Alternative formulae for the Transverse Mercator projection
Introduction

These notes describe an attempt to derive formulae for the Transverse Mercator projection that should be (a) somewhat simpler, for
the same order of accuracy, than the Redfearn formulae [1. 2] used by the Ordnance Survey of Great Britain, and (b) capable of
routine extension (perhaps with the help of computerized algebra) to higher orders of accuracy.

The formulae below, when applied to Great Britain, are similar in accuracy to the OS formulae if carried to the 6th order. If carried to
the 12th order they agree with Karney’s GeographicLib [3] to a fraction of nanometre when applied to Great Britain. They seem,
however, less accurate than Karney’s method when applied to a wider area.

Only formulae for coordinate conversion are given at present. Formulae for scale and convergence may be added later.

The method used here is not entirely original, as shown by the appendix to Deakin et al. [4]. The idea is to carry out the projection
from the ellipsoid to the plane in two stages: (i) from the ellipsoid to an intermediate sphere, (ii) from the sphere to the plane. Part (ii)
and its inverse can be done by simple closed formulae containing hyperbolic functions. The hard work lies in part (i).

Conformal mappings

Let S and X be surfaces (e.g. plane, surface of sphere). A differentiable mapping from S to X is called conformal iff it preserves the
angle at which curves intersect, or (equivalently) iff the scale at any point is the same in all directions. Let (X, y) be rectangular
coordinates in S such that at every point the scales in x and y are equal, i.e. if ¢ denotes distance in S then do/ox = dc/oy. Let (&, 1) be
similar coordinates in X. Then the mapping is conformal iff at every point it satisfies the Cauchy—Riemann conditions:

og/ox = onloy, ogfoy = —omlox.
Assuming that the mapping can be put into the form

& = foly) + xfyly) + (2D ,(y) + (BN () + ...
N = Go(y) +x05() + (/2D goy) + (x¥31) ga(y) + ..

the Cauchy—Riemann conditions are equivalent to

fi = go®, 9, = ¥

f2 = —f0(2), g, = —go(z)

fs = =049, gs = fo®
= f0(4)’ 0, = go(4)

L=k
S

So writing f, g for f;, g, we see that the mapping is conformal iff it is of the form

1) + xg®y) ~ (€129 TOy) ~ (E13)gOY) + (AYTOY) + ..

:
0(y) — XFOy) — (/2 gAy) + (I3 FO) + (AN GAY) — .. @

n

Transverse Mercator projection

This is considered a suitable projection for a region such as Britain or New Zealand that extends more N-S than E-W. The Earth is
taken to be an ellipsoid generated by rotating an ellipse about its smaller axis. A central meridian of longitude is chosen for the region to
be mapped (e.g. for Britain the Ordnance Survey has chosen 2° W). The transverse Mercator projection from the ellipsoid to the (X, y)
plane is such that

« Itis conformal.
« The central meridian is mapped to the y-axis.
« The scale is the same at all points on the central meridian.

If w, and p, are two such mappings then p, ., is a conformal mapping of the plane taking (0, y) to (0, my + n), where m and n are

constants. In the notation of the preceding section, we must then have f(y) = 0 and g(y) = my + n, so that (x, y) is sent to (mx, my + n).
Hence the transverse Mercator projection defined above is unique up to a change of scale and a shift parallel to the y-axis.

Notation



Where lower-case and upper-case of the same letter are given, lower-case refers to the ellipsoid and upper-case refers to the
intermediate sphere.

a = semi-major axis of ellipsoid

b = semi-minor axis of ellipsoid

e = eccentricity of ellipsoid; € = (a? — b?)/ a2

e=¢€?/(1—¢?)=(a?—h?/h?

A = longitude east of Greenwich meridian

A, = A for central meridian of projection (e.g. OS uses A, = —2°)

o, Q = geographical longitude, relative to central meridian

¢, ® = geographical latitude

v, ¥ = isometric latitude

0., = fixed geographical latitude chosen by user, typically near mid-latitude of region of interest

O, v, ¥, = values of @, y, ¥ corresponding to o,

C = C0SQ,

s=sing,,

R = radius of intermediate sphere

p = radius of curvature in meridian of ellipsoid = a(1 — €?)(1 — e%sin%p) 32 = a(1 + £)Y(1 + ecos?p) 32
F, = constant scale on central meridian

Eos Ny = Offsets added to easting and northing in order to give values measured from a conventional “false origin”

Geographical latitude ¢ at a point P on the ellipsoid is defined to be the angle between the normal at P and the plane of the equator.
Isometric latitude v is defined in terms of ¢ by

y = tanhi(sing) — etanh~!(esing). (2)

It is straightforward to verify that if ¢ denotes distance on the ellipsoid then do/dw = do/dy at each point (w, ). Hence the formulae
for conformal mappings (first section) can be applied to the (o, y) coordinate system.

Intermediate sphere
In the method of this web page, the transverse Mercator projection is split into two stages:

« (i) a conformal mapping from the ellipsoid to an intermediate sphere, taking the central meridian to the central meridian with
constant scale;
« (ii) a transverse Mercator projection from the sphere to the (X, y) plane, taking the central meridian to the y-axis with unit scale.

From (2) with e = 0 we get ¥ as the inverse Gudermann function of ®, which can be written in three equivalent ways:
tanh®¥ = sind, sech? = cosQ, sinh¥ = tan®.

Stage (ii) above (transverse Mercator from sphere to plane) is therefore given by simple closed formulae

tanh(X/R)
tan(y/R)

sech?sinQ = cosdsinQ,

sinhWsecQ tandsecQ, ®3)

whose equally simple inverse is given by (14) below.

We now need to work out stage (i), the projection from ellipsoid to sphere.

Outline of method

We are looking for a conformal mapping (1) with a change of notation: (2, ¥) for (&, 1), and (o, ) for (x, y). Since the meridian v =0
is projected to Q = 0, we have f = 0, so that (1) becomes

Q = 0gh(y) - 7O + (©INgW) ~ ..
¥ = gv) - (072099 + (4G ~ ... @

The problem is to find g, and for this it suffices to consider the mapping of the central meridian, on which ¥ = g(y). Fix some
geographical latitude ¢, near the centre of the region to be mapped (e.9. ¢,,= 55.6° is good for Britain) and let y,,, ®,,, ¥, be the
corresponding values of y, @, V. Define 6 =y — y,,,



To simplify the working and the result, we assume that on the central meridian (o = 0) ¥ is linear to third order in y around ,,, and
write

lII|m=0 = g(\V) = g(‘l’m + 8) = le + A;
where
A =ad+adt+ad’+adt+ ... (5)

This is permissible because, as noted above, the projection has two degrees of freedom (scale and y-shift), so that we can choose it to
make the terms in 52 and 82 vanish. If for convenience we define a, = @, a, = a; =0, then (4) and (5) can be developed as (cf.
Deakin et al. [4], page 19)

in)2 in)3
0(w) + (0)g0(y) + 2Lgoy) + g0 + .
gy +i0) = gy +3 + o)

Z?:oa”@ +io)" = Zc::oan Z:qzo(r: )5”"“@0))’“
- Z::ozc::maw)m (:1 )a”Snim - Z::OZ:O:O(im)m (anwr r)am+’6r' (6)

from which ¥ and Q can be found by equating real and imaginary parts.

¥ +iQ

To find the coefficients a,, we will calculate @ as a power series in & in two ways, going via ¢ and ¥ respectively (see diagram).
Equating coefficients of 3" will then give the result.

Latitude on central meridian
lsom. Geog.

Ellipsoid Y —— @

g

Sphere ¥ —8 > O

Details of method

¢ from y. Recalling that & = v — vy, we express ¢ as a Taylor series in 5. We require the first few d"¢/dy". Differentiating (2) w.r.t. ¢
gives

dy/de = (1—¢e?)/(1—e%sin%p)cose = 1/(cose + £c0s%p)
yiao

whence
de/dy = cose + ecos’o,
d2p/dy? = —sing[cose + 4ecosip + 3e%c0s°9],
d3/dy® = cose + (—2 + 13¢)cos%p + (—18¢ + 27&?)cosSp + (—34€? + 15¢%)cos’ep — 18¢3c0s%,
d4p/dy* = —sinp[cose + (—6 + 40g)c0s3p + (—96¢ + 174c?)cosp + (—328&2 + 240¢%)cos’ + (—400<8 + 105¢%)cos’p

— 162¢*costy],

This and similar lists are to be extended, preferably with the aid of computerized algebra, up to the order of accuracy desired.

® from ¢. If o denotes distance along the central meridian then do/dg = p = const x (1 + ecos?p) 2. By hypothesis, the scale along
the central meridian is constant, so that

o = pj(l + £cos%p) ¥2do + q, (7

where p and q are constants. The first few deriatives of ® w.r.t. ¢ are therefore

dd/de = p(1 + ecos?p) 372,
d20/dp? = 3pesinpcosp(l + ecos?p) 2,



d3®d/de3 = 3pe(l + ecos?p) 2[-1 + (2 + 4e)cosZp — 3ecos’y],
d*®/de* = 3pe(l + ecos?p) ¥2sinpcose[—(4 + 15¢) + (22¢ + 20e?)cos2p — 9e2c0s%p]
d®/de® = 3pe(l + ecos?p) 1Y2[(4 + 15¢) — (8 + 128¢ + 180e?)cos?p + (116¢ + 362¢2 + 120£%)cosy

— (1642 + 136¢%)cosbo + 27¢3c0s8g],
® from y via ¢. Using the above, express @ as a Taylor series in ¢ — ¢, and substitute for ¢ — ¢, a Taylor seriesin & (= v — y,,).

Setting ¢ = coso,,, S = sing,,, we find after a routine calculation

O = @ +rc(l+ec?) V{8 — (8%/21)s + (33/31)(1 — 2¢? — ec¥) — (54/41)s(1 — 6¢? — ec* — 4e2c?) (8)
+ (85/51)[1 — 20¢? + (24 — 58¢)ct + (72¢ — 64€2)cB + (772 — 24€%)c8 + 28¢3¢] + ...}

@ from y via . The first few derivatives of ® w.r.t. ¥, written in terms of @, are

do/d¥ = cosd

d?®/dP? = —sindcosd,

d3®/d¥? = cos® — 2c0s3D,

d*®/d¥* = —sin®(cos® — 6cos’D),
d°®/d¥> = cos® — 20c0s3® + 24c0s°D.

So from (5) we get
® = @, +35a,c050,— (5%/2")a,%sin®, cosd,, + (5%/3"a,3(cosd®,, — 2cos’d,)
+ 3%[a,cos®,,, — (1/4)a,*sin®,(cos®,, — 6cos°D,)]

+ §°[a.cosd,, — a;a,5in®,cosd,, + (1/5")a,>(cosd,, — 20cos’d,, + 24c0s°D,,) ©)
+ .

On to the result. Equating coefficients of 5, 32, and 83 in (8) and (9) gives respectively
a,c0s®,, = rc(l +gc?) 2
a,%sin®d, cosd,, = rsc(l + ec?) 12
a,%(cos®,, —2c0s’®,) = rc(l — 2¢% — ec?)(1 + ec?) 2

For a given ¢,, these three equations are to be solved for @, p, and a,. A straightforward calculation gives

tand = tang.(1 + ecos?, ) 2 10
m m
p = 1+¢gcos?p (11)
m
a; = (1 +ecosto)2.

To find a,, note that
a,cos®, = rc(l+ec?) 2 = (1 +ec?)?, a;sind,, = s,
so that equating coefficients of 54 in (5) and (9) and dividing by a,cos®,, gives
—(1/41)s(1 — 6¢2 — 9ec*) = a,fa; — (1/41)s[1 + ec* — 6¢2(1 + &c?)]
whence a, = (1/6)a,sec*(1 + &c?).

Similarly one calculates ag, ag, ... as far as desired. This is probably not the best method for finding the a;, as it is rather lengthy and
does not explain why the factor (1 + &c?) occurs in each a;. However, with the help of computerized algebra it yields the following up
to 12th order, where k = a,sc*(1 + £c?). Note that the factor s = sing,, appears in a; for even but not odd i.

a, = ks/6,

a; = —(k/30)[(5 — 6¢?) + ec(6 — 7¢c?)],

ag = (ks/180)[(23 — 39¢?) + &c?(66 — 104c?) + £%c*(48 — 70c?)],
a, = —(k/1260)[(97 — 366C2 + 285¢c%)

+ £C? (534 — 1834c¢% + 1354c¢%)
+ £2c* (912 — 2826¢2 + 1 974¢%)
+ ¢3¢0 (480 — 1.368c? + 910c%)],
ag = (ks/10080)[(399 — 2259¢c? + 2 340c?)
+ &2 (3786 — 18 201c? + 17 091c%)
+ £2c* (11568 — 47 664¢? + 41 176¢%)



+ g%° (13920 — 50 832¢2 + 40 964c?)
+ £4c8 (5760 — 19 152¢2 + 14 560c4)],
a, = —(k/90 720)[ (1617 — 15822¢2 + 35 145¢* — 21 420cF)
+ ec2 (25110 — 197 721¢2 + 390 216¢ — 220 761c5)
+ £2c4 (122832 — 810 1082 + 1456 883¢* — 777 368¢P)
+ £305 (254 880 — 1476 432¢2 + 2 465 576¢ — 1 253 156¢9)
+ £4c8 (236 160 — 1240 992¢2 + 1951 360c* — 951 748¢")
+ £5c10 (80 640 — 392 8322 + 587 664c* — 276 640cF)],
ay, = (ks/907 200)[ (6511 — 96 003c? + 284 580c* — 216 720cF)
+ ec2 (160 362 — 1 741 062¢2 + 4 357 044c* — 2979 576¢5)
+ ¢2c* (1183536 — 10218 210¢2 + 22 614 831¢* — 14 293 933cF)
+ £3¢8 (3777 120 — 27 694 080c2 + 55 715 568¢* — 33 050 400c?)
+ £4c8 (5892 480 — 38 260 512¢2 + 71319 600c* — 40 132 128¢%)
+ £5c10 (4 435 200 — 26 210 304c? + 45 899 424c* — 24 698 800cP)
+ £6c12 (1290 240 — 7070 976¢2 + 11 753 280c* — 6 086 080¢S)],
a,, = —(k/9 979 200)[ (26 129 — 612 942¢2 + 2 973 465¢* — 4 769 100 + 2 404 080c?)
+ ec? (1001 238 — 16 079 440c? + 64 079 286¢* — 91 147 284c6 + 42 371 064cP)
+ £2c4 (10 751 184 — 133 032 942¢2 + 462 342 495¢* — 603 358 772 + 264 215 043¢?)
+ £3¢8 (49 606 560 — 513 290 016¢2 + 1 608 671 808¢* — 1 961 068 704cS + 818 045 920¢8)
+ g4c8 (116 035 200 — 1054 446 0482 + 3 047 708 544c* — 3514 163 8086 + 1407 298 464c9)
+ £5c10 (144 587 520 — 1190 221 056¢2 + 3223 093 824¢* — 3547 726 976¢5 + 1372 021 728¢8)
+ £6c12 (91 607 040 — 697 432 320c2 + 1 789 882 560c* — 1894 042 304 + 710 673 040c?)
+ ¢7cl4 (23224 320 — 165 934 080c? + 407 062 656¢* — 416 391 360c6 + 152 152 000c8)],
a,, = (ks/119 750 400)[ (104 687 — 3695 043c? + 23 932 260 — 47 995 9208 + 29 030 400c2)
+ ec? (6 164 202 — 134 900 843c2 + 679 980 393 — 1 168 763 544c® + 636 663 600cE)
+ £2c* (94 019 376 — 1503 338 308¢2 + 6 400 822 965¢* — 9 876 665 101¢8 + 4 988 315 196¢5)
+ £3¢5 (603 577 440 — 7 805 457 864¢2 + 29 310 906 258¢* — 41 588 254 065¢° + 19 773 581 543c8)
+ £4c8 (1987 701 120 — 22 054 179 456¢2 + 75 126 837 408¢* — 99 606 227 8565 + 45 043 964 496¢8)
+ £5c10 (3648 718 080 — 36 037 592 0642 + 113 548 973 184c* — 142 326 334 672¢6 + 61 685 211 984c?)
+ £5c12 (3779112 960 — 34 051 258 368¢2 + 100 637 983 296¢* — 120 305 983 424¢6 + 50 268 203 216¢5)
+ £7c14 (2066 964 480 — 17 285 068 800c2 + 48 419 217 792¢* — 55 579 694 0166 + 22 494 311 840¢?)
+ ¢85 (464 486 400 — 3 650 549 760c2 + 9 769 503 744c* — 10 826 175 3608 + 4 260 256 000CE)].

Radius of intermediate sphere

We chose above that the projection from intermediate sphere to plane should have unit scale on the central meridian. We therefore
need to choose R (the radius of the intermediate sphere) so that the projection from ellipsoid to intermediate sphere has the required
constant scale F, on the central meridian. It suffices to do this at the base latitude ¢, If o denotes distance along the central meridian,
then at ¢, we have

de/de = p 1t = a (1 + &) V(1 + ec?)3?
do/de = p(l+ec?) 32 = (1+ec?) 2 from (7)and (11)

whence the scale on the central meridian is Ra (1 + ) V(1 + ec?). Equating this to F, gives
R = aFy(1+¢)"2(1+ec?)™. (12)
Geographical to grid
The method for converting geographical coordinates (¢, ®) on the ellipsoid to grid coordinates (E, N) can now be given.
Find the isometric latitude y from (2), and set & = y — y,,. Calculate R from (12) and calculate as many of a,, a,, as, ... as desired.

Longitude and isometric latitude on the sphere can now be found from from (6). If we equate real and imaginary parts, and evaluate the
binomial coefficients, this gives the following series for ¥ and Q. Terms containing a; beyond those calculated should be ignored.



¥ = ¥, +a,0 +ad0%+ad%+a08+ad’ +agdt+ad®+a 80 +a 8t +a,8+ ..

— 0%(6a,0% + 10a55° + 158464 + 21a,8° + 28a,5° + 36a40” + 45a,,6® + 55a,,6° + 66a,,61° + ...)

+ 4(a, + 5850 + 158,82 + 35a,5° + 70agd* + 1262435 + 210a,,0° + 330a,,87 + 4952,,08 + ...)

— 0%ag + 7a,0 + 28a40? + 84a4d° + 210a,,0* + 462a,,5° + 924a,,5° + ...)

+ 08(ag + 9agd + 45a,,02 + 165a,,5° + 495a,,64 + ...)

— 0¥(a,, + 11a,,8 + 662,02 + ...)

+ 0@, +...)

— .. (13)
Q = o(a, +4a,5% + 5a50* + 6a,0° + 7a,0° + 8agd’ + 92,88 + 10a,,0° + 11a,,8%0 + 12a,,6™ + ...

— 0%4a,d + 10252 + 202,53 + 352,84 + 562455 + 84a40° + 1208,,67 + 165858 + 220a,,0° + ...)

+ 0(ag + 6agd + 21a,02 + 56a40° + 126a,0% + 252a,,5° + 462a,,6° + 792a,,87 + ...)

— 0’(a, + 8agd + 362402 + 120a,,0° + 330a,,64 + 7922,,8° + ...)

+ 0%(ay + 10a,,8 + 552,62+ 210a,,6% + ...)

—oa; +12a,6 +...)

+ ...

Having found ¥ and €, calculate the grid coordinates as

E
N

Rtanh 1(sinQ/cosh¥) + E 4,
RtanY(sinh¥/cosQ) + N .

It remains to find the constant offsets E « and N . There is no difficulty with E ¢, which is simply the conventional easting of points
on the central meridian (e.g. for Great Britain the OS uses E = 400000 m).

N, is implicitly defined by choosing a point on the central meridian, say with latitude ¢,, and specifying its conventional northing, say
N,. (E.g. for Great Britain the OS chooses ¢, = 49° and N, = —100000 m.) One could estimate N by feeding ¢ = ¢, into the above
procedure, but since ¢, may be outside the region of greatest accuracy the following method is preferable.

Let N,,, be the northing of the point on the central meridian with latitude ¢, before applying the conventional offset. Let D be the
distance along the central meridian measured northwards from ¢, to ¢,,, perhaps calculated by one of the methods suggested on this
website. Then we require N = F,D + N, — N,,. The value of N, can be found from (10), whence

Ny = FoD + Ny— RtanY((1 + ec?)Y2tang,,).

Grid to geographical

The problem here is: Given grid coordinates E and N, find geographical latitude ¢ and longitude A. It is a question of reversing the
above-described method of finding grid from geographical coordinates.

Having found the constants E  and N as above, define
X = E_EOff’ y = N_NOff'
The inverse of (3) above is given by

tanh¥
tanQ

sech(x/R)sin(y/R),

sinh(X/R)sec(y/R), (14)

from which we get the isometric latitude ¥ and longitude Q on the intermediate sphere.

The projection from sphere to ellipsoid is analogous to the projection from ellipsoid to sphere. We first need to invert the power series
(5), so as to get & as a power series in A =¥ — ¥,.. The absence of terms in 32 and &2 simplifies the result, which can be written

5 = b,A — b,A% — boAS — bgAS — ..,

where up to 12th order

1/ay,

a,/a’,

as/a,’

ag/ a,,

(a2, —4a?) / a’,

=
1

N

O T T T T
o o
1

g
1
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bg = (8,33~ 93,a5) / a,",

by = (aa, — 5as2 — 10a,a,) / 8,4,

= (a,%a, — 1la,a.a, — 11la,a,a, + 22a,%) / a, %,

n = (a7, —6aa? — 12a,a:a, — 12a,a,a, + 78a,%a;) / a4,

» = (2,5, — 13a,a4a, — 13a,a:3, — 13a,3,a4 + 91a,as° + 91a,2a,) / a,%.

1

S}
|

o T T
=
|

The reasoning that led to (13) above leads to exactly analogous formulae for the ellipsoid coordinates y and o:

Vi + DA + b, A% + D AS + BAS + b AT + DgAB + DA% + by A + b A + b, AR +

— Q2(6b,A? + 10bA® + 15b A% + 21b,A° + 28bgA8 + 36b A7 + 45b,,A® + 55b,; A® + 66b,,AT° + ...)
+ Q4b, + 5bsA + 15bgA% + 35b,A3 + 70bgA* + 126bgA° + 210b,,A® + 330b,;, A7 + 495b,,A% + ...)
— Q8(by + Th,A + 28bgA? + 84byA® + 210b,,A* + 462b,, A5 + 924b ,AS + ..)

+ Q8(bg + 9bgA + 45b, A% + 165b,; A% + 495h,A% + ...)

- QO(b,, + 11bj;A + 66b,A2 + ..)

+ Q% +...)

Q(b, + 4b,A3 + 5bA* + BbA° + 7h,A® + 8bgA” + 9bgA® + 10b, A% + 11b, AT + 12b,AM + ...

— Q%(4b,A + 10b A2 + 20bA3 + 35b,A% + 56bgAS + 84b A8 + 120b, A7 + 165b,,A8 + 220b,,A% + ...)
+ Q5(b; + 6bgA + 21b,A2 + 56bA3 + 126bgA* + 252b, AS + 462b,;, A® + 792b,,A7 + ...)

— Q'(b; + 8bgA + 36byA? + 120b ;A3 + 330b; A* + 792b,AS + ...)

+ Q%(bg + 10b,yA + 55b,; A + 210b,,A3 + ...)

- Qb +12b A+ L)

+ ..

vy

e
I

The isometric latitude y on the ellipsoid needs to be converted to geographical latitude ¢ by inverting equation (2). This can be done
by iteration or one of the other methods suggested on this website.

Finally the longitude A with respect to Greenwich is given by A = A, + .
Michael Behrend, October 2011
References

[1] Ordnance Survey (UK), A guide to coordinate systems in Great Britain. Downloaded 9 September 2011 from
http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf

[2] http://en.wikipedia.org/wiki/Transverse_Mercator:_Redfearn_series

[3] C.F.F. Karney, GeographicLib. Available from http://geographiclib.sourceforge.net

[4] R.E. Deakin, M.N. Hunter, & C.F.F. Karney, “The Gauss—Kriiger projection”. Presented at the Victoria Regional Survey
Conference, Warrnambool, 10-12 September 2010. Downloaded 30 August 2011 from
http://user.gs.rmit.edu.au/rod/files/publications/Gauss-Krueger%20Warrnambool%20Conference.pdf



file:///C:/CantabSite/www/map_formulae/alt_tr_mercator/pages/isom_to_geog.html
http://www.ordnancesurvey.co.uk/oswebsite/gps/docs/A_Guide_to_Coordinate_Systems_in_Great_Britain.pdf
http://en.wikipedia.org/wiki/Transverse_Mercator:_Redfearn_series
http://geographiclib.sourceforge.net/
http://user.gs.rmit.edu.au/rod/files/publications/Gauss-Krueger%20Warrnambool%20Conference.pdf

