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0 Introduction

We may say, roughly, that a mathematical

idea is ‘significant’ if it can be connected, in

a natural and illuminating way, with a large

complex of other mathematical ideas.

G.H. Hardy, A Mathematician’s Apology [13, p. 89].

We begin our discussion with a version of van der Waerden’s Theorem.

Theorem A (van der Waerden, 1927) For any positive integer k and any partition of

the natural numbers into finitely many classes, say N = A1 ∪ · · · ∪ Ar, there exists a class

As that contains an arithmetic progression of length k.

A simple combinatorial proof of theorem A can be found in [12, ch. 2, theorem 1].

The case r = 2 was originally conjectured by Baudet. Because of the simple nature

of the statement of the theorem, there are plenty of equivalent formulations and alternative

versions, as well as extensions in many different directions. The theorem has attracted a

wide audience when Khintchine included it in his famous 1948 book Three Pearls in Number

Theory.

In 1936, Erdős and Turán conjectured the following extension to van der Waerden’s

theorem. They asked the question: “Given any positive integer k, how dense must a set

S ⊂ N be so that it contains an arithmetic progression of length k?”. They conjectured that

this remarkable consequence can be achieved when S has positive upper Banach density in

N. For S ⊂ N, its upper Banach density d∗(S) is defined by

d∗(S) = lim sup
|I|→∞

|S ∩ I|
|I|

, (1)

where I ranges over all intervals of N.

This conjecture is a huge generalization of van der Waerden’s theorem. It is easy to

see that if N = A1 ∪ · · · ∪Ar, and As is the “largest class” (ie: there is an injection At → As

for all t), then d∗(As) ≥ 1
r > 0, so As contains an arithmetic progression of arbitrary finite

length.

The first evidence of the truth of the Erdős-Turán conjecture came in 1952, when Roth,

using analytic methods, successfully proved the case k = 3. Later on in 1969, Szemerédi

first proved the case k = 4, and finally in 1975, he successfully proved the result, which is

now named after him.
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Theorem B (Szemerédi, 1975) For any positive integer k and any S ⊂ N with positive

upper Banach density, S contains an arithmetic progression of length k.

Szemerédi’s original proof was combinatorial, and he made use of van der Waerden’s

theorem. The proof was long and intricate, and was very difficult to understand.

In 1976, Furstenberg noticed that Szemerédi’s theorem can be translated from the

language of ergodic theory. He noticed that the theorem can be deduced from a result about

“multiple recurrence” of measure preserving transformations. For a finite measure space

(X,A, µ), a transformation T : X → X is a measure preserving transformation (m.p.t.) if

A ∈ A ⇒ T−1A ∈ A, and µ(A) = µ(T−1A). By normalizing, it is harmless and often useful

to assume that (X,A, µ) is a probability space (i.e. µ(X) = 1).

Subsequently, Furstenberg gave a proof of this ergodic theoretic result.

Theorem C (Furstenberg, 1977) Let (X,A, µ) be a finite measure space, and T : X → X

be a m.p.t.. If A ∈ A satisfies µ(A) > 0, and k > 0 is an integer, then there exists an n > 0

such that

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (2)

Theorem C is a multiple recurrence theorem (there are several analogous results). Here,

we have that every m.p.t. on a finite measure space is multiply recurrent. Theorem C is

easy to prove when k = 1, which is known as Poincaré’s recurrence theorem.

Furstenberg’s proof of theorem B via theorem C is significantly much simpler than

Szemerédi’s argument. The establishment of theorem C also launched a whole new field

in combinatorial number theory: ergodic Ramsey theory. In the following decades, a host

of new results, and some simplifications of known results in density Ramsey theory, were

proved from these recurrence theorems. Of these, an early follow-up was an extension of

theorem C to a set of commuting m.p.t.’s.

Theorem D (Furstenberg and Katznelson, 1978) Let (X,A, µ) be a finite measure

space, and T1, . . . , Tk : X → X be commuting m.p.t.’s. If A ∈ A satisfies µ(A) > 0, then

there exists an n > 0 such that

µ
(
T−n1 A ∩ T−n2 A ∩ · · · ∩ T−nk A

)
> 0.

With theorem D, we can deduce a multi-dimensional version of Szemerédi’s theorem.

We can give an analogous definition of upper Banach density in Nr, and insist that if

S ⊂ Nr has positive upper Banach density, then S contains a homothetic copy of any finite

set F ⊂ Nr (ie: S ⊃ v + dF for some v ∈ Nr, d ∈ N).

We now make the following important observation that throughout this essay, we will in
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fact concentrate on all of these Szemerédi type theorems by replacing N by Z. The definition

for d∗ in (1) changes by just letting the intervals I vary over Z instead of N. These theorems

are easily seen to be equivalent whether we work in N or Z. For example, suppose that

theorem B holds for Z. For S ⊂ N satisfying d∗(S) > 0 (in N) and k ∈ N, we want to show

that S contains an arithmetic progression of length k. Extend S to S′ ⊂ Z by −s ∈ S′ if

s ∈ S. Then clearly d∗(S′) > 0 (in Z), so S′ contains an arithmetic progression of length

2k+ 1 in Z. So at least k of these terms are in either N or −N. The converse is similar. The

same type of argument goes for the other theorems.

The first four chapters of this essay will focus on the proof of theorem C. We will

mainly be concentrating on the theorem itself, without proving some of the minor results.

In chapter 5, we will deduce theorem B from theorem C, and also briefly mention some

recent research in the field. In chapter 6, we will discuss how theorem D is proved, without

giving the proof itself. We will however, deduce the beautiful combinatorial corollary of

theorem D: a multi-dimensional version of Szemerédi’s theorem.

Throughout this essay, every important result is numbered. The symbol � either

denotes the end of the proof of a result, or indicates that no proof is given (either that the

proof is straightforward, or a reference is given).



1 Hilbert Spaces and Ergodic Theory

1.1 Hilbert Spaces

We begin by recalling some basic facts in Hilbert space theory. The treatment here is

of secondary nature, and further details can be found in [1] or [7].

Let H be a Hilbert space. Recall that H is equipped with an inner product 〈 · , · 〉, and

this induces a norm ‖ · ‖ on H by ‖x‖ = 〈x, x〉 12 (we will write this as ‖ · ‖H if there is an

element of ambiguity).

A sequence of vectors {xn}∞n=1 ⊂ H converges weakly to the vector x ∈ H if

lim
n→∞

〈xn, y〉 = 〈x, y〉

for all y ∈ H.

A sequence of vectors {xn}∞n=1 ⊂ H converges strongly to the vector x ∈ H if

lim
n→∞

‖xn − x‖ = 0.

Clearly, strong convergence implies weak convergence, but not conversely.

A unitary operator on H is an invertible linear operator U : H → H that preserves the

inner product, ie:

〈Ux,Uy〉 = 〈x, y〉

for all x, y ∈ H. Thus if we let x = y, we see that U is an isometry on H, ie: ‖Ux‖ = ‖x‖.
Conversely, it is true that every surjective isometry is unitary. It is also obvious that

〈Unx, Uny〉 = 〈x, y〉, for all x, y ∈ H and n ∈ Z.

Now let M⊂ H be a closed linear subspace. Let M⊥ be the orthocomplement of M,

ie: M⊥ = {y ∈ H : 〈x, y〉 = 0, ∀x ∈M}. The following facts are well known.

Proposition 1 If M⊂ H is a closed linear subspace, then

(i) M⊥ ⊂ H is also a closed linear subspace.

(ii) For any such M, H can be written as a direct sum, H =M⊕M⊥. �

If M ⊂ H is a closed linear subspace, we define a linear map P = PM : H → M by

Pz = x, where z = x+ y with x ∈M and y ∈M⊥. P is the orthogonal projection of z onto

M.

The following result will be important to record for things to come.

Theorem 2 (cf: [14, theorem 3.4.7]) Let U be a unitary operator on a Hilbert space H.
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(i) Putting M1 = {x ∈ H : Ux = x} and M2 = {y − Uy : y ∈ H}, we have H =

M1 ⊕M2.

(ii) (The unitary mean ergodic theorem) For every x ∈ H,

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

Unx− PM1x

∥∥∥∥∥ = 0.

�

1.2 The basic ideas of Ergodic Theory

We now introduce some basic ideas of ergodic theory. Further details of measure spaces

can be found in [7].

Primarily speaking, ergodic theory is the study of transformations of a space X into

itself. If T : X → X is such a transformation, we can regard X as a space of “states”. So if

x is the state at time 0, then Tx is the state at time 1. Let f : X → R. Prototypically, the

theory asks: “What happens to the average of f(Tx), f(T 2x), . . . , f(TNx) as N →∞?”

When does limN→∞
1
N

∑N
i=1 f(T ix) exist in some sense? Other similar averages also play a

central role in the theory.

The space X usually has some structure, for example, it can be a smooth manifold,

or a topological space. Our interest here is when the space is a finite measure space,

the transformations T are measure preserving, and the functions f are measurable. By

normalizing, we can usually confine our attention to probability spaces.

As usual, a measure space is a triple (X,A, µ), where X is a set, A is a σ-algebra on

X, and µ is a non-negative measure on X.

Recall that a measure preserving transformation (m.p.t.) on a finite measure space

(X,A, µ) is a transformation T : X → X such that if A ∈ A, then T−1A ∈ A (ie: T is

measurable), and µ(T−1A) = µ(A) (ie: T is measure preserving). We say that the quadruple

(X,A, µ, T ) is a measure preserving system (m.p.s.).

We say that T : X → X is an invertible m.p.t. if T is measure preserving, bijective,

and T−1 is also measure preserving. We also say that (X,A, µ, T ) is an invertible m.p.s..

Throughout this essay, we will always assume that T is invertible, unless otherwise stated.

Here are some examples of invertible m.p.s.’s.

(i) X is the probability space of all sequences {ωn}n∈Z, with values from the finite alphabet

Λ = {1, . . . , r}. A is the smallest σ-algebra for which every ω 7→ ωn is measurable.

µ is the product measure on A defined by µ({ωi1 = j1, . . . , ωin = jn}) = pj1 · · · pjn ,

where p1, . . . , pr is a probability distribution on A: pi ≥ 0, p1 + · · · + pr = 1. T is
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the shift m.p.t.: T{ωn} = {ωn+1}. (X,A, µ, T ) is called a Bernoulli system. The case

r = 2 and p1 = p2 = 1
2 can be regarded as the repeated toss of a coin.

(ii) X = T ∼= R/Z, the unit circle, A is the Borel σ-algebra, µ is the Haar measure, and

Tx = x+ α (mod 1), for some fixed α ∈ R. This is just the rotation of T by α. Note

that T is periodic if and only if α is rational.

These are two examples of very distinct nature. Indeed, we will see later that they

reflect on two distinct phenomena regarding m.p.s.’s. There are many more examples that

arise in other situations in ergodic theory, and do not really concern us here. They can be

found in [18, ch. 1].

As usual, if f is a real or complex valued measurable function on X, and 1 ≤ p ≤ ∞,

we define

‖f‖p =
(∫
|f |p dµ

) 1
p

, for 1 ≤ p <∞,

‖f‖∞ = inf
x∈X
{a ≥ 0 : µ({x : |f(x)| > a}) = 0} , with inf ∅ =∞.

The above infimum is actually attained. For 1 ≤ p ≤ ∞ we define

Lp(X,A, µ) = {f : ‖f‖p <∞}.

Sometimes, we write Lp(µ) for Lp(X,A, µ) if the measure space is not ambiguous. We

recall the important fact that if 1 ≤ p ≤ r ≤ ∞, then Lp ⊃ Lr. For more details about

Lp(X,A, µ) spaces, see [7, ch. 6].

If f ∈ Lp(X,A, µ) and T is a m.p.t. on (X,A, µ), we define T : Lp(X,A, µ) →
Lp(X,A, µ) by Tf(x) = f(Tx). Note that we have used the same letter for this latter

operator. It is easy to show that
∫
Tf dµ =

∫
f dµ by considering indicator functions.

Consider the space L2(X,A, µ) more carefully. For f, g ∈ L2(X,A, µ), it is well known

that the formula

〈f, g〉 =
∫
f g dµ

defines an inner product on L2(X,A, µ). In fact, L2(X,A, µ) is a Hilbert space, equipped

with this inner product.

Hence all the results on Hilbert spaces that we have discussed in section 1.1 are valid

for L2(X,A, µ). Later on, we will prove many key results regarding L2(X,A, µ) by utilizing

its Hilbert space properties.

Indeed, if T is an invertible m.p.t. on (X,A, µ), then T induces a unitary operator on

L2(X,A, µ) by Tf(x) = f(Tx).

With this unitary operator, applying theorem 2 to H = L2(X,A, µ) gives the following.
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Theorem 3 (The mean ergodic theorem) Let (X,A, µ, T ) be a m.p.s.. Then

Pf = lim
N→∞

1
N

N∑
n=1

Tnf

exists in the norm topology for all f ∈ L2(X,A, µ). Moreover, P is the orthogonal projection

onto the space of T -invariant functions. �

We say that f ∈ L2(X,A, µ) is an eigenfunction for T if Tf = λf for some λ ∈ R or

C, according as f is real valued or complex valued. λ is the eigenvalue corresponding to

f . λ is a simple eigenvalue if the space {f : Tf = λf} has dimension 1. Since T is always

unitary, all eigenvalues λ satisfy |λ| = 1.

A m.p.t. T on (X,A, µ) is an ergodic transformation if whenever A ∈ A satisfies

T−1A = A, then µ(A) = 0 or µ(A) = µ(X) ( = 1 for probability spaces). We also say that

(X,A, µ, T ) is an ergodic m.p.s..

We have following characterization of ergodicity (see [18, ch. 1] for partial proof).

Theorem 4 Let (X,A, µ, T ) be a m.p.s.. Then the following are equivalent.

(i) T is ergodic.

(ii) ∀A,B ∈ A, limN→∞
1
N

∑N
n=1 µ(A ∩ T−nB) = µ(A)µ(B).

(iii) ∀ f ∈ L2(X,A, µ), limN→∞

∥∥∥ 1
N

∑N
n=1 T

nf −
∫
f dµ

∥∥∥ = 0.

(iv) ∀ f, g ∈ L2(X,A, µ), limN→∞
1
N

∑N
n=1

∫
fTng dµ =

∫
f dµ

∫
g dµ.

(v) 1 is a simple eigenvalue of the unitary operator induced by T . �

So condition (ii) tells us that intuitively, ergodicity means that for any pair of

sets A, B ∈ A, A becomes asymptotically independent of T−nB on the average. Condition

(iii) is a version of Birkhoff’s ergodic theorem. Condition (v) implies that 1 is always an

eigenvalue because Tc = c for any constant function c.

Although ergodicity is a useful notion, for much of our purposes it will be far too

inadequate. We now look at a stronger notion, the important concept of mixing.

If (X,A, µ, T ) and (X ′,A′, µ′, T ′) are two m.p.s.’s, we can form their product system

(X ×X ′,A × A′, µ × µ′, T × T ′), where X ×X ′ is the usual product space equipped with

the product measure µ× µ′, A×A′ is the σ-algebra generated by the sets A× A′, A ∈ A,

A′ ∈ A′, and T × T ′(x, x′) = (Tx, T ′x′) (see [7, ch. 2.5] for further details on products of

measure spaces).

We say that a m.p.t. T on (X,A, µ) is weak mixing if T×T is an ergodic transformation

of X ×X. We also say that (X,A, µ, T ) is a weak mixing system (w.m.s.).
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For example, it can be shown that a Bernoulli system is a w.m.s. (cf: [11]).

If f is non-constant, Tf = λf , and Tg = λg (there is always such a g if there is

such an f : namely, g = f), then f ⊗ g(x, x′) = f(x)g(x′) will be a non-constant invariant

function on X × X ′. Thus the presence of non-constant eigenfunctions precludes weak

mixing. Conversely, the absence of of non-constant eigenfunctions implies weak mixing.

We have the following characterization for weak mixing m.p.t.’s (see [18, ch. 1] for

partial proof).

Theorem 5 Let (X,A, µ, T ) be a m.p.s.. Then the following are equivalent.

(i) T is weak mixing.

(ii) ∀A,B ∈ A, limN→∞
1
N

∑N
n=1 |µ(A ∩ T−nB)− µ(A)µ(B)| = 0.

(iii) ∀ f, g ∈ L2(X,A, µ), limN→∞
1
N

∑N
n=1

∣∣∫ fTng dµ− ∫ f dµ ∫ g dµ∣∣ = 0.

(iv) ∀A,B ∈ A, limN→∞
1
N

∑N
n=1 (µ(A ∩ T−nB)− µ(A)µ(B))2 = 0.

(v) ∀ f, g ∈ L2(X,A, µ), limN→∞
1
N

∑N
n=1

(∫
fTng dµ−

∫
f dµ

∫
g dµ

)2 = 0.

(vi) The constants are the only eigenfunctions for T in L2(X,A, µ). �

Clearly property (ii) of theorem 5 implies property (ii) of theorem 4. But the

converse is false. There are examples of ergodic transformations that are not weak

mixing. We refer back to the example of the rotation of T, Tx = x + α (mod 1) for some

α ∈ R. This is ergodic, but not weak mixing. Roughly speaking, if A and B are two small

intervals of T, then T−iA will be disjoint from B for at least half of the values of i, so
1
N

∑N
n=1 |µ(A ∩ T−nB)− µ(A)µ(B)| ≥ 1

2µ(A)µ(B) for large N . Intuitively, the nature of a

weak mixing transformation has to do with some “stretching”.

We thus have:

Proposition 6 (X,A, µ, T ) is a w.m.s ⇒ (X,A, µ, T ) is ergodic. The converse is false. �

The following is another very important result for things to come.

Proposition 7 [9, propositions 4.4 - 4.7] If (X,A, µ, T ) is a w.m.s., then (X,A, µ, Tm),

m > 0 (Tm = T ◦ · · · ◦ T︸ ︷︷ ︸
m times

) and (X ×X,A×A, µ× µ, T × T ) are also w.m.s.’s. �



2 Special cases of Multiple Recurrence

In this chapter, we will aim to prove two special cases of the multiple recurrence

theorem (theorem C in the introduction). As it turns out, these two special cases will

actually constitute the first step of the proof of theorem C. Here, we will be hoping

to develop important ideas that we can generalize later.

Let (X,A, µ, T ) be a m.p.s.. We first note that the assertion (2) of theorem C follows if

we can prove the following stronger statement concerning long-term averages: for all k ≥ 1

and A ∈ A with µ(A) > 0, we have

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0. (3)

The expression (3) will now become our centre of attention. In the two special cases,

the establishment of (3) will be quite different. We will be considering the cases when

(X,A, µ, T ) is a w.m.s., and when (X,A, µ, T ) is a “compact system”.

2.1 Weak Mixing Systems

When (X,A, µ, T ) is a w.m.s., we can in fact prove a stronger statement: every weak

mixing transformation is “weak mixing of all orders along multiples”.

Theorem 8 If (X,A, µ, T ) is a w.m.s, and A0, A1, . . . , Ak ∈ A, then

lim
N→∞

1
N

N∑
n=1

(
µ(A0 ∩ T−nA1 ∩ · · · ∩ T−knAk)− µ(A0)µ(A1) · · ·µ(Ak)

)2
= 0. (4)

Of course, letting A0, A1, . . . , Ak = A and µ(A) > 0 in (4) immediately gives (2), and

hence the multiple recurrence theorem for the case when (X,A, µ, T ) is a w.m.s..

Remark. Notice that for this special case, we have a limit. In general, we would have

to replace lim by lim inf, as in (3).

More generally, for f0, f1, . . . , fk ∈ L∞(X,A, µ), if we can show that

lim
N→∞

1
N

N∑
n=1

(∫
f0T

nf1 · · · T knfk dµ−
∫
f0 dµ

∫
f1 dµ · · ·

∫
fk dµ

)2

= 0, (5)

then taking fi = 1Ai , the indicator function on Ai in (5), gives (4).

We first look at a closely related form of convergence.

For S ⊂ Z, the upper density of S is

d(S) = lim sup
N→∞

|S ∩ [−N,N ]|
2N + 1

.
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Recall that the upper Banach density of S ⊂ Z is defined by

d∗(S) = lim sup
|I|→∞

|S ∩ I|
|I|

,

where I ranges over all intervals of Z. The lower Banach density d∗(S) and the lower density

d(S) are defined analogously, by replacing lim sup by lim inf in the corresponding definitions.

Note that d∗(S) ≤ d(S) ≤ d(S) ≤ d∗(S).

A sequence {yn}n∈Z in a topological space Y is said to converge to y ∈ Y in density if

for every neighbourhood U of y, d({n : yn 6∈ U}) = 0. We write

D - lim
n→∞

yn = y.

We have the following simple result.

Lemma 9 Let {xn}∞n=1 be a bounded sequence of real numbers. Then

(i) D-limn→∞ xn = 0 if and only if 1
N

∑N
n=1 x

2
n → 0.

(ii) D-limn→∞ xn = x if and only if 1
N

∑N
n=1 xn → x and 1

N

∑N
n=1 x

2
n → x2. �

Applying lemma 9 to theorem 5, we can reformulate the characterization of weak mixing

transformations.

Theorem 10 Let (X,A, µ, T ) be a m.p.s.. The following are equivalent.

(i) T is weak mixing.

(ii) ∀A,B ∈ A, D - limn→∞ µ(A ∩ T−nB) = µ(A)µ(B).

(iii) ∀ f, g ∈ L2(X,A, µ), D - limn→∞
∫
fTng dµ =

∫
f dµ

∫
g dµ. �

We will now prove theorem 8. We will do this in a series of lemmas.

Lemma 11 Suppose that {xn}n∈Z is a sequence of bounded vectors in a Hilbert space H. If

D - lim
h→∞

(
lim
N→∞

1
N

N∑
n=1

〈xn, xn+h〉

)
= 0,

then

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

xn

∥∥∥∥∥ = 0.

Proof. Given ε > 0, we can choose H large enough such that

H∑
r=−H

H − |r|
H2

lim
N→∞

1
N

N∑
u=1

〈xu, xu+r〉 < ε. (6)
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We have

1
N

N∑
n=1

xn =
1
N

N∑
n=1

(
1
H

H−1∑
h=0

xn+h

)
+ Ψ′N = ΨN + Ψ′N ,

where lim supN→∞ ‖Ψ′N‖ = 0. We claim that

lim sup
N→∞

‖ΨN‖ < ε.

We have

‖ΨN‖2 ≤
1
N

N∑
n=1

∥∥∥∥∥ 1
H

H−1∑
h=0

xn+h

∥∥∥∥∥
2

=
1
N

N∑
n=1

1
H2

H−1∑
h,k=0

〈xn+h, xn+k〉

=
H∑

r=−H

H − |r|
H2N

N∑
u=1

〈xu, xu+r〉+ Ψ′′N ,

where limN→∞Ψ′′N = 0. By (6), the last expression is less than ε for large enough N . �

Remark. The argument used in the proof of lemma 11 is sometimes called a ‘van der

Corput trick’, because it is motivated by van der Corput’s fundamental inequality (see [14,

ch. 3]). There are similar results to lemma 11 which can be proved analogously.

Lemma 12 Let (X,A, µ, T ) be a w.m.s., and f1, f2, . . . , fk ∈ L∞(X,A, µ). Then

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

T infi −
k∏
i=1

∫
fi dµ

∥∥∥∥∥
L2(µ)

= 0. (7)

Proof. We use induction on k. The case k = 1 is theorem 4, property (iii). Suppose

that (7) holds for k − 1. We want to show that

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

( k∏
i=1

T infi −
k∏
i=1

∫
fi dµ

)∥∥∥∥∥
L2(µ)

= 0. (8)

In (8), it is enough to assume that
∫
fj dµ = 0 for some j. This is because if we consider

the identity

k∏
i=1

ai −
k∏
i=1

bi = (a1 − b1)b2 · · · bk + a1(a2 − b2)b3 · · · bk + · · ·+ a1 · · · ak−1(ak − bk), (9)

then setting ai = T infi and bi =
∫
fi dµ, we have

1
N

N∑
n=1

( k∏
i=1

T infi −
k∏
i=1

∫
fi dµ

)

=
k∑
j=1

1
N

N∑
n=1

( j−1∏
i=1

T infi

(
T jn

(
fj −

∫
fj dµ

)) k∏
i=j+1

T infi

)
, (10)
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where by convention,
∏0
i=1 ai =

∏k
i=k+1 bi = 1. We see that in (10), the general case is

reduced to a sum of expressions satisfying the conditions of lemma 12.

Hence if we assume that
∫
fj dµ = 0 for some j, we need to show that

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

T infi

∥∥∥∥∥
L2(µ)

= 0. (11)

Now set xn =
∏k
i=1 T

infi in lemma 11. We have

D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

〈xn, xn+h〉

= D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

∫ ( k∏
i=1

T infi

)( k∏
i=1

T i(n+h)fi

)
dµ

= D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

∫
(f1Thf1)

k∏
i=2

T (i−1)n(fiT ihfi) dµ (12)

= D - lim
h→∞

k∏
i=1

∫
fiT

ihfi dµ = 0. (13)

In moving from (12) to (13), the inductive hypothesis was applied (utilizing weak

convergence only in (7)). The last equality follows from the fact that T j is weak mixing,

and then by theorem 10, property (iii), and
∫
fj dµ = 0. Now applying lemma 11 to the

above gives (11). �

Proof of theorem 8. The strong convergence in (7) in L2(X,A, µ) implies weak

convergence, so if f0 ∈ L∞(X,A, µ),

lim
N→∞

1
N

N∑
n=1

∫
f0

k∏
i=1

T infi dµ =
k∏
i=0

∫
fi dµ. (14)

Since the product system, which we abbreviate X × X, is also weak mixing, we can

replace fi by (fi)2 and T by T × T in (14). The integrals on X × X become products of

integrals on X, so we have

lim
N→∞

1
N

N∑
n=1

(∫
f0

k∏
i=1

T infi dµ

)2

=
k∏
i=0

(∫
fi dµ

)2

. (15)

The following lemma is easy.

Lemma 13 If {an}∞n=1 is a sequence of real numbers with

lim
N→∞

1
N

N∑
n=1

an = a, lim
N→∞

1
N

N∑
n=1

a2
n = a2,

then

lim
N→∞

1
N

N∑
n=1

(an − a)2 = 0.

�
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Now applying lemma 13 to (14) and (15) immediately gives (5), and hence theorem 8

follows. �

2.2 Compact Systems

We have just seen that the proof of the multiple recurrence theorem for w.m.s.’s is

fairly straightforward. We will now examine a different phenomenon. We will now assume

that our m.p.s. is not weak mixing.

A m.p.s. (X,A, µ, T ) is compact if for every f ∈ L2(X,A, µ), the closure of the orbit

{Tnf : n ≥ 0} in L2(X,A, µ) is compact. Equivalently, (X,A, µ, T ) is compact if L2(X,A, µ)

is spanned by eigenfunctions. The topology of L2(X,A, µ) to which compactness and closure

refer in this definition is the norm topology.

By theorem 5, property (vi), weak mixing can be characterized by the absence of

non-trivial eigenfunctions. Hence compact systems are in a sense, a counterpart to w.m.s.’s.

For example, it is easy to see that example (ii) given in section 1.2, regarding the

irrational rotation of the circle T, is a compact system (This is based on the fact that we

can approximate any irrational number by a sequence of rational numbers). More generally,

any rotation on a compact group is a compact system.

Consider the irrational rotation of T example more carefully. For A ∈ A, the translate

T−nA can return sufficiently close to A, so that the iterated translates T−2nA, . . . , T−knA

almost overlap. So µ(A ∩ T−nA ∩ · · · ∩ T−knA) ∼ µ(A)k+1, and this is for a set of n of

positive density.

We will now extend this argument. We can immediately derive (3) by a fairly straight-

forward compactness argument.

Theorem 14 If (X,A, µ, T ) is a compact m.p.s., then for every f ∈ L∞(X,A, µ), f ≥ 0

and f not a.e. 0,

lim inf
N→∞

1
N

N∑
n=1

∫
fTnfT 2nf · · ·T knf dµ > 0.

So taking f = 1A, where A ∈ A and µ(A) > 0, we have

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

Proof. Without loss of generality, assume that 0 ≤ f ≤ 1. If g0, . . . , gk are measurable

functions satisfying 0 ≤ gi ≤ 1 and ‖f − gi‖L∞(µ) < ε for 0 ≤ i ≤ k, then∣∣∣∣∣
∫ k∏

i=0

gi dµ−
∫
fk+1 dµ

∣∣∣∣∣ ≤
k∑
j=0

∫ j−1∏
i=0

gi|gj − f |fk−j dµ ≤ (k + 1)ε
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by the identity (9). Now set a =
∫
fk+1 dµ, and choose ε < a

k+1 . Then
∫ ∏k

i=0 gi dµ ≥
a− (k + 1)ε > 0.

In view of this, theorem 14 will follow if we can prove that for a set of n of positive

lower density, ‖T inf−f‖L∞(µ) < ε for 0 ≤ i ≤ k. This in turn will follow if we can show that

for a set of n of positive lower density, ‖Tnf − f‖L∞(µ) <
ε
k , since T is measure preserving,

for these n we have ‖T inf − f‖L∞(µ) ≤
∑k
j=1 ‖T jnf − T (j−1)nf‖L∞(µ) < ε.

Since the orbit closure {Tnf : n ≥ 0} ⊂ L2(X,A, µ) is compact, we can find a finite

subset {Tm1f, . . . , Tmrf} which is ε
k -separated, ie: ‖Tmif − Tmjf‖L∞(µ) ≥ ε

k for i 6= j,

and that r is of maximal cardinality. Now for any n ≥ 0, {Tn+m1f, . . . , Tn+mrf} is also
ε
k -separated, and has the same cardinality. Thus for some i, ‖Tn+mif − f‖L∞(µ) <

ε
k . So

we have ‖Tnf − f‖L∞(µ) <
ε
k for a set of n of positive lower density. �

We have now seen two special cases of the multiple recurrence theorem that are

mutually exclusive. Unfortunately, the two cases together are far from exhausting all the

possibilities.



3 Measure Theoretic Preliminaries

Before we continue to think about how to prove Furstenberg’s multiple recurrence

theorem, we must first divert our attention and look at more measure theoretic results. The

main theme here is to discuss the notion of a factor of a measure space/m.p.s.. Then we

will be able to generalize expectation to conditional expectation on the factor and a product

space to a fibre product space relative to the factor. Most of the contents of this chapter are

taken from [9, ch. 5].

3.1 Factors and Extensions

Given an arbitrary m.p.s. (X,A, µ, T ), our next step will be to show that (3) holds

for some “factor” of (X,A, µ, T ). We will then show that (3) holds for larger and larger

factors until we arrive at the given m.p.s.. Let us proceed by explaining what a “factor” is.

Let (X,A, µ) and (Y,B, ν) be finite measure spaces. We say that a map π : X → Y is

measure preserving if

(i) π is A-measurable, i.e. ∀B ∈ B, π−1(B) ∈ A,

(ii) ∀B ∈ B, µ(π−1(B)) = ν(B).

We see that the map π−1 : B → A plays an important role. We now identify sets whose

symmetric differences have measure zero. Let Â be the associated σ-algebra of A, consisting

of equivalence classes of sets in A modulo µ-null sets. That is, A1, A2 ∈ A are equivalent if

and only if µ(A14A2) = 0. We denote the class of sets equivalent to A ∈ A by Â.

So a measure preserving map π : X → Y induces a map π−1 : B̂ → Â satisfying

(i) ∀ B̂1, B̂2 ∈ B̂, π−1(B̂1 ∪ B̂2) = π−1(B̂1) ∪ π−1(B̂2),

(ii) ∀ B̂ ∈ B̂, π−1(Ŷ \ B̂) = X̂ \ π−1(B̂),

(iii) ∀ B̂ ∈ B̂, µ(π−1(B̂)) = ν(B̂).

It is easy to show that π−1 must be injective. Moreover, π−1(B̂) is a sub-σ-algebra of

Â. So in some sense, we have “embedded B̂ into Â ”.

If there exists a measure preserving map π : X → Y , we say that (Y,B, ν) is a factor of

(X,A, µ), and that (X,A, µ) is an extension of (Y,B, ν). Furthermore, if π−1(B̂) = Â, then

we say that (X,A, µ) and (Y,B, ν) are equivalent. We also speak of π : (X,A, µ)→ (Y,B, ν)

as an extension.



16 3. Measure Theoretic Preliminaries

We say that (Y,B, ν) is a non-trivial factor if B contains sets of measure strictly between

0 and 1.

Let (X,A, µ, T ) and (Y,B, ν, S) be m.p.s.’s., where π : (X,A, µ) → (Y,B, ν) is an

extension. If the map π−1 : B̂ → Â, which in addition to (i) to (iii) above, satisfies

(iv) ∀ B̂ ∈ B̂, π−1(S−1B̂) = T−1π−1(B̂),

then we say that (Y,B, ν, S) is a factor of (X,A, µ, T ), and that (X,A, µ, T ) is an extension

of (Y,B, ν, S). Again, if π−1(B̂) = Â, then we say that (X,A, µ, T ) and (Y,B, ν, S) are

equivalent. We also speak of π : (X,A, µ, T )→ (Y,B, ν, S) as an extension.

For y ∈ Y , the set π−1(y) ⊂ X is called the fibre lying over y.

From now on, we will drop the ·̂ , where it is understood that the symbols Â and Â

actually represent the aforementioned equivalence classes.

The following is an important example of a factor of a system. Let (Y,B, ν, S) be a

m.p.s., and let (Z, C, θ) be a measure space. Let y 7→ σ(y) be a map from Y to measure

preserving maps of (Z, C, θ), such that (y, z) 7→ σ(y)z is a measurable function from Y ×Z to

Z, with respect to the σ-algebra B×C on Y ×Z. Setting T (y, z) = (Sy, σ(y)z), we see that

T is measure preserving on (Y ×Z,B×C, ν × θ). Now set (X,A, µ) = (Y ×Z,B×C, ν × θ).
(X,A, µ, T ) is called the skew product of (Y,B, ν, S) and (Z, C, θ).

Now let π : X → Y be the projection π(y, z) = y, and set A1 = π−1(B) ⊂ A. We have

a bijection between sets of B and sets of A1, and π−1(SB) = Tπ−1(B) for B ∈ B. So we

can identify the “factor” (X,A1, µ, T ) with (Y,B, ν, S), with (Y,B, ν, S) being the image of

(X,A, µ, T ) under π. It is often useful to think of this a typical example of a factor.

As a sort of converse, we have the following result by Rokhlin.

Theorem 15 Let (X,A, µ, T ) be an ergodic m.p.s.. For any T -invariant sub-σ-algebra

A1 ⊂ A, there exists a m.p.s. (Y,B, ν, S) so that (X,A, µ, T ) is a skew product over

(Y,B, ν, S), and A1 arises in the manner described above. �

In fact, we will not need to retain the full details of skew products. However, the

following description for general m.p.s.’s will be useful.

Theorem 16 For any m.p.s. (X,A, µ, T ) and T -invariant sub-σ-algebra A1 ⊂ A, there

exists a m.p.s. (Y,B, ν, S) equivalent to (X,A1, µ, T ), ie: there exists a measure preserving

map π : X → Y such that A1 = π−1(B). �

3.2 Regular and Separable Measure Spaces

In order to develop our theory further, we will require additional hypotheses regarding

measure spaces (X,A, µ) and m.p.s.’s (X,A, µ, T ). The following essentially assumes that
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the measure space in question is a “compact metric space” and that the measure is “Borel

regular”. In turn, we will require the notion of “separability” of a measure space.

A measure space (X,A, µ) is a compact metric measure space if X is a compact metric

topological space, A is the Borel σ-algebra, and µ is a regular Borel measure. We say that

(X,A, µ) is a regular measure space if it is equivalent to a compact metric measure space.

A m.p.s. (X,A, µ, T ) is regular if (X,A, µ) is regular.

The advantage in working with compact metric spaces is that measures correspond to

positive linear functionals on the algebra of continuous functions C(X). If X is compact

metric, then C(X) is separable (ie: C(X) has a countable dense subset), and a functional

is determined by its values on a countable set.

A measure space (X,A, µ) is separable if Â is generated by a countable subset.

We note that a compact metric space has a countable basis of open sets, and these

generate the Borel sets. Hence if (X,A, µ) is a regular measure space, it is also separable.

We also have the following partial converse.

Theorem 17 (cf: [9, proposition 5.3]) Every separable measure space is equivalent to a

regular measure space. Every separable m.p.s. is equivalent to a regular m.p.s.. �

Let (X,A, µ) be separable. We will be interested in considering all of its factors. It

is easy to see that a factor of (X,A, µ) is also separable, By theorem 17, such a factor

is equivalent to a regular system, which is also a factor of (X,A, µ). Hence in our study

of separable measure spaces, it will be sufficient for us to confine our attention to regular

measure spaces.

3.3 Disintegration of Measures

We will now illustrate the advantage of the assumption that a measure space (X,A, µ)

is regular. We will look at how to “disintegrate the measure µ with respect to a factor

(Y,B, ν)”.

Let M(X) denote the compact metric space of probability measures on X.

Theorem 18 (cf: [9, theorem 5.8]) Let π : (X,A, µ) → (Y,B, ν) be an extension, where

(X,A, µ) is regular. There exists a measurable map Y →M(X), denoted by y 7→ µy, such

that for f ∈ L2(X,A, µ),
∫
f dµy is measurable and integrable in (Y,B, ν), and∫ (∫

f dµy

)
dν(y) =

∫
f dµ. (16)

�

The main ingredient for the proof of theorem 18 is the fact that, if X is a compact

metric space, then there is a bijection between Borel measures and linear functionals on
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C(X), given by integration: µ↔ Lµ with
∫
f dµ = Lµ(f).

We write µ =
∫
µy dν, and call this the disintegration of µ with respect to the factor

(Y,B, ν). Notice that the measure µy is concentrated on the fibre π−1(y) ⊂ X. Also, these

µy are well defined up to sets of measure 0 in Y .

Since T is measure preserving on (X,A, µ), it is easy to see that for a.e. y ∈ Y ,

Tµy = µSy, (17)

where any measure θ, the measure Tθ is defined by Tθ(A) = θ(T−1A), or equivalently, by∫
f dTθ =

∫
Tf dθ. θ is T -invariant if Tθ = θ.

In this situation, it is intuitively useful to think of X as being identified with the set

[0, 1]× [0, 1], Y the set {0}× [0, 1], and the map π sends (x, y) to (0, y). Then the fibres are

the sets π−1(y) = [0, 1]× {y}.

6

-

�

r

0

y

1

1

π

π−1(y)

Y X

3.4 Conditional Expectation

Let π : (X,A, µ) → (Y,B, ν) be an extension. We can lift a B-measurable function f

on Y to an A-measurable function f ◦ π on X. The correspondence f 7→ f ◦ π induces an

isometry Lp(Y,B, ν)→ Lp(X,A, µ) (cf: [18, theorem 1.3]). We define fπ = f ◦ π.

In the opposite direction, we can define the “conditional expectation operator”, which

takes integrable functions from each Lp(X,A, µ) to Lp(Y,B, ν). We will define this operator

for p = 2, so that we can utilize the Hilbert space properties of L2(X,A, µ).

Let π : (X,A, µ) → (Y,B, ν) be an extension. For f ∈ L2(X,A, µ), the conditional

expectation of f on Y is the function on Y given by

E(f |Y )(y) =
∫
f dµy. (18)

for a.e. y ∈ Y . Integrating (18) with respect to ν(y), and using (16), we have∫
f dµ =

∫
E(f |Y ) dν.
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Equivalently, we can define the conditional expectation operator as follows. The map

f 7→ fπ identifies L2(Y,B, ν) with a closed subspace L2(Y,B, ν)π ⊂ L2(X,A, µ). Let P

denote the orthogonal projection of L2(X,A, µ) onto L2(Y,B, ν)π. Then for f ∈ L2(X,A, µ),

E(f |Y ) ∈ L2(Y,B, ν), where

E(f |Y )π = Pf.

-�
?

@
@
@
@
@
@
@R

L2(Y,B, ν)π

L2(X,A, µ)

L2(Y,B, ν)
∼=

P
E( · |Y )

Proposition 19 (Properties of conditional expectation) (cf: [9, propositions 5.4, 5.7])

Let π : (X,A, µ, T ) → (Y,B, ν, S) be an extension. For f ∈ L2(X,A, µ), the conditional

expectation operator f 7→ E(f |Y ) satisfies

(i) f 7→ E(f |Y ) is a linear operator from L2(X,A, µ) to L2(Y,B, ν).

(ii) If f ≥ 0, then E(f |Y ) ≥ 0.

(iii) If g ∈ L2(Y,B, ν), then E(gπ|Y ) = g. In particular, E(1|Y ) = 1, and E(E(f |Y )π|Y ) =

E(f |Y ).

(iv) If g ∈ L∞(Y,B, ν), then E(gπf |Y ) = gE(f |Y ).

(v) SE(f |Y ) = E(Tf |Y ). �

Remark. It is possible the extend the definition of conditional expectation to p = 1.

The properties in proposition 19 will remain true. We will not be required to do this here.

3.5 Fibre Products of Measure Spaces

We are now able to give a more general definition of product spaces.

Let (X,A, µ) and (X ′,A′, µ′) be two regular measure spaces, both of which are

extensions of the same space (Y,B, ν),

π : (X,A, µ)→ (Y,B, ν), π′ : (X ′,A′, µ′)→ (Y,B, ν).

We define

X ×Y X ′ = {(x, x′) ∈ X ×X ′ : π(x) = π′(x′)}.
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Let µ =
∫
µy dν(y), µ′ =

∫
µ′y dν(y) be the respective disintegrations of µ, µ′ with

respect to (Y,B, ν). We define a measure µ×Y µ′ on X ×Y X ′ by giving the disintegration

(µ×Y µ′)y = µy × µ′y.

We give X ×Y X ′ the σ-algebra A ×Y A′, which is the (µ ×Y µ′)-completion of the

σ-algebra {(X ×Y X ′) ∩ C : C ∈ A×A′}.
The measure space (X ×Y X ′,A×Y A′, µ×Y µ′) is the fibre product of (X,A, µ) and

(X ′,A′, µ′) relative to (Y,B, ν).

Likewise, let (X,A, µ, T ) and (X ′,A′, µ′, T ′) are extensions of (Y,B, ν, S),

π : (X,A, µ, T )→ (Y,B, ν, S), π′ : (X ′,A′, µ′, T ′)→ (Y,B, ν, S).

Let T ×Y T ′ be the restriction of T × T ′ to X ×Y X ′. Then the m.p.s.

(X ×Y X ′,A×Y A′, µ×Y µ′, T ×Y T ′)

is the fibre product of (X,A, µ, T ) and (X ′,A′, µ′, T ′) relative to (Y,B, ν, S).

If X = X ′, We define

(X̃, Ã, µ̃) = (X ×Y X,A×Y A, µ×Y µ),

(X̃, Ã, µ̃, T̃ ) = (X ×Y X,A×Y A, µ×Y µ, T ×Y T ).

Also, for functions f1(x), f2(x′), we define f1 ⊗ f2(x, x′) = f1(x)f2(x′).

In particular, (X,A, µ, T ) can be considered as a skew product of (Y,B, ν, S) with a

measure space (Z, C, θ). In this case, X̃ = Y × Z × Z, Ã = B × C × C and µ̃ = ν × θ × θ. If

T (y, z) = (Sy, σ(y)z), then T̃ (y, z, z′) = (Sy, σ(y)z, σ(y)z′)

Later on, we will frequently require the following identity.∫
f ⊗ f(y, z, z′) dµ̃(y, z, z′) =

∫
f(y, z)f(y, z′) dµ̃(y, z, z′)

=
∫ ∫ ∫

f(y, z)f(y, z′) dµy(z) dµy(z′) dν(y)

=
∫
E(f |Y )2 dν. (19)



4 The Multiple Recurrence Theorem

Having gathered the measure theoretic results that we require in the previous chapter,

we are now ready to present a proof of Furstenberg’s multiple recurrence theorem. This

theorem will be sufficient to give Szemerédi’s theorem as a corollary.

Our method will be mainly based on the contents of [11]. Although Furstenberg’s

original proof has undergone several simplifying modifications, the main line of argument

remains very much the same, as we now describe.

We will define more general notions of ergodic, weak mixing, and compact systems:

“relative ergodic, relative weak mixing, and compact extensions (with respect to a factor)”.

These will be defined in such a way that, when the factor is the trivial one-point system, we

will retrieve back our original definitions.

Recall that our aim is to show that, if (X,A, µ, T ) is a m.p.s., A ∈ A satisfies µ(A) > 0,

and k > 0, then

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0. (20)

Let us now give a detailed outline of the proof.

(a) If (X,A, µ, T ) is a w.m.s., then (20) holds by theorem 8.

(b) If (X,A, µ, T ) is not a w.m.s., we will show that (X,A, µ, T ) has a factor which is

compact. This factor satisfies (20) by theorem 14. Hence in any case, (X,A, µ, T )

always has a factor which satisfies (20).

(c) Let F = {(X,Aα, µ, T )} ( 6= ∅ by (b)) be the family of factors that satisfy (20).

Using Zorn’s lemma, we will show that F has a maximal factor (X,Am, µ, T ) (ie:

(X,Am, µ, T ) is an extension of every m.p.s. in F).

(d) Now suppose that (X,A, µ, T ) is a proper extension of (X,Am, µ, T ) (ie: Am  A).

We will then show that if (Z, C, θ, R) is a proper relative weak mixing extension of

(X,Am, µ, T ) (ie: Am ∼= C′  C for some C′), then (Z, C, θ, R) also satisfies (20), thus

contradicting the maximality of (X,Am, µ, T ) in (c).

(e) Likewise, if (Z, C, θ, R) is a proper compact extension of (X,Am, µ, T ), then (Z, C, θ, R)

also satisfies (20): contradicting (c) again.

(f) By (d), suppose that (X,A, µ, T ) is a proper extension of (X,Am, µ, T ) which is

not relatively weak mixing. We will show that there exists a proper subextension
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of (X,Am, µ, T ) which is compact. By (e), this subextension also has the property

(20): contradicting (c) once again.

So this argument implies that A ∼= Am, and hence (X,A, µ, T ) itself must have the

property (20).

4.1 SZ-Systems

We now set up our goal with the following definition.

Let (X,A, µ, T ) be a m.p.s.. We say that (X,A, µ, T ) is a Szemerédi system, or an

SZ-system, if the conclusion of the multiple recurrence theorem holds for (X,A, µ, T ), ie:

for A ∈ A, µ(A) > 0, and k > 0, we have

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

We now proceed to complete the proof of step (b).

Theorem 20 Let (X,A, µ, T ) be a m.p.s. which is not weak mixing. Then (X,A, µ, T ) has

a non-trivial compact factor.

Recall that the m.p.s. (X,A, µ, T ) is a compact system if for every f ∈ L2(X,A, µ),

the orbit closure {Tnf : n ≥ 0} in L2(X,A, µ) is compact. For a general (X,A, µ, T ), this

may happen for some f and not for others. We say that f ∈ L2(X,A, µ) is almost periodic

(AP) if its orbit closure {Tnf : n ≥ 0} is compact.

Lemma 21 Let (X ×X,A×A, µ× µ, T × T ) be a m.p.s. which is not ergodic. Then there

exists a non-constant function f ∈ L2(X,A, µ) which is AP.

Proof. Since (X ×X,A×A, µ× µ, T × T ) is not ergodic, we can find a non-constant

(T ×T )-invariant function g(x, x′) ∈ L2(X ×X,A×A, µ×µ). If T is not ergodic, then any

T -invariant function on X would provide the desired AP function. So we may assume that

T itself to be ergodic. Then the function
∫
g(x, x′) dµ(x) is T -invariant, hence constant by

ergodicity. We can suppose that this function vanishes, or else we subtract this constant

from g. Since g is not identically 0, we can find a function h ∈ L2(X,A, µ) satisfying∫
g(x, x′)h(x′) dµ(x′) 6= 0 on a set of x of positive measure. Now the function

H(x) =
∫
g(x, x′)h(x′) dµ(x′)



4.1 SZ-Systems 23

is also non-constant, since
∫
H(x) dµ(x) =

∫
h(x′)

∫
g(x, x′) dµ(x) dµ(x′) = 0. H is an AP

function, since by the T -invariance of µ

TnH(x) =
∫
g(Tnx, x′)h(x′) dµ(x′)

=
∫
g(Tnx, Tnx′)h(Tnx′) dµ(x′)

=
∫
g(x, x′)Tnh(x′) dµ(x′).

Let Ig : L2(X,A, µ)→ L2(X,A, µ) denote the integral operator

Igφ(x) =
∫
g(x, x′)φ(x′) dµ(x′).

It is well known that the operator Ig is a compact operator (cf: [6, proposition 4.7];

Ig is compact means that Ig(B) is compact, where B is the unit ball in L2(X,A, µ)). Since

{TnH : n ≥ 0} = {Ig(Tnh) : n ≥ 0}, and the norms of Tnh are constant, {Ig(Tnh) : n ≥ 0}
is compact. Hence H is the desired AP function. �

Proof of theorem 20. Since (X,A, µ, T ) is not weak mixing, by lemma 21, there

exists a non-constant AP function f ∈ L2(X,A, µ). Recall that a subset of a complete

metric space has compact closure if and only if for any ε > 0, the subset can be covered

by finitely many balls of radius less than ε. From this, it easily follows that the set of

g ∈ L2(X,A, µ) which are AP is a closed linear subspace of L2(X,A, µ). It can also be seen

that this set is closed under the (lattice) operations g1, g2 7→ max{g1, g2}, min{g1, g2}. Now

let A0 be the smallest σ-algebra of sets with respect to which f is measurable. Then each

1A, A ∈ A0, is AP. Since f is AP if and only if Tf is AP, if A1 is the smallest σ-algebra

of sets with respect to which f , Tf , T 2f, . . . are measurable, then each 1A, A ∈ A1, is AP.

From this, each g ∈ L2(X,A1, µ) is also AP, since the set of AP functions is a closed

linear subspace of L2(X,A1, µ). Hence the factor (X,A1, µ, T ) is compact, with A1 a

non-trivial σ-algebra. �

We have now completed step (b). We now have that every m.p.s. (X,A, µ, T ) has an

SZ factor. Step (c) now claims that, the family F 6= ∅ of SZ factors of (X,A, µ, T ) has a

maximal factor (with respect to the ordering described earlier). This is reasonably easy,

with an application of Zorn’s lemma.

Proposition 22 Let {Aα} be a totally ordered family of σ-algebras. Let A be the σ-algebra

generated by
⋃
Aα. If each m.p.s. (X,Aα, µ, T ) is SZ, then so is (X,A, µ, T ).

Proof. Let A ∈ A with µ(A) > 0, and let k be fixed. Let ρ = 1
2(k+1) . For α0

sufficiently large, we can choose A′0 ∈ Aα0 such that

µ (A4A′0) = µ(A \A′0) + µ(A′0 \A) <
1
4
ρµ(A). (21)



24 4. The Multiple Recurrence Theorem

Now by theorem 16, there exists a m.p.s. (Y,B, ν, S) and a map π : X → Y such that

Aα0 = π−1(B). A′0 ∈ Aα0 corresponds to A′′0 ∈ B, such that π−1(A′′0) = A′0. By (21), we

have µ(A′0) ≥ µ(A) − 1
4ρµ(A) > 0. We claim that the set {y ∈ A′′0 : µy(A) < 1 − ρ} has

measure less than 1
4µ(A). For otherwise

µ(A′0 \A) =
∫
A′′0

µy(A′0 \A) dν(y) =
∫
A′′0

(1− µy(A)) dν(y) ≥ 1
4
ρµ(A)

since for y ∈ A′′0 , µy(A′0) = 1, and this inequality contradicts (21).

Let A0 = {y ∈ A′′0 : µy(A) > 1− ρ}. Then A0 ∈ B, and

ν(A0) > ν(A′′0)− 1
4
µ(A) = µ(A′0)− 1

4
µ(A) >

1
2
µ(A).

By hypothesis, (X,Aα0 , µ, T ) is SZ, or equivalently, (Y,B, ν, S) is SZ. We have

lim inf
N→∞

1
N

N∑
n=1

ν(A0 ∩ S−nA0 ∩ · · · ∩ S−knA0) = a > 0. (22)

We now claim that for every n > 0

1
2
ν(A0 ∩ S−nA0 ∩ · · · ∩ S−knA0) < µ(A ∩ T−nA ∩ · · · ∩ T−knA). (23)

To prove (23), it suffices to show that for y ∈ A0 ∩ S−nA0 ∩ · · · ∩ S−knA0,

µy(A ∩ T−nA ∩ · · · ∩ T−knA) >
1
2

(24)

because (23) then follows from (24) by integration (by formula (16)). But if y ∈ S−inA0

for 0 ≤ i ≤ k, then by the definition of A0 and (17), we have µy(S−inA0) > 1 − ρ. The

intersection of k + 1 sets, each having probability greater than 1 − ρ, has itself probability

greater than 1 − (k + 1)ρ = 1
2 , and so (24) follows. We have proved (23), which together

with (22), gives

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) ≥ a

2
> 0.

�

Theorem 23 The set F of all SZ factors of a m.p.s. (X,A, µ, T ) contains a maximal

element.

Proof. Apply proposition 22 and Zorn’s lemma. �

4.2 Relative Ergodic and Weak Mixing Extensions

In the definition of the conditional expectation operator, when Y is the trivial one-point

system, this just reduces to the usual expectation. Likewise, the fibre product X×Y X ′ just
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becomes X × X ′. As promised, we will now generalize the notions of ergodic and weak

mixing systems in a similar way.

Suppose that π : (X,A, µ, T ) → (Y,B, ν, S) is an extension of m.p.s.’s. We say that

π : (X,A, µ, T )→ (Y,B, ν, S) is a relative ergodic extension if every T -invariant function on

X is (a.e.) a function on Y .

As expected, if Y is the trivial one-point system, the usual notion of ergodicity of a

transformation T on (X,A, µ) is just the assertion that the trivial extension X → Y is a

relative ergodic extension.

We say that π : (X,A, µ, T ) → (Y,B, ν, S) is a relative weak mixing extension if

(X̃, Ã, µ̃, T̃ ) is a relative ergodic extension of (Y,B, ν, S) (Furthermore, the corresponding

measure preserving map is π ◦ pr : (X̃, Ã, µ̃, T̃ ) → (Y,B, ν, S), where pr : X̃ → X is

projection onto either coordinate, and clearly, it is unambiguous whichever coordinate we

use).

We can now prove step (d), ie: the SZ property lifts by non-trivial weak mixing

extensions. We will be mirroring the ideas presented in section 2.1.

Proposition 24 Let (X,A, µ, T ) be a relative weak mixing extension of (Y,B, ν, S), and let

f , g ∈ L∞(X,A, µ), then

lim
N→∞

1
N

N∑
n=1

∫
(E (fTng|Y )− E (f |Y )SnE (g|Y ))2 dν = 0. (25)

Proof. Firstly, assume that E(f |Y ) = 0. Setting f ⊗ f(y, z, z′) = f(y, z)f(y, z′) and

g ⊗ g(y, z, z′) = g(y, z)g(y, z′), we have

lim
N→∞

1
N

N∑
n=1

∫
E(fTng|Y )2 dν = lim

N→∞

1
N

∫ N∑
n=1

f ⊗ f T̃n(g ⊗ g) dµ̃ (26)

= lim
N→∞

∫
f ⊗ f

(
1
N

N∑
n=1

T̃n(g ⊗ g)
)
dµ̃. (27)

Equality (26) is the identity (19). Since T̃ is ergodic, by theorem 4, property (iii),

lim
N→∞

1
N

N∑
n=1

T̃n(g ⊗ g) =
∫
g ⊗ g dµ̃ = constant C.

Hence (27) becomes

lim
N→∞

1
N

N∑
n=1

∫
E(fTng|Y )2 dν = C lim

N→∞

∫
f ⊗ f dµ̃

= C lim
N→∞

∫
E(f |Y )2 dν = 0. (28)

Now let f ∈ L∞(X,A, µ) be arbitrary. Then E(f − E(f |Y )π|Y ) = 0. In (28),

replace f by f − E(f |Y )π. It is then easy to check, using proposition 19, that (28)

will become (25). �
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Theorem 25 Let π : (X,A, µ, T )→ (Y,B, ν, S) be a relative weak mixing extension. Then

for any functions f0, f1, . . . , fk ∈ L∞(X,A, µ),

lim
N→∞

1
N

N∑
n=1

∫ (
E
( k∏
i=0

T infi|Y
)
−

k∏
i=0

SinE (fi|Y )
)2

dν = 0. (29)

We will prove theorem 25 in a similar way to the proof of theorem 8.

Lemma 26 Let π : (X,A, µ, T ) → (Y,B, ν, S) be a relative weak mixing extension. Then

for any functions f1, f2, . . . , fk ∈ L∞(X,A, µ),

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

( k∏
i=1

T infi −
k∏
i=1

T in(E(fi|Y )π)
)∥∥∥∥∥

L2(µ)

= 0. (30)

Proof. We use induction on k. For the case k = 1, it is easy to see that the space

of T -invariant functions in L2(X,A, µ) is a subspace of L2(X,A, µ). By theorem 3, the

theorem holds for k = 1.

Now suppose that (30) holds for k − 1. We want to show that

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

( k∏
i=1

T infi −
k∏
i=1

T in(E(fi|Y )π)
)∥∥∥∥∥

L2(µ)

= 0. (31)

In (31), we can assume that E(fj |Y )π = 0 for some j (applying the identity (9) again

with ai = T infi, bi = T in(E(fi|Y )π), and using the same type of argument as in lemma 12).

We now want to show that

lim
N→∞

∥∥∥∥∥ 1
N

N∑
n=1

k∏
i=1

T infi

∥∥∥∥∥
L2(µ)

= 0. (32)

Now set xn =
∏k
i=1 T

infi in lemma 11. Then

D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

〈xn, xn+h〉

= D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

∫ ( k∏
i=1

T infi

)( k∏
i=1

T i(n+h)fi

)
dµ

= D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

∫ k∏
i=1

T (i−1)n(fiT ihfi) dµ (33)

= D - lim
h→∞

lim
N→∞

1
N

N∑
n=1

∫ k∏
i=1

T (i−1)n(E(fiT ihfi|Y )π) dµ (34)

≤ D - lim
h→∞

‖E(fjT jhfj |Y )π‖L2(µ)

∏
i 6=j

‖fi‖2L∞(µ). (35)

To get from (33) to (34), we have applied the inductive hypothesis (utilizing weak

convergence only in (30)). We claim that the line (35) is 0.
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Lemma 27 Let (X,A, µ, T ) be a relative weak mixing extension of (Y,B, ν, S). If f ,

g ∈ L2(X,A, µ), and either E(f |Y ) = 0 or E(g|Y ) = 0, then

D - lim
h→∞

‖E(fThg|Y )‖ = 0.

Proof. By lemma 9, it is enough to show that limN→∞
1
N

∑N
n=1 ‖E(fTng|Y )‖2 = 0.

We have

lim
N→∞

1
N

N∑
n=1

‖E(fTng|Y )‖2 = lim
N→∞

1
N

N∑
n=1

∫
(f ⊗ f)T̃n(g ⊗ g) dµ̃

=
(∫

(f ⊗ f) dµ̃
)(∫

(g ⊗ g) dµ̃
)

=
(∫

E(f |Y )2 dν
)(∫

E(g|Y )2 dν
)

= 0.

�

We now complete the proof of lemma 26. Since T j is weak mixing and E(fj |Y )π = 0,

lemma 27 implies that the line (35) is 0. An application of lemma 11 immediately implies

(32). �

Lemma 28 Let (X,A, µ, T ) be a relative weak mixing extension of (Y,B, ν, S). Then

(X̃, Ã, µ̃, T̃ ) is also a relative weak mixing extension of (Y,B, ν, S).

Proof. We need to show that (X̂, Â, µ̂, T̂ ) = (X̃ × X̃, Ã × Ã, µ̃× µ̃, T̃ × T̃ ) is ergodic.

It is enough to show that for a dense set of functions F , G ∈ L2(X̂, Â, µ̂),

lim
N→∞

1
N

N∑
n=1

∫
FT̂nGdµ̂ =

∫
F dµ̂

∫
Gdµ̂. (36)

So it is enough to prove (36) for F and G of the form

F (y, z1, z2, z3, z4) = f1(y, z1)f2(y, z2)f3(y, z3)f4(y, z4),

G(y, z1, z2, z3, z4) = g1(y, z1)g2(y, z2)g3(y, z3)g4(y, z4).

We have

lim
N→∞

1
N

N∑
n=1

∫
FT̂nGdµ̂ = lim

N→∞

1
N

N∑
n=1

∫ ( 4∏
i=1

∫
fiT

ngi dµy

)
dν

= lim
N→∞

1
N

N∑
n=1

∫ 4∏
i=1

E(fiTngi|Y ) dν (37)

= lim
N→∞

1
N

N∑
n=1

∫ 4∏
i=1

E(fi|Y )Sn
( 4∏
i=1

E(gi|Y )
)
dν (38)

= lim
N→∞

∫ 4∏
i=1

E(fi|Y )
(

1
N

N∑
n=1

Sn
( 4∏
i=1

E(gi|Y )
))

dν (39)

=
∫
F dµ̂

∫
Gdµ̂. (40)
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We have used proposition 24 to get from (37) to (38). To get from (39) to (40), we

used the fact that (Y,B, ν, S) is ergodic, so that

lim
N→∞

1
N

N∑
n=1

Sn
( 4∏
i=1

E(gi|Y )
)

=
∫ ( 4∏

i=1

∫
gi dµy

)
dν =

∫
Gdµ̂.

�

Proof of theorem 25. f0 is A1-measurable, where A1 = π−1(B). The integrals in

(29) have the form∫
f2
0

(
E
( k∏
i=1

T infi|Y
)
−

k∏
i=1

SinE (fi|Y )
)2

dν

≤ ‖f2
0 ‖L∞(µ)

∫ (
E
( k−1∏
i=0

T infi+1|Y
)
−
k−1∏
i=0

SinE (fi+1|Y )
)2

dν

(by proposition 19 and the fact that Sn is measure preserving). We have reduced (29) from

the case for k to the case for k − 1. So we can assume, as in the proof of proposition 24,

that E(f0|Y ) = 0. By the identity (19),

lim
N→∞

1
N

N∑
n=1

∫
E
( k∏
i=1

T infi|Y
)2

dν = lim
N→∞

∫
f0 ⊗ f0

(
1
N

N∑
n=1

k∏
i=1

T̃ infi ⊗ fi
)
dµ̃. (41)

Now applying lemma 28 to the system (X̃, Ã, µ̃, T̃ ) in (30), (41) becomes

lim
N→∞

1
N

N∑
n=1

∫
E
( k∏
i=1

T infi|Y
)2

dν

= lim
N→∞

∫
f0 ⊗ f0

(
1
N

N∑
n=1

k∏
i=1

T̃ in(E(fi ⊗ fi|Y )π
′
)
)
dµ̃, (42)

where π′ = π ◦ pr, pr : X̃ → X is projection onto either coordinate. The limit in (42) is 0

(for all N), since the sum is constant on fibres and E(f0|Y ) = 0. �

Theorem 29 Let (X,A, µ, T ) be a relative weak mixing extension of (Y,B, ν, S). If

(Y,B, ν, S) is an SZ-system, then (X,A, µ, T ) is also an SZ-system.

Proof. Let A ∈ A with µ(A) > 0. Let ε > 0 be small enough so that for

A1 = {y : E(1A|Y ) ≥ ε}, we have ν(A1) > 0. By theorem 25 and E(1A|Y ) ≥ ε1A1 , we have

1
N

N∑
n=1

µ
(
A ∩ T−nA ∩ · · · ∩ T−knA

)
>
εk+1

2
· 1
N

N∑
n=1

ν
(
A1 ∩ S−nA1 ∩ · · · ∩ S−knA1

)
,

for all k > 0 and for sufficiently large N . �
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4.3 Compact Extensions

We now move on to prove step (e). Namely, the SZ property lifts by “non-trivial

compact extensions”. Let us first define what a compact extension is.

A function f ∈ L2(X,A, µ) is said to be almost periodic (AP) relative to the factor

(Y,B, ν) if for every δ > 0, there exist functions g1, . . . , gn ∈ L2(X,A, µ) such that for every

j ∈ Z, inf1≤s≤n ‖T jf − gs‖L2(µy) < δ for a.e. y ∈ Y . Let AP denote these almost periodic

functions.

(X,A, µ, T ) is a compact extension of (Y,B, ν, S) if AP is dense in L2(X,A, µ).

Like theorem 14, we can prove step (e) in one go.

Theorem 30 Let π : (X,A, µ, T ) → (Y,B, ν, S) be a compact extension. If (Y,B, ν, S) is

an SZ-system, then (X,A, µ, T ) is an SZ-system.

Proof. Let A ∈ A, µ(A) > 0 and k > 0. We need to prove that

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0. (43)

Inequality (43) clearly follows from the same inequality holding for a subset of A. We

remove the parts of A that sit on fibres for which µy(A) ≤ 1
2µ(A). This removes less than

half the measure of A, so we may assume without loss of generality that for some A1 ∈ B,

µy(A) ≥ 1
2µ(A) for y ∈ A1, ν(A1) > 1

2µ(A), and µy(A) = 0 for y 6∈ A1.

Next, we claim the following.

Lemma 31 Without loss of generality, we may assume that 1A is AP.

Proof. By the compact extension property, given ε > 0, there exists an AP function f

such that ‖1A − f‖L2(µ) < ε2. This implies that for some set Eε ∈ B such that ν(Eε) < ε2,

if y 6∈ Eε, then ‖1A − f‖L2(µy) < ε. (If not, then

ε4 >

∫ ∫
|1A − f |2 dµy dν(y) ≥

∫
Eε

∫
|1A − f |2 dµy dν(y) ≥ ε2ν(Eε) ≥ ε4,

a contradiction.)

Let Aε = A \ π−1(Eε). Then on every fibre and for every j > 0, either

‖T j1Aε − T jf‖L2(µy) < ε or ‖T j1Aε
‖L2(µy) = 0.

Since f is AP, for δ > 0, there exist functions g1, . . . , gm ∈ L2(X,A, µ) such that

inf
0≤s≤m

‖T j1Aε
− gs‖L2(µy) < δ + ε (44)

for a.e. y and j > 0, and g0 = 0.

Now (44) remains true if we replace Aε by its intersection with sets in π−1(B) and 1Aε
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is replaced correspondingly (ie: replace 1Aε
by 0 on some fibres). Repeat this procedure for

a sequence {εj}j≥1 going to 0 fast enough so that
∑∞
j=1 ε

2
j <

1
2µ(A). This removes from A

less than half of its measure, giving a set whose indicator function is AP. �

Now by lemma 31, let 1A be AP. Let
⊕k

i=0 L
2(µy) be the direct sum of k+ 1 copies of

L2(µy), endowed with the norm ‖(f0, f1, . . . , fk)‖y = max ‖fj‖L2(µy). Since 1A is AP, it is

clear that the set of vectors {(1A, Tn1A, . . . , T kn1A)}n∈Z is totally bounded in
⊕k

i=0 L
2(µy)

for a.e. y ∈ Y , and in fact, uniformly in y ∈ Y .

We define

V (k, 1A, y) = {(1A, Tn1A, . . . , T kn1A)y}n∈Z ⊂
k⊕
i=0

L2(µy).

V (k, 1A, y) is totally bounded uniformly in y. We are only interested in the subset of

V (k, 1A, y) where y ∈ A1, and each vector in V (k, 1A, y) has non-zero components (and so

with norm ≥ ( 1
2µ(A))

1
2 in L2(µy)). Denote this subset by V ∗(k, 1A, y). This is still totally

bounded uniformly.

For y ∈ A1 and ε > 0, let M(ε, y) be the maximum cardinality of an ε-separated subset

of V ∗(k, 1A, y). Since V ∗(k, 1A, y) is totally bounded uniformly, M(ε, y) is bounded on A1.

For every y ∈ A1, M(ε, y) is an integer valued, monotone decreasing function of ε, so

it is locally constant, except for a countable set of ε. M(ε, y) is measurable as a function of

y, so we can find 0 < ε0 <
µ(A)
10k , η > 0 and A2 ⊂ A1 with ν(A2) > 0, such that M(ε, y) = M

is constant for ε0 − η ≤ ε ≤ ε0 and y ∈ A2.

Now choose y0 ∈ A2 and m1, . . . ,mM such that {(1A, Tmj 1A, . . . , T kmj 1A)y0}Mj=1 is a

maximal ε0-separated set in V ∗(k, 1A, y0). Consider

y 7→ ‖T imr 1A − T ims1A‖L2(µy),

for 1 ≤ r < s ≤ M and 0 ≤ i ≤ k, as functions on Y . These are measurable. We can

suppose that y0 has been chosen so that the neighbourhoods of the images of y0 under each

of these functions have positive µ-measure in A2. Now let A3 ⊂ A2, ν(A3) > 0 be the set of

y such that for every r, s, i as above

‖T imr 1A − T ims1A‖L2(µy) > ‖T imr 1A − T ims1A‖L2(µy0 ) − η. (45)

Now we apply the SZ property of (Y,B, ν, S) to A3. ν(A3∩S−nA3∩· · ·∩S−knA3) > 0

for some n > 0. Let y1 ∈ A3 ∩ S−nA3 ∩ · · · ∩ S−knA3. So Siny1 ∈ A3 for each i, and by the

definition of V ∗(k, 1A, y1), we have A3 ⊂ A1 ∩ S−mjA1 ∩ · · · ∩ S−kmjA1 for each j. Thus

Si(n+mj)y1 ∈ A1 for each i, j.

{(1A, Tn+mj 1A, . . . , T k(n+mj)1A)y1}Mj=1 are (ε0−η)-separated vectors in V ∗(k, 1A, y1),

and hence they form a maximal set which is (ε0 − η)-dense in V ∗(k, 1A, y1). To prove the
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separation, let r 6= s. By the definition of the norm ‖ · ‖, there exists some 0 < i ≤ k such

that ‖T imr 1A − T ims1A‖L2(µy0 ) ≥ ε0. So by (45), ‖T imr 1A − T ims1A‖L2(µSiny1
) ≥ ε0 − η,

since Siny1 ∈ A3.

We have (1A, . . . , 1A)y1 ∈ V ∗(k, 1A, y1). (1A, Tn+mj 1A, . . . , T k(n+mj)1A)y1 is ε0-close

to (1A, . . . , 1A)y1 for some j. By the choice of ε0, we have

µy1(A ∩ T−(n+mj)A ∩ · · · ∩ T−k(n+mj)A) =
∫ k∏
i=0

T i(n+mj)1A dµy1

>
9
10
µy1(A) >

1
3
µ(A).

j depends on y1, but if we sum over j, for all y1 ∈ A3∩S−nA3∩ · · ·∩S−knA3, we have

M∑
j=1

µy1(A ∩ T−(n+mj)A ∩ · · · ∩ T−k(n+mj)A) >
1
3
µ(A).

Integrating over y1 ∈ A3 ∩ S−nA3 ∩ · · · ∩ S−knA3 gives

M∑
j=1

µ(A ∩ T−(n+mj)A ∩ · · · ∩ T−k(n+mj)A) ≥ 1
3
µ(A)ν(A3 ∩ S−nA3 ∩ · · · ∩ S−knA3).

Finally, we average for 1 ≤ n ≤ N and letting N →∞ to get

M lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA)

≥ 1
3
µ(A) lim inf

N→∞

1
N

N∑
n=1

(A3 ∩ S−nA3 ∩ · · · ∩ S−knA3).

The proof of theorem 30 is now complete. �

4.4 Existence of Compact Extensions

We now complete the proof of the multiple recurrence theorem by proving step (f).

Theorem 32 Let (X,A, µ, T ) be a proper extension of (Y,B, ν, S) which is not relatively

weak mixing. Then there is an intermediate factor between Y and X which is a proper

compact extension of (Y,B, ν, S).

Proof. By theorem 15, it will be useful to picture (X,A, µ, T ) as a skew product

representation over (Y,B, ν, S): (X,A, µ) = (Y ×Z,B×C, ν× θ), and T (y, z) = (Sy, σ(y)z).

We can again assume, for convenience, that (X,A, µ, T ) is ergodic. Since X̃ is not

ergodic, there exists a bounded function g(x, x′) on X̃ which is invariant under T̃ , but is not

purely a function of x or x′ alone. Now set X̃ = Y × Z × Z and g(x, x′) = g(y, z, z′).
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By analogy with the proof of lemma 21, there exists a function h ∈ L2(X,A, µ) such

that the integral operator

Igh(y, z) =
∫
g(y, z, z′)h(y, z′) dθ(z′)

is not a function of y alone.

From the fact that σ(y) is measure preserving, and g is T̃ -invariant, we have

T (Igh)(y, z) = Igh(Sy, σ(y)z)

=
∫
g(Sy, σ(y)z, z′)h(Sy, z′) dθ(z′)

=
∫
g(Sy, σ(y)z, σ(y)z′)h(Sy, σ(y)z′) dθ(z′)

=
∫
g(y, z, z′)h(Sy, σ(y)z′) dθ(z′)

= Ig(Th). (46)

For each y, the integral operator Ig is a compact operator. It follows that for δ > 0,

there exists an integer M = M(y, δ) such that {T j(Igh)}Mj=−M = {Ig(T jh)}Mj=−M is δ-dense

in {T j(Igh)}j∈Z in the L2(µy) norm.

For every ε > 0, we can choose Mε,δ large enough and a set E(ε, δ) with ν(E(ε, δ)) < ε,

so that M(y, δ) < Mε,δ for y 6∈ E(ε, δ). Now repeat this argument for a sequence {δj}j≥1,

δj → 0 and {εj}j≥1, with
∑∞
j=1 εj arbitrarily small, and write

f(y, z) =


0 if y ∈

⋃
j≥1

E(εj , δj),

Igh otherwise.

Clearly, ‖f − Igh‖L2(µ) ≤ ‖g‖L∞(µ̃)‖h‖L∞(µ)

∑∞
j=1 εj , which is arbitrarily small. Also,

for every δ > 0 and sufficiently large M , the family {0} ∪ {T j(Igh)}Mj=−M is δ-dense in

{T jf}j∈Z, in the L2(µy) norm for every y.

Now let G be the algebra spanned by {Igh : g ∈ L∞(µ̃), T̃ g = g, h ∈ L∞(µ)}. Then by

(46), G is T -invariant, and the AP functions in G are dense in G.

Let A′ ⊂ A be the smallest sub-σ-algebra such that all the elements of G are

measurable. Clearly, A1 = π−1(B)  A′, and since G is T -invariant, A′ is also T -invariant.

Moreover, G ⊂ L2(X,A′, µ) is dense, so the set of AP functions is dense in L2(X,A′, µ).

Hence (X,A′, µ, T ) is a compact extension of (Y,B, ν, S) with the desired properties. �

We have now completed steps (a) to (f) at the beginning of this chapter, so we have

proved the following multiple recurrence theorem.

Theorem 33 (Furstenberg, 1977) Let (X,A, µ) be a finite measure space, and let T be
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a m.p.t. on X. If A ∈ A satisfies µ(A) > 0, and k > 0 is an integer, then

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

In particular, there exists an n > 0 such that

µ(A ∩ T−nA ∩ T−2nA ∩ · · · ∩ T−knA) > 0.

�



5 Szemerédi’s Theorem

11,410,337,850,553

The smallest term in a sequence of 22 primes

in arithmetical progression. The common

difference is 4,609,098,694,200. This is the longest

such sequence known.

David Wells, The Penguin Dictionary of Curious

and Interesting Numbers [19].

5.1 Szemerédi’s Theorem

Now that we have obtained Furstenberg’s multiple recurrence theorem, we can use it to

prove Szemerédi’s theorem. Before we do this, we need to digress briefly to explain how the

quantities in Szemerédi’s theorem correspond to those in the multiple recurrence theorem.

Let Λ be a finite alphabet, and Ω = ΛZ. If ξ ∈ Ω and a ∈ Λ. We say that a occurs in

ξ with positive upper Banach density if d∗({n : ξ(n) = a}) > 0.

Lemma 34 Let T : Ω → Ω be the shift transformation Tω(n) = ω(n + 1). Let ξ ∈ Ω,

and X = {Tnξ : n ∈ Z} be its orbit closure with respect to T . Let a ∈ Λ, and

A(a) = {ω ∈ Ω : ω(0) = a}. If a occurs in ξ with positive upper Banach density, then

there exists a T -invariant measure µ on X with µ(A(a) ∩X) > 0.

Proof. Let S = {n : ξ(n) = a}. We can find a sequence of intervals {[ak, bk)}∞k=1 such

that limk→∞ bk − ak =∞, and

lim
k→∞

|S ∩ [ak, bk)|
bk − ak

= d∗(S) > 0.

Let

µk =
1

bk − ak

bk−1∑
j=ak

δT j1S

where δx is the unit point mass at x. Then µk is a probability measure on X, and as k →∞,

µk becomes more and more T -invariant. Precisely,

Tµk − µk =
δT bk1S

− δTak1S

bk − ak
,

and its total mass is bounded by 2
bk−ak

. Let µ be a weak∗-limit point of µk. Then µ is

clearly T -invariant. Since

µk(A(a) ∩X) =
|S ∩ [ak, bk)|
bk − ak

,
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we have µ(A(a) ∩X) = d∗(S) > 0. �

Theorem 35 (Szemerédi, 1975) If k is a positive integer and S ⊂ Z satisfies d∗(S) > 0,

then S contains an arithmetic progression of length k.

Proof. S corresponds to the point 1S ∈ {0, 1}Z. Let T be the shift transformation, and

X = {Tn1S : n ∈ Z} be the orbit closure of 1S with respect to T . Let A(1) = {ω : ω(0) = 1}.
1 occurs in 1S with positive upper Banach density, so by lemma 34, there exists a T -invariant

measure µ on X such that µ(A(1)∩X) > 0. By theorem 33, there exists a point ω ∈ A(1)∩X
such that

Tnω, T 2nω, . . . , T (k−1)nω ∈ A(1) ∩X.

So ω, Tnω, T 2nω, . . . , T (k−1)nω ∈ A(1) implies that ω(0) = ω(n) = ω(2n) = · · · =

ω((k − 1)n) = 1. Also, ω ∈ X, so that ω is a limit of translates of 1S . So for some m,

1S(m) = 1S(m+ n) = 1S(m+ 2n) = · · · = 1S(m+ (k − 1)n) = 1.

So we have m, m+ n, m+ 2n, . . . , m+ (k − 1)n ∈ S. �

Remarks. 1. Lemma 34 can be widely generalized. Furstenberg developed a

correspondence principle, which allows us to relate a combinatorial situation like Szemerédi’s

theorem to a recurrence theorem. As we shall see, the multiple recurrence theorem can also

be widely generalized. Thereby, we can apply a particular version of the multiple recurrence

theorem and Furstenberg’s correspondence to obtain a combinatorial result (see [15, ch. 3.2]

for details of Furstenberg’s correspondence).

2. There still remains many open problems relating to Szemerédi’s theorem alone.

Probably the most famous one is the following. If {nk} is a sequence of positive integers

such that
∑
k

1
nk

=∞, then {nk} contains arbitrarily long arithmetic progressions. Here, we

take the upper Banach density in Szemerédi’s theorem in N. If the sequence {nk} has zero

upper Banach density, then Szemerédi’s theorem does not solve this problem. A solution

to this problem would imply that the sequence of prime numbers contains arbitrarily long

arithmetic progressions (which is also still an open problem).

5.2 Extensions to van der Waerden’s and Szemerédi’s Theorems

We will now briefly mention a few more ergodic theoretic results beyond the multiple

recurrence theorem. After Furstenberg initially presented the multiple recurrence theorem

in 1977, and developed the beautiful and surprising link between ergodic theory and Ramsey

theory, “ergodic Ramsey theory” has grown rapidly over the last 20 years, and is still under

heavy research today. This is because Szemerédi’s theorem can have so many extensions in

many different directions, and there is an almost endless list of related open problems today.
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After the initial breakthrough, the first of these extensions came in 1978, when

Furstenberg and Katznelson established the analogue of Szemerédi’s theorem in Zr. We will

look at Furstenberg and Katznelson’s work in more detail in the next chapter.

Two significant extensions, both due to Furstenberg and Katznelson, are worth

mentioning. The first is a recurrence theorem for “commuting IP-systems” for m.p.s.’s

(1985), and this is related to Hindman’s theorem. The second is a density version of the

Hales-Jewett theorem (1991). Both results marked a sizable jump in the field (see [12] for

details of the Hindman and Hales-Jewett theorems).

The following is an extension in a different direction. What happens in van der

Waerden’s theorem if we demand, for example, that: (∗) the common difference of the

arithmetic progression must be a perfect square? This is still true. It is a consequence of

the following “polynomial Szemerédi’s theorem”.

Theorem 36 (Bergelson and Leibman, 1996) Let (X,A, µ) be a finite measure space,

and let T1, . . . , Tk : X → X be commuting invertible m.p.t.’s. Let p1(n), . . . , pk(n) ∈ Q[n] be

polynomials such that pi(0) = 0 and pi(Z) ⊂ Z for 1 ≤ i ≤ k. If A ∈ A satisfies µ(A) > 0,

then

lim inf
N→∞

1
N

N−1∑
n=0

µ(T−p1(n)
1 A ∩ T−p2(n)

2 A ∩ · · · ∩ T−pk(n)
k A) > 0.

�

To obtain the combinatorial corollaries of theorem 36, we now define the upper Banach

density in Zr.

A set S ⊂ Zr is said to have positive upper Banach density if there exists a sequence of

parallelepipeds Πn = [a(1)
n , b

(1)
n ]×· · ·× [a(r)

n , b
(r)
n ] ⊂ Zr, n ∈ N, with limn→∞ b

(i)
n −a(i)

n =∞,

1 ≤ i ≤ r, such that

d∗(S) = lim sup
n→∞

|S ∩Πn|
|Πn|

> 0.

We have the following “multi-dimensional polynomial Szemerédi’s theorem” as a

corollary.

Theorem 37 Let S ⊂ Zr have positive upper Banach density. Let p1(n), . . . , pk(n) ∈ Q[n]

be polynomials such that pi(0) = 0 and pi(Z) ⊂ Z for 1 ≤ i ≤ k. Then for v1, . . . , vk ∈ Zr,
there exists an integer n and a vector u ∈ Zr such that u+ pi(n)vi ∈ S for each i. �

So, for example, setting T1 = · · · = Tk and pj(n) = jn2 in theorem 36, and r = 1 and

v1 = · · · = vk = 1 in theorem 37, gives (∗).
A proof of theorems 36 and 37 can be found in [5], where a further extended result is

presented.
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In this chapter, we will discuss the remarkable result which was proved soon after

the proof of the multiple recurrence theorem, due to Furstenberg and Katznelson. This

was originally done in [10], and was later presented in greater detail in [9]. It is a natural

extension of the multiple recurrence theorem from one m.p.t. to several commuting m.p.t.’s

(theorem D in the introduction).

The main idea of the proof of this extended theorem remains very much analoguous.

In a m.p.s. (X,A, µ, T ), we will be replacing T by a group Γ ∼= Zr of m.p.t.’s acting on X,

and so assuming that each m.p.t. to be invertible. Most of the results and notions that we

have seen in chapter 4 will then have an extended version here, with the relativized notion

of a compact extension becoming a lot more subtle.

As a corollary, we will be rewarded with a multi-dimensional version of Szemerédi’s

theorem.

6.1 Relative Ergodic and Weak Mixing Extensions

We now give an extended definition of m.p.s.’s, relative ergodic extensions and relative

weak mixing extensions.

Throughtout this chapter, let Γ denote a countable group.

A measure preserving system (m.p.s.) is a quadruple (X,A, µ,Γ), where (X,A, µ) is a

measure space, and Γ acts on X by m.p.t.’s.

π : (X,A, µ,Γ) → (Y,B, ν,Γ) is an extension, or (Y,B, ν,Γ) is a factor of (X,A, µ,Γ),

if π : (X,A, µ)→ (Y,B, ν) is an extension and

∀ B̂ ∈ B̂, ∀T ∈ Γ, π−1(T−1B̂) = T−1π−1(B̂).

As in chapter 4, we can again assume that (X,A, µ) is a regular measure space. We

can disintegrate the measure µ with respect to a factor (Y,B, ν) once again, and form the

fibre product (X̃, Ã, µ̃) as before.

We say that (X,A, µ,Γ) is a relative ergodic extension of (Y,B, ν,Γ) for T ∈ Γ if every

T -invariant function on X is a.e. a function on Y .

We say that (X,A, µ,Γ) is a relative weak mixing extension of (Y,B, ν,Γ) for T ∈ Γ if

(X̃, Ã, µ̃,Γ) is a relative ergodic extension of (Y,B, ν,Γ) for T .

Let Γ′ ⊂ Γ be a subgroup. (X,A, µ,Γ) is a relative weak mixing extension of (Y,B, ν,Γ)

for Γ′ if (X,A, µ,Γ) is a relative weak mixing extension of (Y,B, ν,Γ) for every T ∈ Γ′,
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T 6= id.

We have the following result, which is similar to theorem 25.

Theorem 38 (cf: [9, proposition 7.8]) Let (X,A, µ,Γ) be a relative weak mixing extension

of (Y,B, ν,Γ) for Γ. Then for any functions f1, f2, . . . , fk ∈ L∞(X,A, µ)

lim
N→∞

1
N

N∑
n=1

∫ (
E
( k∏
i=1

Tni fi|Y
)
−

k∏
i=1

Tni E (fi|Y )
)2

dν = 0.

�

6.2 Compact Extensions

We will now give an extended definition of compact extensions.

Let Λ ⊂ Γ be a finitely generated subgroup. Fix an epimorphism Zr → Λ, n 7→ T (n).

Let ‖n‖ = max |ni|. We have an ergodic theorem for Zr actions, which says that if

f ∈ L2(X,A, µ), then

lim
N→∞

1
(2N + 1)r

∑
‖n‖≤N

f(T (n)x) (47)

exists for a.e. x ∈ X, and defines a Λ-invariant function. We shall use the fact that the

limit in (45) exists weakly in L2(X,A, µ) for f ∈ L2(X,A, µ).

Let π : (X,A, µ,Γ) → (Y,B, ν,Γ) be an extension. We have the disintegration

µ =
∫
µy dν. Denote the Hilbert spaces L2(X,A, µ) and L2(X̃, Ã, µ̃) by H and H ⊗Y H

respectively. Also, denote the fibre spaces L2(X,A, µy) by Hy, and L2(X̃, Ã, µy × µy) by

Hy ⊗Hy.

Let ‖ · ‖H be the norm on H, and similarly for H ⊗Y H, Hy and Hy ⊗ Hy. We say

that f ∈ H is fibrewise bounded if ‖f‖Hy is bounded as a function of y, and similarly for

H ∈ H ⊗Y H.

Now for H ∈ H ⊗Y H and f ∈ H, define the convolution (relative to (Y,B, ν)) of H

and f by

H ∗ f(x) =
∫
H(x, x′)f(x′) dµπ(x)(x′).

We have

‖H ∗ f‖Hy
≤ ‖H‖Hy⊗Hy

‖f‖Hy

for a.e. y ∈ Y . In particular, if H is bounded, with ‖H‖Hy⊗Hy ≤ M , then ‖H ∗ f‖H ≤
M‖f‖H, and so H ∗ f ∈ H, and f 7→ H ∗ f is a bounded operator on H. We say that f ∈ H
is fibrewise bounded if ‖f‖Hy

is bounded as a function of y, and similarly for H ∈ H⊗Y H.

Now consider the following properties that an extension π : (X,A, µ,Γ) → (Y,B, ν,Γ)

with respect to the subgroup Λ ⊂ Γ may have:
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C1. The functions {H ∗ f} span a dense subset of H as H ranges over fibrewise bounded

Λ-invariant functions on X̃, and f ∈ H.

C2. There exists a dense subset D ⊂ H with the following property. For each f ∈ D and

δ > 0, there exists a finite set of functions g1, . . . , , gk ∈ H such that for each T ∈ Λ,

min1≤j≤k ‖Tf − gj‖Hy < δ for a.e. y ∈ Y .

C3. For each f ∈ H, the following holds. If ε, δ > 0, there exists a finite set of functions

g1, . . . , , gk ∈ H such that for each T ∈ Λ, min1≤j≤k ‖Tf − gj‖Hy
< δ but for a set of

y of measure < ε.

C4. For each f ∈ H, let P̃ f ∈ H ∈ H ⊗Y H be the limit function

P̃ f(x, x′) = lim
N→∞

1
(2N + 1)r

∑
‖n‖≤N

f(T (n)x)f(T (n)x′).

Then P̃ f does not vanish a.e. unless f vanishes a.e..

Theorem 39 (cf: [9, theorem 6.13]) The four properties C1 to C4 of an extension

π : (X,A, µ,Γ) → (Y,B, ν,Γ) with respect to a finitely generated subgroup Λ ⊂ Γ are

equivalent. �

If (X,A, µ,Γ) is an extension of (Y,B, ν,Γ), and Λ ⊂ Γ is a finitely generated subgroup

for which any one of the conditions C1 to C4 holds, then we say that (X,A, µ,Γ) is a compact

extension of (Y,B, ν,Γ) for the action of Λ.

The property C4 tells us that there is an “ample supply” of Λ-invariant functions on

X̃. If the extension is non-trivial, these cannot all be functions on Y , since if f satisfies

E(f |Y ) = 0, we have E(P̃ f |Y ) = 0. If P̃ f were a function on Y , this means that P̃ f = 0.

So a compact extension is never weak mixing for any T ∈ Λ.

The following is a sort of converse.

Proposition 40 (cf: [9, theorem 6.15]) Suppose that π : (X,A, µ,Γ) → (Y,B, ν,Γ) is a

non-trivial extension that is not weak mixing (ie: π : X → Y is not weak mixing relative to

some T ∈ Γ, T 6= id). Then there exists a factor (X ′,A′, µ′,Γ) of (X,A, µ,Γ) which is a

non-trivial compact extension of (Y,B, ν,Γ), relative to the subgroup {Tn : n ∈ Z} ⊂ Γ. �

The following result will be important to record.

Proposition 41 (cf: [9, proposition 6.14]) If π : (X,A, µ,Γ) → (Y,B, ν,Γ) is compact

relative to two subgroups Λ1, Λ2 ⊂ Γ, then it is compact relative to Λ1Λ2. �

Proposition 41 implies that, for a given factor (Y,B, ν,Γ) of (X,A, µ,Γ), the set of T

such that (X,A, µ,Γ) is a compact extension of (Y,B, ν,Γ) for the subgroup {Tn : n ∈ Z}
forms a subgroup of Γ.
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6.3 Primitive Extensions and the Structure Theorem

An extension π : (X,A, µ,Γ) → (Y,B, ν,Γ) is said to be primitive if Γ is the direct

product of two subgroups, Γ = Γw×Γc, where π : (X,A, µ,Γ)→ (Y,B, ν,Γ) is relative weak

mixing for Γw and π : (X,A, µ,Γ)→ (Y,B, ν,Γ) is compact for Γc.

We may now combine propositions 40 and 41 to obtain the following “structure

theorem”.

Theorem 42 (The Structure Theorem) (cf: [9, theorem 6.16]) If π : (X,A, µ,Γ) →
(Y,B, ν,Γ) is a proper extension, then there exists a proper sub-extension (X ′,A′, µ′,Γ) of

(Y,B, ν,Γ) which is primitive. �

6.4 SZ-Systems

We now relativize the definition of SZ-systems.

We say that (X,A, µ,Γ) is an SZ-system if Γ is abelian, and for A ∈ A with µ(A) > 0,

and T1, . . . , Tk ∈ Γ, we have

lim inf
N→∞

1
N

N∑
n=1

µ(T−n1 A ∩ T−n2 A ∩ · · · ∩ T−nk A) > 0.

In fact, if we let Γ be the group generated by a given set of commuting transformations

T1, . . . , Tk, then since we do not assume that Γ acts effectively, we can assume that Γ ∼= Zr.

The action of Γ on the trivial factor of (X,A, µ,Γ) is trivially SZ. Similar to proposition

22 and theorem 23, we can easily show the following.

Proposition 43 (cf: [9, proposition 7.1]) Let {Aα} be a totally ordered family of σ-algebras.

Let A be the σ-algebra generated by
⋃
Aα. If each m.p.s. (X,Aα, µ,Γ) is SZ, then so is

(X,A, µ,Γ). �

Applying Zorn’s lemma to proposition 43, we once again have the following.

Theorem 44 (cf: [9, proposition 7.2]) The family of factors of (X,A, µ,Γ) which are

SZ-systems has a maximal element. �

Once again, our final step is to show that, if the maximal factor of (X,A, µ,Γ) as in

theorem 44 is a non-trivial factor, then there is a sub-extension of the maximal factor which

is SZ. So we get a contradiction, and the maximal factor must be equivalent to (X,A, µ,Γ)

itself.

If this maximal factor were a non-trivial factor of (X,A, µ,Γ), then by theorem 42,

there is a sub-extension of the maximal factor which is primitive. So we can achieve our

goal with the following result.
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Theorem 45 (cf: [9, proposition 7.12]) Let π : (X,A, µ,Γ) → (Y,B, ν,Γ) be a primitive

extension. If (Y,B, ν,Γ) is an SZ-system, then so is (X,A, µ,Γ). �

The proof of theorem 45 combines theorem 38 and property C2 of theorem 39.

Significantly, this also involves a colouring argument on Γ × Y , and the key combinatorial

fact turns out to be Grünwald’s theorem, or Gallai’s theorem (see [12, ch. 2, theorem 8]).

6.5 The Furstenberg-Katznelson Theorem

We can now combine theorems 42, 44 and 45 to lift the SZ property from the trivial

one-point system to an arbitrary system with a finitely generated abelian group Γ. Since

any finite set of commuting transformations generate such a group, this gives the following.

Theorem 46 (Furstenberg and Katznelson, 1978) (cf: [9, theorems 7.13, 7.15]) Let

(X,A, µ) be a finite measure space, and T1, . . . , Tk : X → X be commuting invertible m.p.t.’s.

If A ∈ A satisfies µ(A) > 0, then

lim inf
N→∞

1
N

N∑
n=1

µ
(
T−n1 A ∩ T−n2 A ∩ · · · ∩ T−nk A

)
> 0.

In particular, there exists an n > 0 such that

µ
(
T−n1 A ∩ T−n2 A ∩ · · · ∩ T−nk A

)
> 0.

�

Remark. It can be shown that theorem 46 remains true even if we omit the word

“invertible” (see [9, theorem 7.14] for proof). But theorem 46 is sufficient to give a multi-

dimensional Szemerédi’s theorem as a corollary.

6.6 Multi-dimensional Szemerédi’s Theorem

By a procedure similar to lemma 34 and theorem 35, we can use theorem 46 to deduce

a multi-dimensional version of Szemerédi’s theorem.

Theorem 47 Let S ⊂ Zr be a subset with positive upper Banach density, and let F ⊂ Zr

be any finite set. Then S contains a homothetic copy of F .

Proof. {0, 1}Zr

is endowed with the product topology. We have the r commut-

ing transformations T1, . . . , Tr on {0, 1}Zr

, where Ti is the shift in the ith coordinate: for

ω ∈ {0, 1}Zr

, (Tiω)(n1, . . . , nr) = ω(n1, . . . , ni + 1, . . . , nr). Let X be the orbit closure of

1S ∈ {0, 1}Z
r

under the transformations T1, . . . , Tr, ie: X = {Tni 1S : n ∈ Z, 1 ≤ i ≤ r}.
Let A = {ω ∈ X : ω(0, . . . , 0) = 1}, so that Tm1

1 · · ·Tmr
r 1S ∈ A if and only if
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(m1, . . . ,mr) ∈ S. Like lemma 34, we want to find a Borel probability measure µ on

X, which is Ti-invariant for all i, and µ(A) > 0.

Since S ⊂ Zr has positive upper Banach density, there are parallelepipeds

[a(1)
n , b

(1)
n ] × · · · × [a(r)

n , b
(r)
n ], with each limn→∞ b

(i)
n − a

(i)
n = ∞, such that d∗(S) > 0 is

achieved under these. In other words, for each n, define a measure µn on {0, 1}Zr

by

∫
f dµn =

1∏r
i=1(b(i)n − a(i)

n )

r∑
i=1

b(i)
n −1∑

mi=a
(i)
n

f(Tm1
1 · · ·Tmr

r 1S)

for f ∈ C({0, 1}Zr

). Then limn→∞ µn(A) > 0. Now let µ be a weak∗-limit point of {µn}∞n=1.

Then µ is Ti-invariant for each i, and µ(A) > 0.

We want to show that S contains a homothetic copy of F . It is enough to show that

for any given K ∈ N, there are v ∈ Zr and d ∈ N such that v + d(k1, . . . , kr) ∈ S, for all

0 ≤ ki ≤ K.

The transformations {T k11 · · ·T kr
r : 0 ≤ ki ≤ K, 1 ≤ i ≤ r} form a commuting family of

transformations of X, and µ(A) > 0. By theorem 46, there exist a d > 0 such that

µ

( ⋂
0≤ki≤K

(T k11 · · ·T kr
r )−dA

)
> 0.

Now if µ(E) > 0, then there is a v = (v1, . . . , vr) ∈ Zr such that T v11 · · ·T vr
r 1S ∈ E.

Set E =
⋂

0≤ki≤K(T k11 · · ·T kr
r )−dA. So there is a v ∈ Zr such that for every k1, . . . , kr with

0 ≤ ki ≤ K for all i,

T v11 · · ·T vr
r 1S ∈ T−dk11 · · ·T−dkr

r A.

So we have T v1+dk11 · · ·T vr+dkr
r 1S ∈ A, or (v1 + dk1, . . . , vr + dkr) ∈ S. �

Remark. As a reflection of the power of ergodic Ramsey theory, we remark that at

present, this is the only known proof of theorem 47!
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Szemerédi’s theorems, Journal of AMS 9 (1996), 725-753.

[6] Conway, J. B., A Course in Functional Analysis, 2nd ed., Graduate Texts in Mathe-

matics 96, Springer-Verlag, New York, 1990, xvi + 399 pp.

[7] Folland, G. B., Real Analysis, Modern Techniques and Their Applications, 2nd ed.,

John Wiley and Sons, New York, 1999, xiv + 386pp.

[8] Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi on
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