. The degree of a sheaf E is then

defined to be

d(E) = c1(E) · ωd−1,

and the slope of a torsion-free sheaf is µ(E) = d(E)/r(E). A torsion-free sheaf

is said to be µ-semistable if

0 6= A ( E =⇒ µ(A) 6 µ(E).

Replacing the inequality with strict inequality gives the notion of µ-stability.

Theorem 2.1. (a) Fix a Chern character v such that sheaves of this class

have r(E) and d(E) coprime. Then there is a fine projective moduli

scheme MX,ω(v) for µ-stable torsion-free sheaves of this class.

(b) Every torsion-free sheaf E has a unique Harder-Narasimhan filtration

(6) 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

whose factors Fi = Ei/Ei−1 are µ-semistable with descending slopes:

µ(F1) > µ(F2) > · · · > µ(Fn).

(c) If E and F are µ-semistable and µ(E) > µ(F ) then HomX(E,F ) = 0.

(d) If E and F are µ-stable of the same slope then any nonzero map E → F

is an isomorphism.
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(e) If E is µ-stable then EndX(E) = C.

Proof. Part (a) comes from geometric invariant theory. The given assumptions

ensure that for torsion-free sheaves of class v the notions of µ-stability and µ-

semistability coincide, leading to a projective moduli space. They also ensure

that this moduli space is fine. Part (b) is fairly easy. For (c) consider a nonzero

map f : E → F and factor it via its image

0→ K ↪→ E � I ↪→ F � Q→ 0.

Then K = ker(f) satisfies µ(K) < µ(E), which by the additivity of rank and

degree implies that µ(E) < µ(I). On the other hand, I = Im(f) is a subsheaf

of F and hence satisfies µ(I) 6 µ(F ). This implies that µ(E) < µ(F ), a

contradiction. The same argument works for part (d). Part (e) then holds

because EndX(E) is a finite-dimensional division algebra over C. �

2.3. Derived category of P1. By Exercise 1.5.3 every object in D(P1) is a

sum of its cohomology sheaves. Exercise 2.4.1 shows that any indecomposable

sheaf is either a vector bundle or a fattened skyscraper. A well-known result

(see Exercise 2.4.2) states that the only indecomposable vector bundles on

X = P1 are the line bundles O(i) for i ∈ Z.

We can represent the category D(P1) graphically by drawing its Auslander-

Reiten quiver: this has a vertex for each indecomposable object of D(P1), and

an arrow for each irreducible morphism (a morphism is called irreducible if it

cannot be written as a composition g◦h with neither g nor h an isomorphism).

In fact the same category can be described in a different way. Consider the

Kronecker quiver Q and the abelian category Rep(Q) of its finite-dimensional

representations. It is easy enough to show that for all n > 1 there is a unique

(up to isomorphism) indecomposable representation of Q of dimension vector

(n, n − 1) and (n − 1, n), and a P1 worth of indecomposable representations

of dimension vector (n, n). Categories of representations of quivers (without

relations) always have global dimension 1, so Exercise 1.5.3 applies again, and

we can draw the Auslander-Reiten quiver as before.

The pictures suggest that the categories D(P1) and D(Q) are equivalent.

In fact, if we choose a basis for HomP1(O,O(1)) ∼= C2 we can define a functor

F : Coh(P1)→ Rep(Q) by the rule

E 7→
(

HomP1(O(1), E) =⇒ HomP1(O, E)
)
.

The associated derived functor is then an equivalence D(P1) → D(Q) which

matches up the two pictures as in the diagram.
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Note that the underived functor F is definitely not an equivalence since it

kills the objects O(i) for i < 0. In fact, the abelian categories Coh(P1) and

Rep(Q) are not equivalent: to see this note that the simple objects in Coh(P1)

are the skyscraper sheaves Ox and the only finite-length objects are sheaves

supported in dimension 0, whereas the category Rep(Q) is a finite-length

category with only two simple objects (0, 1) and (1, 0) up to isomorphism.

We can use the above equivalence to identify the two derived categories and

think of a single triangulated category D. But we then have two different

abelian subcategories Coh(P1) ,Rep(Q) ⊂ D. There is an interesting auto-

equivalence of D which corresponds to tensoring with O(1) in D(P1). This

auto-equivalence preserves the subcategory Coh(P1) ⊂ D but not Rep(Q) ⊂
D, illustrating the fact that the derived category of an abelian category can

have extra symmetries not visible at the underived level.

Tilting objects. Let X be a smooth projective variety. An object T ∈ D(X)

is called a tilting object if

ExtiX(T, T ) = 0 unless i = 0 and Hom•
X(T,E) = 0 =⇒ E ∼= 0.

It follows that the (usually non-commutative) finite-dimensonal C-algebra A =

EndX(E) is of finite global dimension, and the derived functor

R HomX(T,−) : Db(Coh(X))→ Db(Modfg(A))

is an equivalence. In the above example T = O ⊕ O(1), and A is the path

algebra of Q.

2.4. Problems.

2.4.1. Let X be a curve. Prove that any indecomposable object E ∈ Coh(X) is either

locally-free, or is of the form Onx for some x ∈ X and n > 1.

2.4.2. Prove that every indecomposable vector bundle on X = P1 is a line bundle as follows.

First prove using the Harder-Narasimhan filtration and Serre duality that every indecom-

posable vector bundle is stable. Next use Serre duality to show that any stable vector bundle

E is rigid, i.e. satisfies Ext1
X(E,E) = 0. Finally use Riemann-Roch to get the result.

2.4.3. Suppose that X is an elliptic curve and E ∈ Coh(X) is locally-free. Prove that

E µ-stable =⇒ E indecomposable =⇒ E µ-semistable.

Conclude that if ch(E) = (r, d) with gcd(r, d) = 1 then all three notions coincide.

2.4.4. Let MX(2, 1) be the moduli space of µ-stable vector bundles on an elliptic curve X

of rank 2 and degree 1. Prove thatMX(2, 1) ∼= X by showing that every such bundle is an

extension of line bundles of degrees 0 and 1 respectively.
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3. Fourier-Mukai transforms

In this lecture we introduce integral functors and state the famous Bondal-

Orlov theorem, which gives a criterion for such a functor to be an equivalence.

3.1. Integral functors. Let X, Y be smooth projective varitieties. For each

y ∈ Y we denote by iy : X ↪→ Y × X the closed embedding x 7→ (y, x). We

can view an object P ∈ D(Y ×X) as defining a family of objects

Py = Li∗y(P) ∈ D(X)

parameterised by y ∈ Y . Here Li∗y denotes the left derived functor of the right

exact functor i∗y.

Lemma 3.1. The objects Py ∈ D(X) are all sheaves (i.e. they are all con-

centrated in degree 0), precisely if P ∈ D(Y ×X) is a sheaf, flat over Y .

Proof. One implication is easy: to define the derived restriction Li∗y(P) one

first replaces P by a quasi-isomorphic complex of Y -flat sheaves; if P is Y -flat

itself then Py is just the usual restricted sheaf P|{y}×X .

In the other direction let us assume that all the objects Py ∈ D(X) are

concentrated in degree 0. Let n be the maximum integer such that Hn(P) 6= 0.

Consider the triangle in D(Y ×X)

(7) τ6n−1(P) −→ P −→ Hn(P)[−n].

Applying the derived functor Li∗y(−) gives a triangle

(8) Li∗y(τ6n−1(P)) −→ Py −→ Li∗y(H
n(P))[−n]

in D(X). Since Li∗y is a left derived functor, it ‘spreads things out to the left’,

so all terms are concentrated in degrees 6 n and the first term is concentrated

in degrees 6 n−1. Taking the long exact sequence in cohomology we see that

Hn(Py) = i∗y(H
n(P)), which by assumption on n is nonzero for some y ∈ Y .

Since Py is assumed to be concentrated in degree 0 we conclude that n = 0.

Taking cohomology of (8) again we see that H−1(Li∗y(H
0(P)) = 0 for all

y ∈ Y , which by the local criterion of flatness tells us that H0(P) is flat over

Y . We now know that the last two terms in (8) are concentrated in degree 0.

Since the first one is concentrated in degrees 6 −1 it must be zero. It follows

that τ6−1(P) = 0 which shows that P is concentrated in degree 0. �

Remark 3.2. The same argument gives a local version of this statement: if

some particular Py is concentrated in degree 0, then for all x ∈ X, the stalk

of H i(P) at (x, y) is zero for i 6= 0, and flat over OY,y for i = 0.
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Define projection maps

Y Y ×XπY
oo

πX
// X

and consider the functor

ΦPY→X(−) = RπX,∗(P ⊗ π∗Y (−)).

Note that we do not need to derive π∗Y because it is an exact functor (the

projection map is flat). The tensor product appearing is the one in D(X),

which is computed by first replacing objects by quasi-isomorphic complexes

of locally-free sheaves.

Lemma 3.3. We have the relation

ΦPY→X(Oy) = Py.

Proof. Consider the diagram

X
iy−−−→ X × Y πX−−−→ X

p

y yπY
{y} jy−−−→ Y

First use base-change around the Cartesian square

π∗Y (Oy) = π∗Y (jy,∗(O)) ∼= iy,∗(p
∗(O)) = iy,∗(OX).

Note that these functors are all exact. Now use the projection formula

P ⊗ iy,∗(OX) ∼= iy,∗( Li∗y(P)⊗OX) ∼= iy,∗(Py).

Finally, using the fact that πX ◦ iy ∼= idX , we get

ΦPY→X(Oy) = RπX,∗(iy,∗(Py)) ∼= Py,

which completes the proof. �

A functor Φ: D(Y )→ D(X) which is isomorphic to one of the form ΦPY→X
is called an integral functor. Such functors are very important due to

Theorem 3.4 (Orlov). If X and Y are smooth projective varieties then any

triangulated equivalence Φ: D(Y )→ D(X) is an integral functor. �

3.2. The Bondal-Orlov theorem. The following very useful result allows us

to write down many examples of varieties with equivalent derived categories.

Theorem 3.5 (Bondal, Orlov). Let X and Y be smooth projective varieties.

An integral functor Φ: D(Y )→ D(X) is an equivalence if and only if

(a) Homi
D(X)(Φ(Oy1),Φ(Oy2)) = 0 unless y1 = y2 and 0 6 i 6 dim(Y ),
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(b) HomD(X)(Φ(Oy),Φ(Oy)) = C,

(c) Φ(Oy)⊗ ωX ∼= Φ(Oy).

One can easily check that the conditions of Theorem 3.5 are necessary.

Indeed, one can easily compute (Exercise 3.4.4) that

(9) ExtiY (Oy1 ,Oy2) =

{ ∧iCd if y1 = y2,
0 otherwise.

If Φ is an equivalence commuting with the shift functors then it preserves the

Homi(−,−) spaces so (a) and (b) must hold. For (c) note that an equivalence

must intertwine the Serre functors on D(Y ) and D(X) since these are uniquely

defined by categorical conditions. Since Oy ⊗ ωX ∼= Oy this implies that the

objects Φ(Oy) must also be invariant under −⊗ωX up to shift. It then follows

that they are in fact invariant under − ⊗ ωX , and that moreover X and Y

must have the same dimension.

Example 3.6. Let X be an abelian variety, and let Y = Pic0(X) be the

dual abelian variety. By definition Y parameterizes line bundles L on X with

c1(L) = 0. There is a universal object P on Y × X called the Poincaré line

bundle. The resulting functor ΦPY→X is called the Fourier-Mukai transform; it

was the first non-trivial example of an equivalence betwen derived categories

of coherent sheaves.
The conditions (b) and (c) of Theorem 3.5 are immediate in this example.

To check (a) one needs to know a non-trivial fact, namely that if L ∈ Pic0(X)

is non-trivial then H i(X,L) = 0 for all i. Note that in the dimension one case

when X is an elliptic curve this is easy: H0(X,L) = 0 because any nonzero

section OX → L would have to be an isomorphism, and Serre duality then

implies that also H1(X,L) = 0.

Example 3.7. Take an isomorphism of smooth projective varieties f : Y →
X, a line bundle L ∈ Pic(Y ) and an integer n ∈ Z. Then the functor

Φ(−) = f∗(L⊗−)[n].

is an equivalence D(Y ) ∼= D(X). Functors of this form are called standard

equivalences.

The following result gives a useful characterisation of standard equivalences.

Lemma 3.8. Suppose Φ: D(Y )→ D(X) is a triangulated equivalence. Then

Φ is a standard equivalence precisely if for every point y ∈ Y the object

Φ(Oy) ∈ D(X) is a shift of a skyscraper sheaf.
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Proof. One implication is immediate, so let us assume that Φ takes skyscrapers

to shifts of skyscrapers. We can write Φ = ΦPY→X for some object P . By

assumption, for each y ∈ Y , the object Py = Li∗y(P) is concentrated in some

fixed degree. By Remark 3.2, this implies that Y is the disjoint union of the

supports of the sheaves H i(P), and since Y is connected it follows that only

one of these sheaves is nonzero. Thus composing Φ with a shift we can assume

that P is a Y -flat sheaf such that each Py is a skyscraper sheaf on X.

Now, by Exercise 3.4.6, X is a fine moduli space for skyscraper sheaves on

X, so there is a morphism f : Y → X and a line bundle L ∈ Pic(Y ) such that

P ∼= (f × idX)∗(O∆)⊗ π∗Y (L) = OΓ(f) ⊗ π∗Y (L),

where Γf ⊂ Y × X is the graph of f . It follows (see Exercise 3.4.1) that

Φ(−) ∼= f∗(L ⊗ −). The fact that Φ is an equivalence then ensures that f is

an isomorphism. �

3.3. Auto-equivalences. As well as looking for varieties with equivalent de-

rived categories, it is interesting to study self-equivalences of derived categories

of coherent sheaves. We denote by AutD(X) the group of C-linear, triangu-

lated auto-equivalences of the category D(X), these being considered up to

isomorphism of functors.

The standard auto-equivalences define a subgroup

AutstandD(X) = Z× Aut(X) n Pic(X) ⊂ AutD(X).

The following result shows that in many interesting cases this is everything:

Lemma 3.9. Suppose that ω±1
X is ample and Φ: D(Y )→ D(X) is a triangu-

lated equivalence. Then Y ∼= X and Φ is a standard equivalence.

Proof. Fix y ∈ Y and set Py = Φ(Oy). By condition (c) of Theorem 3.5 we

have Py ⊗ ωX ∼= Py. Since the functor −⊗ ωX is exact, this implies the same

identity for each cohomology sheaf H i(Py). But by the ampleness condition,

the only sheaves invariant under −⊗ωX have zero-dimensional support. Since

EndX(Py) = C, the object Py is indecomposable, so we conclude that each

cohomology sheaf H i(Py) is supported at the same point x ∈ X.

Note that any sheaf E ∈ Coh(X) supported at x ∈ X has a filtration whose

factors are the skyscraper sheaf Ox. It follows that given two such sheaves

E,F ∈ Coh(X) there always exist nonzero maps E → F .

Consider the spectral sequence

(10)
⊕
i∈Z

ExtpX(H i(Py), H i+q(Py)) =⇒ Extp+qX (Py,Py).
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Since Φ is an equivalence, the right-hand side is zero unless 0 6 p+q 6 d. If w

is the maximum integer such that there is an i ∈ Z with H i(E) and H i+w(E)

both nonzero, then we get a nontrivial term E0,−w-term in (10) which survives

to ∞. Thus w = 0 and Py is concentrated in a fixed degree. Since the class

of Φ(Oy) in the numerical Grothendieck group N (X) must be primitive, it

follows that Py is a shift of a skyscraper. Applying Lemma 3.8 gives the

result. �

3.4. Problems.

3.4.1. Standard functors. If P = O∆ is the structure sheaf of the diagonal ∆ ⊂ X × X
show that ΦPX→X is isomorphic to the identity functor. More generally, let f : Y → X be a

morphism of varieties, L ∈ Pic(Y ) a line bundle, and n ∈ Z an integer. Show that if

P = OΓf
[n]⊗ π∗Y (L) ∈ D(Y ×X),

where Γf ⊂ Y ×X is the graph of f , then

ΦPY→X(−) ∼= f∗(−⊗ L)[n].

3.4.2. Adjoints of integral functors. Using standard adjunctions from algebraic geometry

calculate the left and right adjoints to the functor ΦPY→X . Use your answer to give another

proof that smooth projective varieties with equivalent derived categories have the same

dimension.

3.4.3. Suppose that P is a Y -flat sheaf on Y ×X and set Φ = ΦPY→X . Using the cohomology

and base-change theorem, show that for any sheaf E ∈ Coh(Y ) and any ample line bundle

L, the image Φ(E ⊗ Ln) is a locally-free sheaf for n� 0.

3.4.4. Ext-groups between skyscrapers. Suppose that X is a smooth variety of dimension d

and x ∈ X is a closed point. Prove that

ExtiX(Ox1
,Ox2

) =

{ ∧iCd if y1 = y2,
0 otherwise.

You may wish to use the relationship between local and global Ext-groups, the Cohen

structure theorem and the Koszul resolution.

3.4.5. Prove that there is a well-defined functor

FM: D(Y ×X) −→ Fun(D(Y ), D(X)), P 7→ ΦPY→X .

Show that this functor is not in general faithful, as follows. Take Y = X an elliptic curve

and show using Serre duality that Ext2
X×X(O∆,O∆) = C. On the other hand, prove that

any morphism of functors id→ [2] in the category D(X) is zero.

3.4.6. Moduli of skyscrapers. Prove that the moduli space of skyscraper sheaves on a smooth

variety X is the variety X itself, and that the universal object can be taken to be the

structure sheaf of the diagonal in X ×X.
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3.4.7. Integral transforms preserve families. Let S be an arbitrary base variety. An object

E ∈ D(S × Y ) is said to be S-perfect if the derived restrictions Es = E|{s}×Y all have

bounded cohomology objects and hence live in D(Y ). Suppose that Φ: D(Y ) → D(X) is

an integral functor. By using a relative integral functor defined by the projections S×Y ←
S × Y ×X → S ×X, prove that if E ∈ D(S × Y ) is S-perfect then there is an S-perfect

object F ∈ D(S ×X) such that Fs = Φ(Es) for all s ∈ S.

4. Calabi-Yau examples

This lecture is devoted to working out some of the general theory intro-

duced above in the case of low-dimensional Calabi-Yau varieties, namely el-

liptic curves and K3 surfaces.

4.1. Elliptic curves. In this section we shall prove

Theorem 4.1. Let X be a smooth projective curve of genus 1. Then D(Y ) ∼=
D(X) implies that Y ∼= X, and moreover there is a short exact sequence

(11) 1 −→ Aut(X) n Pic0(X)× Z −→ AutD(X) −→ SL(2,Z) −→ 1.

Proof. The Chern character map descends to the numerical Grothendieck

group and gives an isomorphism

ch: N (X)→ Z⊕ Z, [E] 7→ (r(E), d(E)).

Riemann-Roch shows that the Euler form is

χ(E,F ) = r(E) d(F )− r(F ) d(E).

Any triangulated auto-equivalence ofD(X) induces an automorphism ofN (X)

preserving the Euler form, so we get a group homomorphism

$ : AutD(X)→ SL(2,Z).

Our first aim is to show that this map is surjective.

The dual abelian variety Y = Pic0(X) is non-canonically isomorphic to

X, by mapping x 7→ OX(x − x0) for some base-point x0 ∈ X. The original

Fourier-Mukai transform therefore gives an auto-equivalence Φ ∈ AutD(X).

This satisfies Φ(Oy) = Py. By Exercise 3.4.2, the inverse is given by ΦP
∗

X→Y [1]

and so Φ(P∗y ) = Oy[1]. We conclude that

$(Φ) =

(
0 1
−1 0

)
.

Tensoring with a degree 1 line bundle L gives another auto-equivalence, which

clearly satisfies

$(−⊗ L) =

(
1 0
1 1

)
.
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Since these two matrices generate SL(2,Z) the map $ is indeed surjective.

Consider an auto-equivalence Φ lying in the kernel of $. It must take a

skyscraper sheaf Ox to an indecomposable object of class (0, 1). Up to shift

such an object is a sheaf. But then it must be a skyscraper. So by Lemma 3.8,

any such auto-equivalence is standard. Conversely a standard autoequivalence

f∗(L ⊗ −)[n] acts trivially on N (X) precisely if L ∈ Pic0(X) has degree 0,

and the integer n is even. This gives the short exact sequence (11).

Finally we prove the first part of the statement. Suppose Φ: D(Y )→ D(X)

is an equivalence. Then Φ induces an isomorphism of numerical Grothendieck

groups; in particular Φ takes skyscrapers to indecomposable objects having

some primitive class (a, b) ∈ N (X). Composing with an element of AutD(X)

we can assume that (a, b) = (0, 1). But as before, any indecomposable object

of this class is a shift of a skyscraper. Thus Φ is standard, and in particular,

Y ∼= X. �

4.2. K3 surfaces. Recall that an algebraic K3 surface is a smooth projective

surface X which is Calabi-Yau (ωX = OX) and satisfies H1(X,OX) = 0. It is

an important fact that all such surfaces are deformation equivalent as complex

manifolds, and hence have the same cohomology groups. In particular one can

calculate that H2(X,Z) ∼= Z⊕22. The Hodge decomposition takes the form

H2(X,C) = H0,2(X)⊕H1,1(X)⊕H2,0(X).

where H2,0(X) = H0(ωX) = C. The key point is that the isomorphism class

of a K3 surface is completely determined by the position of the line H2,0(X)

inside the complexification of the lattice H2(X,Z). This is called the Torelli

theorem:

Theorem 4.2. Two K3 surfaces are isomorphic precisely if they are Hodge

isometric, i.e. if there is an isomorphism

φ : H2(X1,Z)→ H2(X2,Z)

such that φ preserves the intersection form and

(φ⊗ C) (H2,0(X1)) = H2,0(X2).

When considering numerical invariants of coherent sheaves on K3 surfaces it

is useful to introduce a minor variant of the Chern character called the Mukai
vector. This is the map

v : K0(X)→ H∗(X,Z)

v(E) = ch(E) ·
√

td(X) = (r(E), ch1(E), ch2(E) + r(E)).
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If we also put a symmetric form on

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) = Z⊕ Z22 ⊕ Z

by setting

〈(r1, d1, s1), (r2, d2, s2)〉 = D1 ·D2 − r1s2 − r2s1,

then the Riemann-Roch theorem takes the simple form

χ(E,F ) = −〈v(E), v(F )〉.

The map v descends to the numerical Grothendieck group, and allows us to

identify N (X) with the image of v, which is the subgroup

(12) Z⊕ NS(X)⊕ Z ⊂ H0(X,Z)⊕H2(X,Z)⊕H4(X,Z).

Here NS(X) = H2(X,Z)∩H1,1(X) is the Neron-Severi group of the K3 surface

X. It is a free abelian group which can have any rank 1 6 ρ 6 19. The first

Chern class defines an isomorphism Pic(X) ∼= NS(X).

Theorem 4.3. Fix v = (r,D, s) ∈ N (X) with r > 0. Suppose there is a

polarization ∈ H2(X,Z) such that gcd(r,D · ω) = 1. Then the moduli space

MX,ω(v) is a non-empty, smooth, complex symplectic, projective variety of

dimension 2 + 〈v, v〉.

Proof. The non-emptiness statement is tricky: one has to consider a defor-

mation to an elliptic K3. For the rest, recall the very general fact that the

tangent space to the moduli space of sheaves at a point E ∈ Coh(X) is given

by Ext1
X(E,E). In our case Riemann-Roch gives

dimC Ext1
X(E,E)− dimC Ext0

X(E,E)− dimC Ext2
X(E,E) = 〈v, v〉.

Since E is stable, EndX(E) = C and Serre duality gives Ext2
X(E,E) ∼=

HomX(E,E)∗. Thus the tangent space to any point of MX,ω(v) has con-

stant dimension 〈v, v〉 + 2, which ensures that it is smooth. The symplectic

form is given by the Serre duality pairing Ext1
X(E,E) ∼= Ext1

X(E,E)∗. �

These varieties MX,ω(v) and deformations of them are basically the only

known examples of compact complex symplectic manifolds. More precisely,

there is an analogous set of examples coming from moduli spaces of sheaves

on abelian surfaces, together with two further sporadic examples related to

moduli spaces of sheaves with a very special, non-primitive Mukai vector.
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4.3. Derived Torelli theorem. Let X be an algebraic K3 surface and choose

v ∈ N (X) satisfying the conditions of Theorem 4.3. Suppose further that

(v, v) = 0 so that Y =MX,ω(v) is a smooth projective surface.

Lemma 4.4. The surface Y is a K3 surface and the functor Φ: D(Y ) →
D(X) defined by the universal object P on Y ×X is an equivalence.

Proof. By the Bondal-Orlov theorem, to check that Φ is an equivalence we just

have to check that if y1 6= y2 are distinct points of Y then ExtiX(Py1 ,Py2) = 0

for all i. By Theorem 2.1(d) there are no maps in degree 0 since the objects

Pyi are distinct stable sheaves of the same slope. Serre duality then shows

that there are no maps in degree 2. Since Riemann-Roch gives χ(Py1 ,Py2) =

−〈v, v〉 = 0, this is enough.

The fact that any equivalence commutes with Serre functors implies that

ωY ∼= OY (this also follows from the fact that Y is complex symplectic). To

show that Y is a K3 surface we must check that H1(Y,OY ) = 0. If we take a

sufficiently ample line bundle L on X then

Homi
Y (Φ−1(L∗),Oy) = Homi

X(L∗,Py) = H i(X,Py ⊗ L),

which is nonzero only in degree 0. It follows that Φ−1(L∗) = M is a vector

bundle on Y . Now L (and hence also M) is rigid:

Ext1
Y (M,M) ∼= Ext1

X(L,L) ∼= H1(X,OX) = 0.

But for any vector bundle on Y the obvious map OY → HomOY
(M,M) is

split by the trace map, which implies that H1(Y,OY ) is a direct summand of

Ext1
Y (M,M). �

We have now proved one of the implications in the following famous derived

Torelli theorem.

Theorem 4.5 (Mukai, Orlov). Let X, Y be algebraic K3 surfaces. Then the

following statements are equivalent:

(a) There is a C-linear triangulated equivalence Φ: D(Y )→ D(X),

(b) Y ∼=MX,ω(v) is a fine moduli space of µ-stable vector bundles on X,

(c) There is a Hodge isometry

H∗(Y,Z) ∼= H∗(X,Z),

i.e. an isomorphism of groups preserving the form 〈−,−〉 whose com-

plexification takes H0,2(Y ) ⊂ H∗(Y,C) to H0,2(X) ⊂ H∗(X,C).

Proof. We proved (b) =⇒ (a) above. To get (a) =⇒ (c) one must show

that Φ induces an isomorphism on the full cohomology groups (not just the
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numerical Grothendieck group (12)). This can be done by hand in a slightly ad

hoc way by writing Φ = ΦPY→X and using the correspondence on cohomology

induced by the Chern character of P .

The implication (c) =⇒ (b) goes as follows. Let p = (0, 0, 1) denote the

Mukai vector of a skyscraper sheaf. Given an isomorphism ψ : H∗(Y,Z) →
H∗(X,Z) of the required type, put v = ψ(p). Then v is algebraic and integral,

and hence defines a primitive class in N (X). With a bit of jiggery-pokery

involving known auto-equivalences of D(X) we can even assume that v =

(r,D, s) is such that r > 0 and there exists a polarization ω with gcd(r,D ·
ω) = 1. (If we use Gieseker stability instead of slope stability we don’t need

this last condition). Let Z = MX,ω(v) be the resulting fine moduli space,

and Φ: D(Z) → D(X) the corresponding equivalence. Let φ : H∗(Z,Z) →
H∗(X,Z) be the induced Hodge isometry; by definition it takes p to v. Now

ψ−1 ◦φ is a Hodge isometry H∗(Z,Z)→ H∗(Y,Z) which preserves the class p.

But since p⊥/Z·p = H2(X,Z) this then induces a Hodge isometry H2(Z,Z)→
H2(Y,Z). The usual Torelli theorem then implies Y ∼= Z and we are done. �

4.4. Problems.

4.4.1. Moduli of bundles on an elliptic curve. Let MX(r, d) denote the moduli space of

indecomposable vector bundles on an elliptic curve X of rank r and degree d. Prove that

MX(r, d) ∼= X. (If you are being careful about moduli spaces you might need Exercise

3.4.7).

4.4.2. Auto-equivalences of an abelian surface. Let X be an abelian surface. This is a

smooth projective surface with ωX ∼= OX and H1(X,OX) = C2.

(a) Prove that any nonzero object E ∈ Coh(X) satisfies dimC Ext1
X(E,E) > 2. (Hint:

When E is a vector bundle use the argument from the proof of Lemma 4.4; the

general case can be reduced to this one by using the Fourier-Mukai trandform and

Exercise 3.4.3).

(b) Use the spectral sequence (10) to show that if Φ: D(Y )→ D(X) is an equivalence

then it takes skyscraper sheaves to shifts of sheaves.

(c) Show that any auto-equivalence which acts trivially onN (X) is standard and hence

determine the kernel of the map AutD(X)→ AutN (X).

4.4.3. Reflection functor. Let X be a K3 surface and let I∆ ∈ Coh(X×X) denote the ideal

sheaf of the diagonal ∆ ⊂ X ×X.

(a) Prove that ΦI∆

X→X defines an auto-equivalence Φ ∈ AutD(X).

(b) Prove that for any E ∈ D(X) there is a distinguished triangle⊕
i∈Z

Homi
D(X)(OX , E)⊗C OX [−i] −→ E −→ Φ(E).
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(c) Let φ ∈ AutK0(X) be the effect of Φ on the Grothendieck group, and set q = [OX ].

Show that

φ(v) = v − χ(q, v)q.

Conclude that Φ2 ∈ AutD(X) is a non-standard auto-equivalence which acts triv-

ially on K0(X).

5. T-structures and tilting

We have seen interesting examples of equivalences

Db(A) −→ Db(B).

Recall that A ⊂ Db(A) is a full subcategory. A slightly different way to think

of this is to fix a triangulated category D and look for abelian categories

A ⊂ D. In fact we want more: namely the existence of cohomology and

truncation functors. This leads to the definition of a t-structure.

5.1. Hearts. Let D be a triangulated category. A heart A ⊂ D (or heart of

a bounded t-structure) is a full additive subcategory such that:

(a) for every k < 0

HomD(A,B[k]) = 0 for all A,B ∈ A.

(b) for every nonzero object E ∈ D there are integers m < n and objects

Aj ∈ A fitting into triangles

0 Em−1
// Em

}}

//

}}

. . . // En−1
// En

~~

E

Am[−m]

bb

An[−n]

aa

It follows from the axioms that any heart A ⊂ D is an abelian category

(see Exercise 5.4.1). The short exact sequences of A are the triangles

A // B

��

C

ZZ

with A,B,C ∈ A. We write Hm
A (E) = Am ∈ A. This defines functors

H i
A : D → A.

The basic example of a heart isA ⊂ Db(A). But not all hearts are equivalent

to a heart of this form: it is not true that if A ⊂ D is a heart then D ∼= Db(A).
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F [1] T F

A

A]

Figure 1. Tilting a heart by a torsion pair.

5.2. Tilting. There is a very general and important method for constructing

hearts known as tilting. To explain this operation we first need

Definition 5.1. A torsion pair in an abelian category A is a pair of full

subcategories (T ,F) of A such that

(a) HomA(T, F ) = 0 for T ∈ T and F ∈ F ,

(b) for every object E ∈ A there is a short exact sequence

0 −→ T −→ E −→ F −→ 0

for some pair of objects T ∈ T and F ∈ F .

The objects of T and F are called torsion and torsion-free respectively.

This terminology is explained by

Example 5.2. Let A = Coh(X) for some variety X. Then there is a torsion

pair (T ,F) in A for which T consists of torsion sheaves (in the usual sense),

and F consists of torsion-free sheaves.

The tilting operation is defined by the following easy result.

Lemma 5.3. Suppose that A ⊂ D is a heart and (T ,F) is a torsion pair in

A. Then the full subcategory

A] =

{
E ∈ D :

H i(E) = 0 for i /∈ {−1, 0},
H−1(E) ∈ F , H0(E) ∈ T .

}
⊂ D

is a heart.

Proof. This is more-or-less obvious from the ‘filmstrip’ picture: Figure 1. �

We call A] (or sometimes A][−1]) the tilt of A with respect to the torsion

pair (T ,F). Note that (F [1], T ) is a torsion pair in A] and tilting again gives

the back the heart A[1] ⊂ D.
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Example 5.4. Take D = D(X) with X a smooth projective variety, and

A = Coh(X) ⊂ D(X) the standard heart. Fix an arbitrary subset S ⊂ X and

define T ⊂ A to be the full subcategory consisting of those sheaves which are

supported on a zero-dimensional subset of S. Then F ⊂ Coh(X) consists of

those sheaves for which
HomX(Ox, E) = 0

for all x ∈ S. Tilting with respect to this torsion pair gives a different t-

structure on D for each subset S ⊂ X. So the set of t-structures is very

big!

Example 5.5. TakeX to be a smooth projective variety, and fix a polarization

ω ∈ H2(X,Z). Let A = Coh(X) ⊂ D be the standard t-structure on D =

D(X). For a fixed real number µ0 ∈ R define a torsion pair in A by

T = {E : E/Tor(E) has HN factors of slope > µ0}.

F = {E : E is torsion-free with HN factors of slope 6 µ0}.
Here Tor(E) denotes the torsion part of the sheaf E in the usual sense. Thus

all torsion sheaves are contained in T . The HN means Harder-Narasimhan:
the subcategories T and F are defined in terms of the µ-semistable sheaves

appearing as factors in the unique filtration (6).

For many varieties X, for example for elliptic curves, these torsion pairs are

different for every µ0 ∈ R. The resulting tilts are important for constructing

stability conditions.

Example 5.6. Consider X a variety and A = Coh(X) ⊂ D = D(X). Define

a torsion pair in A by

T = {E ∈ A : dimC supp(E) = 0},

F = {E ∈ A : HomX(Ox, E) = 0 ∀x ∈ X}.

Consider the heart B = A][−1] ⊂ D be the tilt shifted to the right. Note that

OX ∈ B. Consider the ‘Hilbert scheme of the category B’. It parameterises

short exact sequences

0 −→ J
f−→ OX

g−→ Q −→ 0

in B. Taking cohomology with respect to the standard t-structure gives a long

exact sequence of sheaves

0 −→ H0(J) −→ OX −→ H0(Q) −→ H1(J) −→ 0.

Thus Q ∈ A is a sheaf having no zero-dimensional torsion, and g : OX → Q

is a map of sheaves whose cokernel is supported in dimension 0. These are

precisely the stable pairs considered by Pandharipande-Thomas. Conversely,
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given such a map g one can take the cone and obtain a short exact sequence

in B.

5.3. Threefold flops. Let f : Y → X be a proper, birational map such that

(a) Y is a smooth projective threefold,

(b) f contracts only finitely many rational curves,

(c) KY · C = 0 for every curve contracted by f .

Define a torsion pair in Coh(Y ) by

T =
{
T ∈ Coh(Y ) : the natural map f ∗(f∗(T ))→ T is surjective

}
.

F =
{
F ∈ Coh(Y ) : f∗(F ) = 0

}
.

The resulting tilt is denoted Per(Y/X) ⊂ D(Y ). Note that OY ∈ T ⊂
Per(Y/X). Define a perverse point sheaf to be an object E ∈ Per(Y/X)

which is a quotient of OY and has same Chern character as Oy.

Theorem 5.7. There is a fine moduli scheme M for perverse point sheaves

in Per(Y/X). This scheme has a natural map g : M→ X which is the flop of

f : Y → X. The universal perverse point sheaf P on M×X gives rise to an

equivalence Φ: D(M)→ D(X).

Since any birational map between Calabi-Yau threefolds can be decomposed

into a sequence of flops it follows that birational Calabi-Yau threefolds have

equivalent derived categories. It is expected that this result is also true in

higher dimensions but this seems to be a very difficult problem.

Example 5.8. Consider the case when f contracts a single rational curve

C ∼= P1 with normal bundle O(−1)⊕O(−1). For any x ∈ C there is a short

exact sequences OC(−1) → OC → Ox. By rotating the triangle this can be

rewritten as a short exact sequence in Per(Y/X)

(13) 0 −→ OC
f−→ Oy

g−→ OC(−1)[1] −→ 0.

The objects OC and OC(−1)[1] are perverse sheaves, and hence so is Ox. But

the unique map OY → Oy is not surjective in Per(Y/X) because its composite

with g is zero; in fact its cokernel is OC(−1)[1].

There is a different set of extensions in Per(Y/X) that are perverse point

sheaves, namely

(14) 0 −→ OC(−1)[1]
f−→ E

g−→ OC −→ 0.

In fact we can show that the relevant extension group is 2-dimensional, so

there is also a P1 parameterizing these extensions. This defines the rational

curve in the flop M which is contracted by the natural map M→ X.
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To compute the extension group let i : C → Y be the closed embedding.

Then by adjunction

Homk
D(Y )(i∗(OC), i∗(OC(−1))) = Homk

D(C)(Li
∗(i∗(OC)),OC(−1)).

Whenever we have an embedding of smooth varieties C ⊂ Y there are identi-

fications

Hq(Li
∗(i∗(OC)) ∼=

q∧
N ∗C⊂Y

where N ∗C⊂Y is the conormal bundle. We now use the spectral sequence (10)

Ep,q
2 = Homp

D(C)(

q∧
OC(1)⊕2,OC(−1)) =⇒ Homp+q

D(Y )(OC ,OC(−1)).

Since C is a curve we have Ep,q
2 = 0 unless 0 6 p 6 1 so the spectral sequence

degenerates at the E2-term. We can rewrite

Ep,q
2 = Hp

(
P1,O(−1)⊗

q∧
O(−1)⊕2

)
.

We thus conclude that

Homk
D(Y )(OC ,OC(−1)) =

{
C2 if k = 2, 3,
0 otherwise,

which shows that the extension groups controlling both (13) and (14) are

two-dimensional.

5.4. Problems.

5.4.1. Prove from the axioms that a heart is an abelian category.

5.4.2. Define a distance function on hearts by

d(A,B) = inf
n>0

{
∃a ∈ Z : ∀A ∈ A, Hi

B(A) = 0 for i /∈ [a, a+ n]

}
.

Prove that

(a)

d(A,B) = 0 ⇐⇒ A = B[a] for some a ∈ Z.

(b) The function d is symmetric and satisfies the triangle inequality, and hence defines

a metric on the set of t-structures up to shift.

(c) Given hearts A,B ⊂ D show that there is a torsion pair in A whose tilt is some

shift of B precisely if d(A,B) 6 1.

5.4.3. What is the tilt of the standard heart in D(P1) with respect to the torsion pair of

Example 5.5 corresponding to some parameter µ0 ∈ R?

5.4.4. Let X be an elliptic curve and µ0 ∈ Q a rational number. What is the tilt of the

standard heart in D(X) with respect to the torsion pair of Example 5.5? What happens

when µ0 ∈ R \Q is irrational?


